1
|
Reddy Palicharla V, Mukhopadhyay S. Molecular and structural perspectives on protein trafficking to the primary cilium membrane. Biochem Soc Trans 2024; 52:1473-1487. [PMID: 38864436 PMCID: PMC11346432 DOI: 10.1042/bst20231403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The primary cilium is a dynamic subcellular compartment templated from the mother centriole or basal body. Cilia are solitary and tiny, but remarkably consequential in cellular pathways regulating proliferation, differentiation, and maintenance. Multiple transmembrane proteins such as G-protein-coupled receptors, channels, enzymes, and membrane-associated lipidated proteins are enriched in the ciliary membrane. The precise regulation of ciliary membrane content is essential for effective signal transduction and maintenance of tissue homeostasis. Surprisingly, a few conserved molecular factors, intraflagellar transport complex A and the tubby family adapter protein TULP3, mediate the transport of most membrane cargoes into cilia. Recent advances in cryogenic electron microscopy provide fundamental insights into these molecular players. Here, we review the molecular players mediating cargo delivery into the ciliary membrane through the lens of structural biology. These mechanistic insights into ciliary transport provide a framework for understanding of disease variants in ciliopathies, enable precise manipulation of cilia-mediated pathways, and provide a platform for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| |
Collapse
|
2
|
Kumari S, Mitra A, Bulusu G. Putative Role of Cholesterol in Shaping the Structural and Functional Dynamics of Smoothened (SMO). J Phys Chem B 2023; 127:9476-9495. [PMID: 37878627 DOI: 10.1021/acs.jpcb.3c02255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The smoothened (SMO) receptor belongs to the superfamily of class F G protein-coupled receptors (GPCRs) and is a potential drug target in several types of cancer. It has two ligand binding sites, respectively, in the cysteine-rich domain (CRD) and the transmembrane domain (TMD). It has been shown that cholesterol is important for its activation and function. However, the molecular-level understanding of SMO dynamics in the presence of cholesterol has not been explored in sufficient detail. In this work, we have carried out atomistic molecular dynamics simulations totaling 3.6 μs to analyze the effect of cholesterol binding to TMD and/or CRD on the structure and dynamics of the SMO receptor. Our results show that the presence of cholesterol in the CRD and TMD, respectively, alters the conformational dynamics of SMO differently. We reported that the reorganization of the D-R-E network at the extracellular end of the TMD is important for the high activity of SMO. In general, the transmembrane helices 5, 6, and 7 and helix 8 are most affected, which, in turn, leads to changes in the CRD and intracellular cytoplasmic domain (ICD) dynamics patterns depending on the presence or absence of cholesterol in the CRD and/or the TMD. We have also reported that the interaction of membrane lipids with SMO is different in different SMO states. These results agree with the experimental structural observations and data of cholesterol-bound and unbound structures of SMO and add to our molecular understanding of the SMO-cholesterol interaction.
Collapse
Affiliation(s)
- Shweta Kumari
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Gopalakrishnan Bulusu
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
- IHub-Data, International Institute of Information Technology, Hyderabad 500032, India
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500046, India
| |
Collapse
|
3
|
The Immunofluorescence-Based Detection of Hedgehog Pathway Components in Primary Cilia of Cultured Cells. Methods Mol Biol 2022; 2374:89-94. [PMID: 34562245 DOI: 10.1007/978-1-0716-1701-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The primary cilium is a microtubule-based organelle that projects from the surface of vertebrate cells. Defects in the biogenesis of or transport through primary cilia affect Hedgehog signaling, and many Hedgehog pathway components traffic through or accumulate in cilia. This protocol provides methods for immunofluorescence staining of cilia-accumulated Hh pathway components, such as Smoothened, in cultured NIH 3T3 cells.
