1
|
Kavian Z, Sargazi S, Majidpour M, Sarhadi M, Saravani R, Shahraki M, Mirinejad S, Heidari Nia M, Piri M. Association of SLC11A1 polymorphisms with anthropometric and biochemical parameters describing Type 2 Diabetes Mellitus. Sci Rep 2023; 13:6195. [PMID: 37062790 PMCID: PMC10106459 DOI: 10.1038/s41598-023-33239-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Diabetes, a leading cause of death globally, has different types, with Type 2 Diabetes Mellitus (T2DM) being the most prevalent one. It has been established that variations in the SLC11A1 gene impact risk of developing infectious, inflammatory, and endocrine disorders. This study is aimed to investigate the association between the SLC11A1 gene polymorphisms (rs3731864 G/A, rs3731865 C/G, and rs17235416 + TGTG/- TGTG) and anthropometric and biochemical parameters describing T2DM. Eight hundred participants (400 in each case and control group) were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification-refractory mutation system-PCR (ARMS-PCR) methods. Lipid profile, fasting blood sugar (FBS), hemoglobin A1c level, and anthropometric indices were also recorded for each subject. Findings revealed that SLC11A1-rs3731864 G/A, -rs17235416 (+ TGTG/- TGTG) were associated with T2DM susceptibility, providing protection against the disease. In contrast, SLC11A1-rs3731865 G/C conferred an increased risk of T2DM. We also noticed a significant association between SLC11A1-rs3731864 G/A and triglyceride levels in patients with T2DM. In silico evaluations demonstrated that the SLC11A2 and ATP7A proteins also interact directly with the SLC11A1 protein in Homo sapiens. In addition, allelic substitutions for both intronic variants disrupt or create binding sites for splicing factors and serve a functional effect. Overall, our findings highlighted the role of SLC11A1 gene variations might have positive (rs3731865 G/C) or negative (rs3731864 G/A and rs17235416 + TGTG/- TGTG) associations with a predisposition to T2DM.
Collapse
Affiliation(s)
- Zahra Kavian
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Shahraki
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Adolescent Health Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Piri
- Diabetes Center, Bu-Ali Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
2
|
Deng Y, Han Y, Gao S, Dong W, Yu Y. The Physiological Functions and Polymorphisms of Type II Deiodinase. Endocrinol Metab (Seoul) 2023; 38:190-202. [PMID: 37150515 PMCID: PMC10164501 DOI: 10.3803/enm.2022.1599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 05/09/2023] Open
Abstract
Type II deiodinase (DIO2) is thought to provide triiodothyronine (T3) to the nucleus to meet intracellular needs by deiodinating the prohormone thyroxine. DIO2 is expressed widely in many tissues and plays an important role in a variety of physiological processes, such as controlling T3 content in developing tissues (e.g., bone, muscles, and skin) and the adult brain, and regulating adaptive thermogenesis in brown adipose tissue (BAT). However, the identification and cloning of DIO2 have been challenging. In recent years, several clinical investigations have focused on the Thr92Ala polymorphism, which is closely correlated with clinical syndromes such as type 2 diabetes, obesity, hypertension, and osteoarthritis. Thr92Ala-DIO2 was also found to be related to bone and neurodegenerative diseases and tumors. However, relatively few reviews have synthesized research on individual deiodinases, especially DIO2, in the past 5 years. This review summarizes current knowledge regarding the physiological functions of DIO2 in thyroid hormone signaling and adaptive thermogenesis in BAT and the brain, as well as the associations between Thr92Ala-DIO2 and bone and neurodegenerative diseases and tumors. This discussion is expected to provide insights into the physiological functions of DIO2 and the clinical syndromes associated with Thr92Ala-DIO2.
