1
|
Lazo PA. VRK2 kinase pathogenic pathways in cancer and neurological diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119949. [PMID: 40187568 DOI: 10.1016/j.bbamcr.2025.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The VRK2 ser-thr kinase, belonging to the dark kinome, is implicated in the pathogenesis of cancer progression, neurological and psychiatric diseases. The VRK2 gene codes for two isoforms. The main isoform (VRK2A) is mainly located in the cytoplasm, and anchored to different types of membranes, such as the endoplasmic reticulum, mitochondria and nuclear envelope. The VRK2A isoform interacts with signaling modules assembled on scaffold proteins such as JIP1 or KSR1, forming stable complexes and blocking the activation of regulatory signaling pathways by altering their intracellular localization and the balance among them. VRK2 regulates apoptosis, nuclear membrane organization, immune responses, and Cajal bodies. Wild-type VRK2 is overexpressed in tumors and contributes to cancer development. In cells and tumors with low levels of nuclear VRK1, VRK2 generates by alternative splicing a shorter isoform (VRK2B) that lacks the C-terminal hydrophobic tail and permits its relocation to nuclei. Furthermore, rare VRK2 gene variants are associated with different neurological or psychiatric diseases such as schizophrenia, epilepsy, bipolar disorder, depression, autism, circadian clock alterations and insomnia, but their pathogenic mechanism is unknown. These diseases are a likely consequence of an altered balance among different signaling pathways that are regulated by VRK2.
Collapse
Affiliation(s)
- Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
2
|
R R, Devtalla H, Rana K, Panda SP, Agrawal A, Kadyan S, Jindal D, Pancham P, Yadav D, Jha NK, Jha SK, Gupta V, Singh M. A comprehensive update on genetic inheritance, epigenetic factors, associated pathology, and recent therapeutic intervention by gene therapy in schizophrenia. Chem Biol Drug Des 2024; 103:e14374. [PMID: 37994213 DOI: 10.1111/cbdd.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Schizophrenia is a severe psychological disorder in which reality is interpreted abnormally by the patient. The symptoms of the disease include delusions and hallucinations, associated with extremely disordered behavior and thinking, which may affect the daily lives of the patients. Advancements in technology have led to understanding the dynamics of the disease and the identification of the underlying causes. Multiple investigations prove that it is regulated genetically, and epigenetically, and is affected by environmental factors. The molecular and neural pathways linked to the regulation of schizophrenia have been extensively studied. Over 180 Schizophrenic risk loci have now been recognized due to several genome-wide association studies (GWAS). It has been observed that multiple transcription factors (TF) binding-disrupting single nucleotide polymorphisms (SNPs) have been related to gene expression responsible for the disease in cerebral complexes. Copy number variation, SNP defects, and epigenetic changes in chromosomes may cause overexpression or underexpression of certain genes responsible for the disease. Nowadays, gene therapy is being implemented for its treatment as several of these genetic defects have been identified. Scientists are trying to use viral vectors, miRNA, siRNA, and CRISPR technology. In addition, nanotechnology is also being applied to target such genes. The primary aim of such targeting was to either delete or silence such hyperactive genes or induce certain genes that inhibit the expression of these genes. There are challenges in delivering the gene/DNA to the site of action in the brain, and scientists are working to resolve the same. The present article describes the basics regarding the disease, its causes and factors responsible, and the gene therapy solutions available to treat this disease.