Collapse
|
4
|
Mechanism and ultrasensitivity in Hedgehog signaling revealed by Patched1 disease mutations. Proc Natl Acad Sci U S A 2021; 118:2006800118. [PMID: 33526656 DOI: 10.1073/pnas.2006800118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hedgehog signaling is fundamental in animal embryogenesis, and its dysregulation causes cancer and birth defects. The pathway is triggered when the Hedgehog ligand inhibits the Patched1 membrane receptor, relieving repression that Patched1 exerts on the GPCR-like protein Smoothened. While it is clear how loss-of-function Patched1 mutations cause hyperactive Hedgehog signaling and cancer, how other Patched1 mutations inhibit signaling remains unknown. Here, we develop quantitative single-cell functional assays for Patched1, which, together with mathematical modeling, indicate that Patched1 inhibits Smoothened enzymatically, operating in an ultrasensitive regime. Based on this analysis, we propose that Patched1 functions in cilia, catalyzing Smoothened deactivation by removing cholesterol bound to its extracellular, cysteine-rich domain. Patched1 mutants associated with holoprosencephaly dampen signaling by three mechanisms: reduced affinity for Hedgehog ligand, elevated catalytic activity, or elevated affinity for the Smoothened substrate. Our results clarify the enigmatic mechanism of Patched1 and explain how Patched1 mutations lead to birth defects.
Collapse
|
5
|
Spannl S, Buhl T, Nellas I, Zeidan SA, Iyer KV, Khaliullina H, Schultz C, Nadler A, Dye NA, Eaton S. Glycolysis regulates Hedgehog signalling via the plasma membrane potential. EMBO J 2020; 39:e101767. [PMID: 33021744 PMCID: PMC7604625 DOI: 10.15252/embj.2019101767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023] Open
Abstract
Changes in cell metabolism and plasma membrane potential have been linked to shifts between tissue growth and differentiation, and to developmental patterning. How such changes mediate these effects is poorly understood. Here, we use the developing wing of Drosophila to investigate the interplay between cell metabolism and a key developmental regulator-the Hedgehog (Hh) signalling pathway. We show that reducing glycolysis both lowers steady-state levels of ATP and stabilizes Smoothened (Smo), the 7-pass transmembrane protein that transduces the Hh signal. As a result, the transcription factor Cubitus interruptus accumulates in its full-length, transcription activating form. We show that glycolysis is required to maintain the plasma membrane potential and that plasma membrane depolarization blocks cellular uptake of N-acylethanolamides-lipoprotein-borne Hh pathway inhibitors required for Smo destabilization. Similarly, pharmacological inhibition of glycolysis in mammalian cells induces ciliary translocation of Smo-a key step in pathway activation-in the absence of Hh. Thus, changes in cell metabolism alter Hh signalling through their effects on plasma membrane potential.
Collapse
Affiliation(s)
- Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Present address:
Department of BiochemistryFaculty of MedicineUniversity of TorontoTorontoONCanada
| | - Tomasz Buhl
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - Ioannis Nellas
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - Salma A Zeidan
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - K Venkatesan Iyer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Helena Khaliullina
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Present address:
Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Carsten Schultz
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Department of Chemical Physiology and BiochemistryOregon Health and Science UniversityPortlandORUSA
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| |
Collapse
|
6
|
Mateska I, Nanda K, Dye NA, Alexaki VI, Eaton S. Range of SHH signaling in adrenal gland is limited by membrane contact to cells with primary cilia. J Biophys Biochem Cytol 2020; 219:211483. [PMID: 33090184 PMCID: PMC7588141 DOI: 10.1083/jcb.201910087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
The signaling protein Sonic Hedgehog (SHH) is crucial for the development and function of many vertebrate tissues. It remains largely unclear, however, what defines the range and specificity of pathway activation. The adrenal gland represents a useful model to address this question, where the SHH pathway is activated in a very specific subset of cells lying near the SHH-producing cells, even though there is an abundance of lipoproteins that would allow SHH to travel and signal long-range. We determine that, whereas adrenal cells can secrete SHH on lipoproteins, this form of SHH is inactive due to the presence of cosecreted inhibitors, potentially explaining the absence of long-range signaling. Instead, we find that SHH-producing cells signal at short range via membrane-bound SHH, only to receiving cells with primary cilia. Finally, our data from NCI-H295R adrenocortical carcinoma cells suggest that adrenocortical tumors may evade these regulatory control mechanisms by acquiring the ability to activate SHH target genes in response to TGF-β.