Collapse
Affiliation(s)
- Yan Deng
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
| | - Yi Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
| | - Sheng Gao
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Wibowo A, Hidayat T, Wahyuningrum SN. Type 2 Deiodinase A/G (Thr92Ala) Polymorphism and Circulating Thyroid Hormone Level of Childbearing Age Women in Area Replete with Iodine Deficiency Disorders. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.11017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND: Iodothyronine deiodinase (DIO) is an enzyme that regulates thyroid hormone activity. DIO consists of three types: deiodinase 1 (D1), 2 (D2), and 3 (D3). D2 is a gene that plays an important role in regulation of the biochemistry of the thyroid hormone in several tissues. D2 also plays a role in the production of triiodothyronine and controlling thyroid hormone signals. This study measured the observation that about 15% of the normal population show that D2 gene polymorphism (Thr92Ala) potentially affects the activity of D2.
AIM: This study aimed to determine D2 polymorphisms and their association with thyroid hormone levels in women of childbearing age in replete iodine deficiency disorder areas.
METHODS: Total number of subjects was 131. Analysis of serum TSH, T3, fT3, T4, and fT4 levels was done using ELISA. Polymorphism of Thr92Ala was analyzed by PCR-RFLP method.
RESULTS: The results showed that the frequencies of the genotypes Thr92Ala were AA 16.79%, AG 41.22%, and GG 41.99%, whereas the allele frequency A 37.5% and G 62.5% (p HWE = 0.171). In this study, we found no differences of TSH and thyroid hormone level between group of each allel. Mean of TSH and thyroid hormone level was on normal range.
CONCLUSION: This D2 polymorphism is associated with fT4 levels rather than fT3 but not statistically significant. Heterozygous alleles at D2 AG have higher TSH levels compared with homozygous alleles.
Collapse
|
4
|
Benenati N, Bufano A, Cantara S, Ricci C, Marzocchi C, Ciuoli C, Sannino I, Tirone A, Voglino C, Vuolo G, Castagna MG. Type 2 deiodinase p.Thr92Ala polymorphism does not affect the severity of obesity and weight loss after bariatric surgery. Sci Rep 2022; 12:10643. [PMID: 35739305 PMCID: PMC9226046 DOI: 10.1038/s41598-022-14863-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
A single nucleotide polymorphism in the Type 2 deiodinase (DIO2) gene (p.Thr92Ala) was found to be associated with hypertension, type 2 diabetes mellitus (T2DM), insulin resistance, and body mass index (BMI). We retrospectively evaluated 182 patients to assess whether the DIO2 p.Thr92Ala was associated with severe obesity and response to bariatric surgery. Genomic DNA was extracted from peripheral blood leukocytes before surgery. Glycemic control parameters, cardiometabolic risk biomarkers (waist circumference, lipid assessment and blood pressure) and hormonal parameters were assessed at baseline and after surgery. Based on genotype evaluation, 78/182 (42.9%) patients were homozygous wild-type (Thr/Thr), 83/182 (45.6%) heterozygous (Thr/Ala), and 21/182 (11.5%) rare homozygous (Ala/Ala). Age at the time of the first evaluation in our Unit was significantly lower in patients with DIO2 p.Thr92Ala. No significant association was observed between DIO2 p.Thr92Ala and BMI, excess weight, waist circumference, Homa Index. The prevalence of comorbidities was not associated with allele distribution except for hypertension that was more frequent in wild-type patients (p = 0.03). After bariatric surgery, excess weight loss (EWL) % and remission from comorbidities occurred without differences according to genotypes. DIO2 p.Thr92Ala does not affect the severity of obesity and its complications, but it seems to determine an earlier onset of morbid obesity. The presence of polymorphism seems not to impact on the response to bariatric surgery, both in terms of weight loss and remission of comorbidities.