Collapse
Affiliation(s)
- Rachana R
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Harshit Devtalla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Karishma Rana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Arushi Agrawal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shreya Kadyan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- IIT Bombay Monash Research Academy, IIT - Bombay, Bombay, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
- Physico-Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University (MQU), Sydney, New South Wales, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- Faculty of Health, Graduate School of Public Health, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Research Consortium in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Phenotypes, mechanisms and therapeutics: insights from bipolar disorder GWAS findings. Mol Psychiatry 2022; 27:2927-2939. [PMID: 35351989 DOI: 10.1038/s41380-022-01523-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/25/2022]
Abstract
Genome-wide association studies (GWAS) have reported substantial genomic loci significantly associated with clinical risk of bipolar disorder (BD), and studies combining techniques of genetics, neuroscience, neuroimaging, and pharmacology are believed to help tackle clinical problems (e.g., identifying novel therapeutic targets). However, translating findings of psychiatric genetics into biological mechanisms underlying BD pathogenesis remains less successful. Biological impacts of majority of BD GWAS risk loci are obscure, and the involvement of many GWAS risk genes in this illness is yet to be investigated. It is thus necessary to review the progress of applying BD GWAS risk genes in the research and intervention of the disorder. A comprehensive literature search found that a number of such risk genes had been investigated in cellular or animal models, even before they were highlighted in BD GWAS. Intriguingly, manipulation of many BD risk genes (e.g., ANK3, CACNA1C, CACNA1B, HOMER1, KCNB1, MCHR1, NCAN, SHANK2 etc.) resulted in altered murine behaviors largely restoring BD clinical manifestations, including mania-like symptoms such as hyperactivity, anxiolytic-like behavior, as well as antidepressant-like behavior, and these abnormalities could be attenuated by mood stabilizers. In addition to recapitulating phenotypic characteristics of BD, some GWAS risk genes further provided clues for the neurobiology of this illness, such as aberrant activation and functional connectivity of brain areas in the limbic system, and modulated dendritic spine morphogenesis as well as synaptic plasticity and transmission. Therefore, BD GWAS risk genes are undoubtedly pivotal resources for modeling this illness, and might be translational therapeutic targets in the future clinical management of BD. We discuss both promising prospects and cautions in utilizing the bulk of useful resources generated by GWAS studies. Systematic integrations of findings from genetic and neuroscience studies are called for to promote our understanding and intervention of BD.
Collapse
|
4
|
Block J. High risk genotypes for schizophrenia may have been adaptive in the context of smallpox. Med Hypotheses 2020; 137:109556. [DOI: 10.1016/j.mehy.2020.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/05/2020] [Indexed: 10/25/2022]
|
5
|
Moghbeli M. Genetic and Molecular Biology of Multiple Sclerosis Among Iranian Patients: An Overview. Cell Mol Neurobiol 2020; 40:65-85. [PMID: 31482432 PMCID: PMC11448812 DOI: 10.1007/s10571-019-00731-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is one if the common types of autoimmune disorders in developed countries. Various environmental and genetic factors are associated with initiation and progression of MS. It is believed that the life style changes can be one of the main environmental risk factors. The environmental factors are widely studied and reported, whereas minority of reports have considered the role of genetic factors in biology of MS. Although Iran is a low-risk country in the case of MS prevalence, it has been shown that there was a dramatically rising trend of MS prevalence among Iranian population during recent decades. Therefore, it is required to assess the probable MS risk factors in Iran. In the present study, we summarized all of the reported genes until now which have been associated with MS susceptibility among Iranian patients. To clarify the probable molecular biology of MS progression, we categorized these reported genes based on their cellular functions. This review paves the way of introducing a specific population-based diagnostic panel of genetic markers among the Iranian population for the first time in the world.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Li Y, Lv Z, Zhang J, Ma Q, Li Q, Song L, Gong L, Zhu Y, Li X, Hao Y, Yang Y. Profiling of differentially expressed circular RNAs in peripheral blood mononuclear cells from Alzheimer's disease patients. Metab Brain Dis 2020; 35:201-213. [PMID: 31834549 DOI: 10.1007/s11011-019-00497-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
Abstract
Expression of circular RNA (circRNA), a class of noncoding RNAs that regulates gene expression, is altered in Alzheimer's disease. This study profiled differentially expressed circRNAs in peripheral blood mononuclear cells (PBMCs) from five patients with Alzheimer's disease compared to healthy controls using circRNA microarrays. We identified a total of 4060 differentially expressed circRNAs (1990 upregulated and 2070 downregulated) in Alzheimer's disease patients. Among these circRNAs, 10 randomly selected circRNAs were verified using qRT-PCR. The top 10 upregulated and downregulated circRNAs were used to predict their target miRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that these differentially expressed circRNAs were strongly associated with inflammation, metabolism, and immune responses, which are all risk factors for Alzheimer's disease. The circRNA-miRNA-mRNA network was most involved in the MAPK, mTOR, AMPK, and WNT signaling pathways in Alzheimer's disease. In conclusion, the current study demonstrated the importance of circRNAs in Alzheimer's disease development. Future studies will evaluate some of these circRNAs as biomarkers for early disease detection and to develop therapeutic strategies to clinically control Alzheimer's disease progression.
Collapse
Affiliation(s)
- Yanxin Li
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhanyun Lv
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Jing Zhang
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Qianqian Ma
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Qiuhua Li
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Li Song
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Li Gong
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Yunliang Zhu
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Xiangyuan Li
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Yanlei Hao
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China.