Collapse
Affiliation(s)
- Ivona Mateska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany,Correspondence to Ivona Mateska:
| | - Kareena Nanda
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Natalie A. Dye
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Franchi F, Peterson KM, Quandt K, Domnick D, Kline TL, Olthoff M, Parvizi M, Tolosa EJ, Torres VE, Harris PC, Fernandez-Zapico ME, Rodriguez-Porcel MG. Impaired Hedgehog-Gli1 Pathway Activity Underlies the Vascular Phenotype of Polycystic Kidney Disease. Hypertension 2020; 76:1889-1897. [PMID: 33012205 DOI: 10.1161/hypertensionaha.120.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polycystic kidney disease (PKD) has been linked to abnormal structure/function of ciliary proteins, leading to renal dysfunction. Recently, attention has been focused in the significant vascular abnormalities associated with PKD, but the mechanisms underlying this phenomenon remain elusive. Here, we seek to define the molecular events regulating the angiogenic imbalance observed in PKD. Using micro computed tomography (n=7) and protein expression analysis (n=5), we assessed the vascular density and the angiogenic profile of noncystic organs in a well-established PKD rat model (Polycystic Kidney-PCK rat). Heart and lungs of PCK rats have reduced vascular density and decreased expression of angiogenic factors compared with wild type. Similarly, PCK-vascular smooth muscle cells (VSMCs; n=4) exhibited lower levels of vascular markers. Then, using small interfering RNA (n=4), we determined the role of the ciliary protein fibrocystin in wild type-VSMCs, a critical component/regulator of vascular structure and function. Reduction of fibrocystin in wild type-VSMCs (n=4) led to an abnormal angiogenic potential similar to that observed in PCK-VSMCs. Furthermore, we investigated the involvement of the hedgehog signaling, a pathway closely linked to the primary cilium and associated with vascular development, in PKD. Mechanistically, we demonstrated that impairment of the hedgehog signaling mediates, in part, this abnormal angiogenic phenotype. Lastly, overexpression of Gli1 in PCK-VSMCs (n=4) restored the expression levels of proangiogenic molecules. Our data support a critical role of fibrocystin in the abnormal vascular phenotype of PKD and indicate that a dysregulation of hedgehog may be responsible, at least in part, for these vascular deficiencies.
Collapse
Affiliation(s)
- Federico Franchi
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Karen M Peterson
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Katherine Quandt
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - David Domnick
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Timothy L Kline
- Department of Radiology (T.L.K.), Mayo Clinic, Rochester, MN
| | - Michaela Olthoff
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Mojtaba Parvizi
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Ezequiel J Tolosa
- Schulze Center for Novel Therapeutic, Division of Oncology Research (E.J.T., M.E.F.-Z.), Mayo Clinic, Rochester, MN
| | - Vicente E Torres
- Division of Nephrology and Hypertension (V.E.T., P.C.H.), Mayo Clinic, Rochester, MN
| | - Peter C Harris
- Division of Nephrology and Hypertension (V.E.T., P.C.H.), Mayo Clinic, Rochester, MN
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutic, Division of Oncology Research (E.J.T., M.E.F.-Z.), Mayo Clinic, Rochester, MN
| | - Martin G Rodriguez-Porcel
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
8
|
Mukhopadhyay S, Badgandi HB, Hwang SH, Somatilaka B, Shimada IS, Pal K. Trafficking to the primary cilium membrane. Mol Biol Cell 2017; 28:233-239. [PMID: 28082521 PMCID: PMC5231892 DOI: 10.1091/mbc.e16-07-0505] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022] Open
Abstract