Collapse
Affiliation(s)
- Nicoletta Benenati
- Department of Medical, Surgical and Neurological Sciences, UOC Endocrinology, University of Siena, Siena, Italy
| | - Annalisa Bufano
- Department of Medical, Surgical and Neurological Sciences, UOC Endocrinology, University of Siena, Siena, Italy
| | - Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, UOC Endocrinology, University of Siena, Siena, Italy
| | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, UOC Endocrinology, University of Siena, Siena, Italy
| | - Carlotta Marzocchi
- Department of Medical, Surgical and Neurological Sciences, UOC Endocrinology, University of Siena, Siena, Italy
| | - Cristina Ciuoli
- Department of Medical, Surgical and Neurological Sciences, UOC Endocrinology, University of Siena, Siena, Italy
| | - Ida Sannino
- Department of Medical, Surgical and Neurological Sciences, UOC Endocrinology, University of Siena, Siena, Italy
| | - Andrea Tirone
- Department of Surgical Sciences, Bariatric Surgery Unit, University of Siena, Siena, Italy
| | - Costantino Voglino
- Department of Surgical Sciences, Bariatric Surgery Unit, University of Siena, Siena, Italy
| | - Giuseppe Vuolo
- Department of Surgical Sciences, Bariatric Surgery Unit, University of Siena, Siena, Italy
| | - Maria Grazia Castagna
- Department of Medical, Surgical and Neurological Sciences, UOC Endocrinology, University of Siena, Siena, Italy.
| |
Collapse
|
5
|
Gorini F, Vassalle C. Selenium and Selenoproteins at the Intersection of Type 2 Diabetes and Thyroid Pathophysiology. Antioxidants (Basel) 2022; 11:antiox11061188. [PMID: 35740085 PMCID: PMC9227825 DOI: 10.3390/antiox11061188] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes (T2D) is considered one of the largest global public-health concerns, affecting approximately more than 400 million individuals worldwide. The pathogenesis of T2D is very complex and, among the modifiable risk factors, selenium (Se) has recently emerged as a determinant of T2D pathogenesis and progression. Selenium is considered an essential element with antioxidant properties, and is incorporated into the selenoproteins involved in the antioxidant response. Furthermore, deiodinases, the enzymes responsible for homeostasis and for controlling the activity of thyroid hormones (THs), contain Se. Given the crucial action of oxidative stress in the onset of insulin resistance (IR) and T2D, and the close connection between THs and glucose metabolism, Se may be involved in these fundamental relationships; it may cover a dual role, both as a protective factor and as a risk factor of T2D, depending on its basal plasma concentration and the individual’s diet intake. In this review we discuss the current evidence (from experimental, observational and randomized clinical studies) on how Se is associated with the occurrence of T2D and its influence on the relationship between thyroid pathophysiology, IR and T2D.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Correspondence:
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana Gabriele Monasterio, 56124 Pisa, Italy;
| |
Collapse
|
6
|
Deng Y, Hu Q, Tang B, Ouyang Q, Hu S, Hu B, Hu J, He H, Chen G, Wang J. Identification of polymorphic loci in the deiodinase 2 gene and their associations with head dimensions in geese. Anim Biosci 2021; 35:639-647. [PMID: 34727635 PMCID: PMC9065781 DOI: 10.5713/ab.21.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022] Open
Abstract
Objective This study was conducted to clone and compare the molecular characteristics of the deiodinase 2 (DIO2) gene between Sichuan White geese and Landes geese, and to analyze the association between polymorphisms of the DIO2 gene and head dimensions in Tianfu meat geese. Methods The coding sequence of the DIO2 gene was cloned by polymerase chain reaction (PCR) and vector ligation and aligned by DNAMAN software. A total of 350 Tianfu meat geese were used to genotype the polymorphisms of the DIO2 gene and measure the head dimensions. Association analysis between the polymorphisms of the DIO2 gene and head dimensions was carried out. Results An 840-bp coding sequence of the DIO2 gene was obtained and comparison analysis identified four polymorphic loci between Sichuan White geese and Landes geese. Further analysis showed that the dominant alleles for the four polymorphic loci were G, G, A, and T and the frequency of the heterozygous genotype was higher than that of the homozygous genotype in Tianfu meat geese. Compared to that in the population of non-knob geese of Tianfu meat geese, the head dimensions in the population of knob geese were significantly higher except for nostril height. However, in the non-knob geese, beak width 1 (BW1), beak width 2 (BW2), nostril length (NL), cranial width 1 (CW1), and maxillary length (ML) had significant differences among different genotypes or haplotypes/diplotypes. Conclusion These results suggested that polymorphisms of the DIO2 gene could be considered molecular markers to select larger heads of geese in the population of non-knob geese.