- Jining Medical University, Jining, 272067, China.
| | - Yan Yang
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China.
- Jining Medical University, Jining, 272067, China.
| |
Collapse
|
7
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
8
|
Lee J, Lee S, Ryu YJ, Lee D, Kim S, Seo JY, Oh E, Paek SH, Kim SU, Ha CM, Choi SY, Kim KT. Vaccinia-related kinase 2 plays a critical role in microglia-mediated synapse elimination during neurodevelopment. Glia 2019; 67:1667-1679. [PMID: 31050055 DOI: 10.1002/glia.23638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
During postnatal neurodevelopment, excessive synapses must be eliminated by microglia to complete the establishment of neural circuits in the brain. The lack of synaptic regulation by microglia has been implicated in neurodevelopmental disorders such as autism, schizophrenia, and intellectual disability. Here we suggest that vaccinia-related kinase 2 (VRK2), which is expressed in microglia, may stimulate synaptic elimination by microglia. In VRK2-deficient mice (VRK2KO ), reduced numbers of presynaptic puncta within microglia were observed. Moreover, the numbers of presynaptic puncta and synapses were abnormally increased in VRK2KO mice by the second postnatal week. These differences did not persist into adulthood. Even though an increase in the number of synapses was normalized, adult VRK2KO mice showed behavioral defects in social behaviors, contextual fear memory, and spatial memory.
Collapse
Affiliation(s)
- Juhyun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seunghyun Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Young-Jae Ryu
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ji-Young Seo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eunji Oh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung U Kim
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Chang-Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Kyong-Tai Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea.,Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
9
|
Ryu HG, Kim S, Lee S, Lee E, Kim HJ, Kim DY, Kim KT. HNRNP Q suppresses polyglutamine huntingtin aggregation by post-transcriptional regulation of vaccinia-related kinase 2. J Neurochem 2019; 149:413-426. [PMID: 30488434 DOI: 10.1111/jnc.14638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/22/2022]
Abstract
Misfolded proteins with abnormal polyglutamine (polyQ) expansion cause neurodegenerative disorders, including Huntington's disease. Recently, it was found that polyQ aggregates accumulate as a result of vaccinia-related kinase 2 (VRK2)-mediated degradation of TCP-1 ring complex (TRiC)/chaperonin-containing TCP-1 (CCT), which has an essential role in the prevention of polyQ protein aggregation and cytotoxicity. The levels of VRK2 are known to be much higher in actively proliferating cells but are maintained at a low level in the brain via an unknown mechanism. Here, we found that basal levels of neuronal cell-specific VRK2 mRNA are maintained by post-transcriptional, rather than transcriptional, regulation. Moreover, heterogeneous nuclear ribonucleoprotein Q (HNRNP Q) specifically binds to the 3'untranslated region of VRK2 mRNA in neuronal cells to reduce the mRNA stability. As a result, we found a dramatic decrease in CCT4 protein levels in response to a reduction in HNRNP Q levels, which was followed by an increase in polyQ aggregation in human neuroblastoma cells and mouse cortical neurons. Taken together, these results provide new insights into how neuronal HNRNP Q decreases VRK2 mRNA stability and contributes to the prevention of Huntington's disease, while also identifying new prognostic markers of HD.