The primary cilium has been found to be associated with a number of cellular signaling pathways, such as vertebrate hedgehog signaling, and implicated in the pathogenesis of diseases affecting multiple organs, including the neural tube, kidney, and brain. The primary cilium is the site where a subset of the cell's membrane proteins is enriched. However, pathways that target and concentrate membrane proteins in cilia are not well understood. Processes determining the level of proteins in the ciliary membrane include entry into the compartment, removal, and retention by diffusion barriers such as the transition zone. Proteins that are concentrated in the ciliary membrane are also localized to other cellular sites. Thus it is critical to determine the particular role for ciliary compartmentalization in sensory reception and signaling pathways. Here we provide a brief overview of our current understanding of compartmentalization of proteins in the ciliary membrane and the dynamics of trafficking into and out of the cilium. We also discuss major unanswered questions regarding the role that defects in ciliary compartmentalization might play in disease pathogenesis. Understanding the trafficking mechanisms that underlie the role of ciliary compartmentalization in signaling might provide unique approaches for intervention in progressive ciliopathies.
Collapse
Affiliation(s)
- Saikat Mukhopadhyay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Hemant B Badgandi
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Issei S Shimada
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Kasturi Pal
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
9
|
Nemet I, Ropelewski P, Imanishi Y. Applications of phototransformable fluorescent proteins for tracking the dynamics of cellular components. Photochem Photobiol Sci 2016; 14:1787-806. [PMID: 26345171 DOI: 10.1039/c5pp00174a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past few decades, fluorescent proteins have revolutionized the field of cell biology. Phototransformable fluorescent proteins are capable of changing their excitation and emission spectra after being exposed to specific wavelength(s) of light. The majority of phototransformable fluorescent proteins have originated from marine organisms. Genetic engineering of these proteins has made available many choices for different colors, modes of conversion, and other biophysical properties. Their phototransformative property has allowed the highlighting and tracking of subpopulations of cells, organelles, and proteins in living systems. Furthermore, phototransformable fluorescent proteins have offered new methods for superresolution fluorescence microscopy and optogenetics manipulation of proteins. One of the major advantages of phototransformable fluorescent proteins is their applicability for visualizing newly synthesized proteins that are en route to their final destinations. In this paper, we will discuss the biological applications of phototransformable fluorescent proteins with special emphasis on the application of tracking membrane proteins in vertebrate photoreceptor cells.
Collapse
Affiliation(s)
- Ina Nemet
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
10
|
Pal K, Hwang SH, Somatilaka B, Badgandi H, Jackson PK, DeFea K, Mukhopadhyay S. Smoothened determines β-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol 2016; 212:861-75. [PMID: 27002170 PMCID: PMC4810300 DOI: 10.1083/jcb.201506132] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/11/2016] [Indexed: 02/08/2023] Open
Abstract
Dynamic changes in membrane protein composition of the primary cilium are central to development and homeostasis, but we know little about mechanisms regulating membrane protein flux. Stimulation of the sonic hedgehog (Shh) pathway in vertebrates results in accumulation and activation of the effector Smoothened within cilia and concomitant disappearance of a negative regulator, the orphan G protein-coupled receptor (GPCR), Gpr161. Here, we describe a two-step process determining removal of Gpr161 from cilia. The first step involves β-arrestin recruitment by the signaling competent receptor, which is facilitated by the GPCR kinase Grk2. An essential factor here is the ciliary trafficking and activation of Smoothened, which by increasing Gpr161-β-arrestin binding promotes Gpr161 removal, both during resting conditions and upon Shh pathway activation. The second step involves clathrin-mediated endocytosis, which functions outside of the ciliary compartment in coordinating Gpr161 removal. Mechanisms determining dynamic compartmentalization of Gpr161 in cilia define a new paradigm for down-regulation of GPCRs during developmental signaling from a specialized subcellular compartment.