Collapse
Affiliation(s)
- Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qian Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bincheng Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
7
|
Shpakov AO. Molecular Mechanisms of the Relationship between Thyroid Dysfunctions and Diabetes Mellitus. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Maino F, Cantara S, Forleo R, Pilli T, Castagna MG. Clinical significance of type 2 iodothyronine deiodinase polymorphism. Expert Rev Endocrinol Metab 2018; 13:273-277. [PMID: 30257587 DOI: 10.1080/17446651.2018.1523714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Biological activity of thyroid hormones (TH) is regulated by enzymes known as deiodinases. The most important is represented by the type 2 deiodinase (D2), which is the main T4-activating enzyme, ubiquitous in human tissues and therefore essential in many metabolic processes. A single nucleotide polymorphism (SPN) of D2, known as Thr92Ala (rs225014), has been reported in the general population while other polymorphisms are less frequently described. AREAS COVERED Several authors investigated the potential metabolic effect of these polymorphisms in the general population and in specific groups of patients. Thr92Ala polymorphism was mainly studied in patients with autoimmune or surgical hypothyroidism and in patients with physical/psychological disorders that could be related to an overt hypothyroidism. Susceptibility to develop more severe type 2 diabetes or insulin resistance has also been evaluated. EXPERT COMMENTARY There is an increasing evidence that the presence of D2 polymorphisms may play a pivotal role in a better definition and customized therapeutic approach of patients with hypothyroidism and/or type 2 diabetes, suggesting that these patients should be screened for D2 polymorphisms. Nevertheless, further research should be performed in order to clarify the association between D2 polymorphisms, metabolic alterations and clinical conditions of the carrier patients.
Collapse
Affiliation(s)
- Fabio Maino
- a Department of Medical, Surgical and Neurological Sciences , University of Siena , Siena , Italy
| | - Silvia Cantara
- a Department of Medical, Surgical and Neurological Sciences , University of Siena , Siena , Italy
| | - Raffaella Forleo
- a Department of Medical, Surgical and Neurological Sciences , University of Siena , Siena , Italy
| | - Tania Pilli
- a Department of Medical, Surgical and Neurological Sciences , University of Siena , Siena , Italy
| | - Maria Grazia Castagna
- a Department of Medical, Surgical and Neurological Sciences , University of Siena , Siena , Italy
| |
Collapse
|
9
|
Park E, Jung J, Araki O, Tsunekawa K, Park SY, Kim J, Murakami M, Jeong SY, Lee S. Concurrent TSHR mutations and DIO2 T92A polymorphism result in abnormal thyroid hormone metabolism. Sci Rep 2018; 8:10090. [PMID: 29973617 PMCID: PMC6031622 DOI: 10.1038/s41598-018-28480-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
Deiodinase 2 (DIO2) plays an important role in thyroid hormone metabolism and its regulation. However, molecular mechanism that regulates DIO2 activity remains unclear; only mutaions in selenocysteine insertion sequence binding protein 2 and selenocysteine tranfer RNA (tRNA[Ser]Sec) are reported to result in decreased DIO2 activity. Two patients with clinical evidence of abnormal thyroid hormone metabolism were identified and found to have TSHR mutations as well as DIO2 T92A single nucleotide polymorphism (SNP). Primary-cultured fibroblasts from one patient present a high level of basal DIO2 enzymatic activity, possibly due to compensation by augmented DIO2 expression. However, this high enzymatic active state yet fails to respond to accelerating TSH. Consequently, TSHR mutations along with DIO2 T92A SNP ("double hit") may lead to a significant reduction in DIO2 activity stimulated by TSH, and thereby may have clinical relevance in a select population of hypothyroidism patients who might benefit from a T3/T4 combination therapy.