Collapse
Affiliation(s)
- Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saebom Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eunju Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Advanced Bio Convergence Center, Pohang Technopark, Pohang, Korea
| | - Hyo-Jin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,SL BIGEN, Seongnam, Korea
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
10
|
Chen CP, Chern SR, Wu PS, Chen SW, Lai ST, Chuang TY, Chen WL, Yang CW, Wang W. Prenatal diagnosis of a 3.2-Mb 2p16.1-p15 duplication associated with familial intellectual disability. Taiwan J Obstet Gynecol 2018; 57:578-582. [PMID: 30122582 DOI: 10.1016/j.tjog.2018.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE We present prenatal diagnosis of a 2p16.1-p15 duplication associated with familial intellectual disability, and we discuss the genotype-phenotype correlation. CASE REPORT A 22-year-old, primigravid woman underwent amniocentesis at 22 weeks of gestation because of a family history of intellectual disability. The woman and her two sisters had intellectual disability but no behavioral disorders. The intellectual disability was noted in at least one paternal aunt and six paternal cousins of the woman. Cytogenetic analysis revealed the karyotype of 46,XX in the fetus and the two women. Array comparative genomic hybridization (aCGH) analysis on the DNAs extracted from cultured amniocytes and the bloods of the woman and the her sister revealed a 3.244-Mb duplication of 2p16.1-p15 or arr 2p16.1p15 (58,288,588-61,532,538) × 3.0 [GRCh37 (hg19)] encompassing eight Online Mendelian Inheritance in Man (OMIM) genes of VRK2, FANCL, BCL11A, PAPOLG, REL, PUS10, PEX13 and USP34 in the fetus and the two women. Prenatal ultrasound findings were unremarkable. The woman elected to continue the pregnancy. A 3244-g female baby was delivered at term with neither craniofacial dysmorphism nor structural abnormalities. CONCLUSION aCGH is useful in prenatal diagnosis of inherited subtle chromosome imbalance in pregnancy with familial intellectual disability. Chromosome 2p16.1-p15 duplication can be associated with intellectual disability.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Yun Chuang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Lin Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
11
|
Li M, Yue W. VRK2, a Candidate Gene for Psychiatric and Neurological Disorders. MOLECULAR NEUROPSYCHIATRY 2018; 4:119-133. [PMID: 30643786 PMCID: PMC6323383 DOI: 10.1159/000493941] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, p = 3.43 × 10-8) and MDD (130,620 cases and 347,620 controls, p = 4.32 × 10-12) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, p = 3.78 × 10-13), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
12
|
Jeong YH, Choi JH, Lee D, Kim S, Kim KT. Vaccinia-related kinase 2 modulates role of dysbindin by regulating protein stability. J Neurochem 2018; 147:609-625. [PMID: 30062698 DOI: 10.1111/jnc.14562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022]
Abstract
Vaccinia-related kinase 2 (VRK2) is a serine/threonine kinase that belongs to the casein kinase 1 family. VRK2 has long been known for its relationship with neurodegenerative disorders such as schizophrenia. However, the role of VRK2 and the substrates associated with it are unknown. Dysbindin is known as one of the strong risk factors for schizophrenia. The expression of dysbindin is indeed significantly reduced in schizophrenia patients. Moreover, dysbindin is involved in neurite outgrowth and regulation of NMDA receptor signaling. Here, we first identified dysbindin as a novel interacting protein of VRK2 through immunoprecipitation. We hypothesized that dysbindin is phosphorylated by VRK2 and further that this phosphorylation plays an important role in the function of dysbindin. We show that VRK2 phosphorylates Ser 297 and Ser 299 of dysbindin using in vitro kinase assay. In addition, we found that VRK2-mediated phosphorylation of dysbindin enhanced ubiquitination of dysbindin and consequently resulted in the decrease in its protein stability through western blotting. Over-expression of VRK2 in human neuroblastoma (SH-SY5Y) cells reduced neurite outgrowth induced by retinoic acid. Furthermore, a phosphomimetic mutant of dysbindin alleviated neurite outgrowth and affected surface expression of N-methyl-d-aspartate 2A, a subunit of NMDA receptor in mouse hippocampal neurons. Together, our work reveals the regulation of dysbindin by VRK2, providing the association of these two proteins, which are commonly implicated in schizophrenia. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Young-Hun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Jung-Hyun Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea.,R&D Center, NovMetaPharma Co., Ltd., Pohang, 37668, Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
13
|
Azimi T, Ghafouri-Fard S, Davood Omrani M, Mazdeh M, Arsang-Jang S, Sayad A, Taheri M. Vaccinia Related Kinase 2 (VRK2) expression in neurological disorders: schizophrenia, epilepsy and multiple sclerosis. Mult Scler Relat Disord 2017; 19:15-19. [PMID: 29100046 DOI: 10.1016/j.msard.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Schizophrenia (SCZ), epilepsy and Multiple Sclerosis (MS) are neurological disorders with increasing prevalence disturb the patients' lives and are regarded as burdens to the society. As multifactorial disorders, genetic susceptibility factors are involved in their pathogenesis. The Vaccinia-Related Kinase 2 (VRK2) gene codes for a serine threonine kinase recently reported to be contributed in the pathogenesis of some neurological disorders. In the present case-control study we compared the VRK2 gene expression in peripheral blood samples from SCZ, epilepsy and MS patients with normal subjects. METHOD A total of 300 subjects comprising 50 patients in each disease category (SCZ, epilepsy and MS) as well as 150 healthy individuals (50 matched controls for each disorder) participated in the current study. RESULT The VRK2 blood mRNA expression level was measured using the TaqMan real time PCR. The results demonstrated significant down-regulation of VRK2 gene in SCZ (P<0.0001), epilepsy (P=0.008) and MS (P=0.029) compared with the healthy subjects. CONCLUSION Consequently, VRK2 is suggested as a candidate gene for neurological disorders through its role in signaling pathway, the neuronal loss and stress response.