Collapse
Affiliation(s)
- Kasturi Pal
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bandarigoda Somatilaka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hemant Badgandi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Peter K Jackson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathryn DeFea
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
11
|
Thompson CL, Patel R, Kelly TAN, Wann AKT, Hung CT, Chapple JP, Knight MM. Hedgehog signalling does not stimulate cartilage catabolism and is inhibited by Interleukin-1β. Arthritis Res Ther 2015; 17:373. [PMID: 26705100 PMCID: PMC4718026 DOI: 10.1186/s13075-015-0891-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Background In osteoarthritis, chondrocytes adopt an abnormal hypertrophic morphology and upregulate the expression of the extracellular matrix-degrading enzymes, MMP-13 and ADAMTS-5. The activation of the hedgehog signalling pathway has been established in osteoarthritis and is thought to influence both of these processes. However, the role of this pathway in the initiation and progression of osteoarthritis is unclear as previous studies have been unable to isolate the effects of hedgehog pathway activation from other pathological processes. In this study we test the hypothesis that hedgehog pathway activation causes cartilage degradation in healthy cartilage and in an in vitro model of inflammatory arthritis. Methods Isolated articular chondrocytes from the bovine metacarpal-phalangeal joint were stimulated for up to 24 hours with the agonist, recombinant Indian hedgehog (r-Ihh). ADAMTS-5 and MMP-13 gene expression was quantified by real-time PCR. In addition, healthy bovine cartilage explants were treated with r-Ihh or the hedgehog antagonist, cyclopamine, and sGAG release into the media was measured over 72 hours. Studies were repeated using chondrocytes and cartilage explants from human knee joint. Finally, studies were conducted to determine the effect of hedgehog pathway activation on matrix catabolism in the presence of the pro-inflammatory cytokine, IL-1β. Results Addition of r-Ihh activated hedgehog signalling, confirmed by upregulation of Gli1 and Ptch1 expression, but did not increase ADAMTS-5 or MMP-13 expression in bovine or human chondrocytes. Furthermore, r-Ihh did not induce sGAG release in healthy bovine or human cartilage explants. IL-1β treatment induced sGAG release, but this response was not altered by the stimulation or inhibition of hedgehog signalling. Hedgehog pathway activation was downregulated by IL-1β. Conversely, r-Ihh weakly suppressed IL-1β-induced ADAMTS-5 expression. Conclusion Our results show for the first time that Indian hedgehog does not cause extracellular matrix degradation in healthy ex vivo cartilage or in the presence of IL-1β and that IL-1β downregulates Indian hedgehog induced signalling. Thus, we suggest reported hedgehog induced matrix catabolism in osteoarthritis must be due to its interaction with pathological factors other than IL-1β. Hence, hedgehog signalling and its downstream effects are highly context-dependent. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0891-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clare L Thompson
- Institute of Bioengineering and School of Engineering and Material Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Riana Patel
- Institute of Bioengineering and School of Engineering and Material Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Terri-Ann N Kelly
- Institute of Bioengineering and School of Engineering and Material Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK. .,Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Angus K T Wann
- Institute of Bioengineering and School of Engineering and Material Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK. .,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - J Paul Chapple
- Center for Endocrinology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Martin M Knight
- Institute of Bioengineering and School of Engineering and Material Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
12
|
Falcón-Urrutia P, Carrasco CM, Lois P, Palma V, Roth AD. Shh Signaling through the Primary Cilium Modulates Rat Oligodendrocyte Differentiation. PLoS One 2015. [PMID: 26218245 PMCID: PMC4517900 DOI: 10.1371/journal.pone.0133567] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary Cilia (PC) are a very likely place for signal integration where multiple signaling pathways converge. Two major signaling pathways clearly shown to signal through the PC, Sonic Hedgehog (Shh) and PDGF-Rα, are particularly important for the proliferation and differentiation of oligodendrocytes, suggesting that their interaction occurs in or around this organelle. We identified PC in rat oligodendrocyte precursor cells (OPCs) and found that, while easily detectable in early OPCs, PC are lost as these cells progress to terminal differentiation. We confirmed the interaction between these pathways, as cyclopamine inhibition of Hedgehog function impairs both PDGF-mediated OPC proliferation and Shh-dependent cell branching. However, we failed to detect PDGF-Rα localization into the PC. Remarkably, ciliobrevin-mediated disruption of PC and reduction of OPC process extension was counteracted by recombinant Shh treatment, while PDGF had no effect. Therefore, while PDGF-Rα-dependent OPC proliferation and survival most probably does not initiate at the PC, still the integrity of this organelle and cilium-centered pathway is necessary for OPC survival and differentiation.