Collapse
Affiliation(s)
- Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jaehoon Jung
- Department of Internal medicine, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Osamu Araki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Katsuhiko Tsunekawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - So Young Park
- Department of Internal Medicine, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Republic of Korea
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University School of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
10
|
Brozaitiene J, Skiriute D, Burkauskas J, Podlipskyte A, Jankauskiene E, Serretti A, Mickuviene N. Deiodinases, Organic Anion Transporter Polypeptide Polymorphisms, and Thyroid Hormones in Patients with Myocardial Infarction. Genet Test Mol Biomarkers 2018; 22:270-278. [DOI: 10.1089/gtmb.2017.0283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Julija Brozaitiene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| | - Daina Skiriute
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julius Burkauskas
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| | - Aurelija Podlipskyte
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| | - Edita Jankauskiene
- Department of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Narseta Mickuviene
- Laboratory of Behavioral Medicine, Neuroscience Institute, Lithuanian University of Health Sciences, Palanga, Lithuania
| |
Collapse
|
11
|
Shen JZ, Ge WH, Fang Y, Liu H. A novel polymorphism in protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2) is associated with type 2 diabetes in the Han Chinese population. J Diabetes 2017; 9:606-612. [PMID: 27427333 DOI: 10.1111/1753-0407.12449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND It has been proposed that the energy-sensing enzyme AMP-activated protein kinase (AMPK) is a key agent in the pathophysiology of type 2 diabetes mellitus (T2DM). The gene encoding protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2) is located at one of the Asian T2DM loci (1p32). Therefore, the aim of the present study was to test for the association of common variants in PRKAA2 with T2DM in the Han Chinese population. METHODS We genotyped 221 T2DM patients and 111 controls to assess possible associations of two tagging single nucleotide polymorphisms (tSNPs) in the PRKAA2 gene with T2DM. RESULTS The clinical characteristics of T2DM cases compared with controls differed significantly. No significant association was observed with the rs2143754 polymorphism whereas the rs2746342 polymorphism exhibited a highly significant association with T2DM. Fasting plasma glucose (FPG) of subjects carrying the G/G genotype of the rs2746342 polymorphism was higher than that of subjects carrying the T allele (P = 0.0049). These associations were magnified in the presence of the G/G genotype of the rs2143754 polymorphism. CONCLUSIONS The rs2746342 polymorphism is significantly associated with susceptibility to T2DM and seems to interact with the rs2143754 polymorphism in the modulation of FPG in the Han Chinese population.
Collapse
Affiliation(s)
- Ji-Zhong Shen
- Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Wei-Hong Ge
- Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Yun Fang
- Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Hang Liu
- Department of Pharmacy, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Tang Y, Yan T, Wang G, Chen Y, Zhu Y, Jiang Z, Yang M, Li C, Li Z, Yu P, Wang S, Zhu N, Ren Q, Ni C. Correlation between Insulin Resistance and Thyroid Nodule in Type 2 Diabetes Mellitus. Int J Endocrinol 2017; 2017:1617458. [PMID: 29158735 PMCID: PMC5660821 DOI: 10.1155/2017/1617458] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/31/2017] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The present study explored the association between insulin resistance (IR) and the clinical characteristics of thyroid nodules in patients with type 2 diabetes mellitus (T2DM). METHODS All the patients were newly diagnosed with T2DM. 201 patients with thyroid nodule disease and 308 patients without the nodular thyroid disease. The participants were evaluated by relevant examination. Correlation analyses and regression analyses were performed to examine the relationships between the two groups. RESULTS HOMA-IR values, serum FT4 (free thyroxine) levels, and age were higher in the thyroid nodule group than in the control group. The proportion of women in the thyroid nodule group is greater than the proportion of women in the control group. Logistic regression analysis showed that age, sex, FT4, and HOMA-IR were positive factors for thyroid nodule. The volume and size of the thyroid nodule were positively correlated with HOMA-IR, irrespective of gender. The thyroid nodule volume and size and the TSH (thyroid stimulating hormone) were greater in females than in males, whereas FT3 (free triiodothyronine) was lower in females. CONCLUSION IR might be a risk factor for thyroid nodule. Whether alleviating the IR might slow the growth, or diminish the volume and size of the thyroid nodules, is yet to be elucidated.