Collapse
Affiliation(s)
- Tahereh Azimi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| | - Mohammad Taheri
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Kang MS, Choi TY, Ryu HG, Lee D, Lee SH, Choi SY, Kim KT. Autism-like behavior caused by deletion of vaccinia-related kinase 3 is improved by TrkB stimulation. J Exp Med 2017; 214:2947-2966. [PMID: 28899869 PMCID: PMC5626391 DOI: 10.1084/jem.20160974] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 12/12/2016] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
Kang et al. showed that reduced vaccinia-related kinase 3 (VRK3) expression affects synaptic structure and function and results in cognitive dysfunction and autism-like behaviors in mice. TrkB stimulation reverses the altered synaptic properties and restores autism-like behaviors in VRK3-deficient mice. Vaccinia-related kinases (VRKs) are multifaceted serine/threonine kinases that play essential roles in various aspects of cell signaling, cell cycle progression, apoptosis, and neuronal development and differentiation. However, the neuronal function of VRK3 is still unknown despite its etiological potential in human autism spectrum disorder (ASD). Here, we report that VRK3-deficient mice exhibit typical symptoms of autism-like behavior, including hyperactivity, stereotyped behaviors, reduced social interaction, and impaired context-dependent spatial memory. A significant decrease in dendritic spine number and arborization were identified in the hippocampus CA1 of VRK3-deficient mice. These mice also exhibited a reduced rectification of AMPA receptor–mediated current and changes in expression of synaptic and signaling proteins, including tyrosine receptor kinase B (TrkB), Arc, and CaMKIIα. Notably, TrkB stimulation with 7,8-dihydroxyflavone reversed the altered synaptic structure and function and successfully restored autism-like behavior in VRK3-deficient mice. These results reveal that VRK3 plays a critical role in neurodevelopmental disorders and suggest a potential therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Myung-Su Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Tae-Yong Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seung-Hyun Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea .,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
15
|
Chang H, Zhang C, Xiao X, Pu X, Liu Z, Wu L, Li M. Further evidence of VRK2 rs2312147 associated with schizophrenia. World J Biol Psychiatry 2016; 17:457-66. [PMID: 27382989 DOI: 10.1080/15622975.2016.1200746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Previous genome-wide association studies (GWAS) have reported that rs2312147 near the VRK2 gene was significantly associated with schizophrenia in populations of European descent, but negative results have also been observed. METHODS To perform a systematic meta-analysis, we collected statistical data of rs2312147 from both GWAS and individual replication samples in European and Asian populations, which finally included up to 30,867 schizophrenia patients and 59,863 healthy controls. RESULTS The VRK2 rs2312147 was genome-wide significantly associated with schizophrenia in combined populations (P = 1.31 × 10(-15), odds ratio, OR = 1.10) as well as in Europeans only (P = 2.35 × 10(-12), OR =1.09). In Asian samples, the SNP did not reach genome-wide level of statistical significance (P = 1.23 × 10 (-) (5), OR =1.19), which is likely due to the limited power of small sample size in this population (2,974 cases and 4,786 controls). However, the effect size of rs2312147 did not alter significantly between populations, and is also in agreement with the observed effect sizes of other genetic risk loci in large scale studies. CONCLUSIONS Our data provides further evidence for the genetic contributions of VRK2 rs2312147 to schizophrenia susceptibility especially in Europeans, while further replication analyses in Asian populations are still needed, and future studies, e.g., the underlying molecular mechanisms of genetic risk, are necessary.
Collapse
Affiliation(s)
- Hong Chang
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| | - Chen Zhang
- b Division of Mood Disorders , Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiao Xiao
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| | - Xingfu Pu
- c The Second People's Hospital of Yuxi City , Yuxi , Yunnan , China
| | - Zichao Liu
- d Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Department of Biological Science and Technology , Kunming University , Kunming , Yunnan , China
| | - Lichuan Wu
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| | - Ming Li
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province , Kunming Institute of Zoology , Kunming , Yunnan , China
| |
Collapse
|