Collapse
Affiliation(s)
- Paulina Falcón-Urrutia
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Carlos M. Carrasco
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Pablo Lois
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Veronica Palma
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
- * E-mail: (AR); (VP)
| | - Alejandro D. Roth
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- * E-mail: (AR); (VP)
| |
Collapse
|
13
|
Abstract
Dyneins are a small class of molecular motors that bind to microtubules and walk toward their minus ends. They are essential for the transport and distribution of organelles, signaling complexes and cytoskeletal elements. In addition dyneins generate forces on microtubule arrays that power the beating of cilia and flagella, cell division, migration and growth cone motility. Classical approaches to the study of dynein function in axons involve the depletion of dynein, expression of mutant/truncated forms of the motor, or interference with accessory subunits. By necessity, these approaches require prolonged time periods for the expression or manipulation of cellular dynein levels. With the discovery of the ciliobrevins, a class of cell permeable small molecule inhibitors of dynein, it is now possible to acutely disrupt dynein both globally and locally. In this review, we briefly summarize recent work using ciliobrevins to inhibit dynein and discuss the insights ciliobrevins have provided about dynein function in various cell types with a focus on neurons. We temper this with a discussion of the need for studies that will elucidate the mechanism of action of ciliobrevin and as well as the need for experiments to further analyze the specificity of ciliobreviens for dynein. Although much remains to be learned about ciliobrevins, these small molecules are proving themselves to be valuable novel tools to assess the cellular functions of dynein.
Collapse
Affiliation(s)
- Douglas H Roossien
- Department of Cell and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Kyle E Miller
- Department of Integrative Biology, Michigan State University East Lansing, MI, USA
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|
14
|
Kim J, Hsia EYC, Brigui A, Plessis A, Beachy PA, Zheng X. The role of ciliary trafficking in Hedgehog receptor signaling. Sci Signal 2015; 8:ra55. [PMID: 26038600 DOI: 10.1126/scisignal.aaa5622] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Defects in the biogenesis of or transport through primary cilia affect Hedgehog protein signaling, and many Hedgehog pathway components traffic through or accumulate in cilia. The Hedgehog receptor Patched negatively regulates the activity and ciliary accumulation of Smoothened, a seven-transmembrane protein that is essential for transducing the Hedgehog signal. We found that this negative regulation of Smoothened required the ciliary localization of Patched, as specified either by its own cytoplasmic tail or by provision of heterologous ciliary localization signals. Surprisingly, given that Hedgehog binding promotes the exit of Patched from the cilium, we observed that an altered form of Patched that is retained in the cilium nevertheless responded to Hedgehog, resulting in Smoothened activation. Our results indicate that whereas ciliary localization of Patched is essential for suppression of Smoothened activation, the primary event enabling Smoothened activation is binding of Hedgehog to Patched, and Patched ciliary removal is secondary.
Collapse
Affiliation(s)
- Jynho Kim
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elaine Y C Hsia
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Amira Brigui
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Anne Plessis
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Philip A Beachy
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Xiaoyan Zheng
- Departments of Biochemistry and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|