Collapse
Affiliation(s)
- Yunzhao Tang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Tiantian Yan
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Gang Wang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijun Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjuan Zhu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhenhuan Jiang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Min Yang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chenguang Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhu Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ping Yu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shanshan Wang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Nannan Zhu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Qiuyue Ren
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Changlin Ni
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Moura Neto A, Parisi MCR, Alegre SM, Pavin EJ, Tambascia MA, Zantut-Wittmann DE. Relation of thyroid hormone abnormalities with subclinical inflammatory activity in patients with type 1 and type 2 diabetes mellitus. Endocrine 2016; 51:63-71. [PMID: 26049370 DOI: 10.1007/s12020-015-0651-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/01/2015] [Indexed: 01/03/2023]
Abstract
Thyroid hormone (TH) abnormalities are common in patients with diabetes mellitus (DM). These thyroid hormone abnormalities have been associated with inflammatory activity in several conditions but this link remains unclear in DM. We assessed the influence of subclinical inflammation in TH metabolism in euthyroid diabetic patients. Cross-sectional study involving 258 subjects divided in 4 groups: 70 patients with T2DM and 55 patients with T1DM and two control groups of 70 and 63 non-diabetic individuals, respectively. Groups were paired by age, sex, and body mass index (BMI). We evaluated the association between clinical and hormonal variables [thyrotropin, reverse T3 (rT3), total and free thyroxine (T4), and triiodothyronine (T3)] with the inflammation markers C-reactive protein (hs-CRP), serum amyloid A (SAA), and interleukin-6 (IL-6). Serum T3 and free T3 were lower in patients with diabetes (all P < 0.001) compared to the control groups. Interleukin-6 showed positive correlations with rT3 in both groups (P < 0.05). IL-6 was independently associated to FT3/rT3 (B = -0.193; 95% CI -0.31; -0.076; P = 0.002) and FT4/rT3 (B = -0.107; 95% CI -0.207; -0.006; P = 0.039) in the T1DM group. In the T2DM group, SAA (B = 0.18; 95% CI 0.089; 0.271; P < 0.001) and hs-CRP (B = -0.069; 95% CI -0.132; -0.007; P = 0.03) predicted FT3 levels. SAA (B = -0.16; 95% CI -0.26; -0.061; P = 0.002) and IL6 (B = 0.123; 95% CI 0.005; 0.241; P = 0.041) were related to FT4/FT3. In DM, differences in TH levels compared to non-diabetic individuals were related to increased subclinical inflammatory activity and BMI. Altered deiodinase activity was probably involved. These findings were independent of sex, age, BMI, and HbA1c levels.
Collapse
Affiliation(s)
- Arnaldo Moura Neto
- Division of Endocrinology, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, UNICAMP, Rua Tessalia Vieira de Camargo, 126 - Barao Geraldo, CEP 13084-971, Campinas, Sao Paulo, Brazil
| | - Maria Candida Ribeiro Parisi
- Division of Endocrinology, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, UNICAMP, Rua Tessalia Vieira de Camargo, 126 - Barao Geraldo, CEP 13084-971, Campinas, Sao Paulo, Brazil
| | - Sarah Monte Alegre
- Division of Internal Medicine, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Elizabeth Joao Pavin
- Division of Endocrinology, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, UNICAMP, Rua Tessalia Vieira de Camargo, 126 - Barao Geraldo, CEP 13084-971, Campinas, Sao Paulo, Brazil
| | - Marcos Antonio Tambascia
- Division of Endocrinology, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, UNICAMP, Rua Tessalia Vieira de Camargo, 126 - Barao Geraldo, CEP 13084-971, Campinas, Sao Paulo, Brazil
| | - Denise Engelbrecht Zantut-Wittmann
- Division of Endocrinology, Clinical Medicine Department, Faculty of Medical Sciences, University of Campinas, UNICAMP, Rua Tessalia Vieira de Camargo, 126 - Barao Geraldo, CEP 13084-971, Campinas, Sao Paulo, Brazil.
| |
Collapse
|