1
|
Nain Z, Barman SK, Sheam MM, Syed SB, Samad A, Quinn JMW, Karim MM, Himel MK, Roy RK, Moni MA, Biswas SK. Transcriptomic studies revealed pathophysiological impact of COVID-19 to predominant health conditions. Brief Bioinform 2021; 22:bbab197. [PMID: 34076249 PMCID: PMC8194991 DOI: 10.1093/bib/bbab197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/10/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the association of prevalent health conditions with coronavirus disease 2019 (COVID-19) severity, the disease-modifying biomolecules and their pathogenetic mechanisms remain unclear. This study aimed to understand the influences of COVID-19 on different comorbidities and vice versa through network-based gene expression analyses. Using the shared dysregulated genes, we identified key genetic determinants and signaling pathways that may involve in their shared pathogenesis. The COVID-19 showed significant upregulation of 93 genes and downregulation of 15 genes. Interestingly, it shares 28, 17, 6 and 7 genes with diabetes mellitus (DM), lung cancer (LC), myocardial infarction and hypertension, respectively. Importantly, COVID-19 shared three upregulated genes (i.e. MX2, IRF7 and ADAM8) with DM and LC. Conversely, downregulation of two genes (i.e. PPARGC1A and METTL7A) was found in COVID-19 and LC. Besides, most of the shared pathways were related to inflammatory responses. Furthermore, we identified six potential biomarkers and several important regulatory factors, e.g. transcription factors and microRNAs, while notable drug candidates included captopril, rilonacept and canakinumab. Moreover, prognostic analysis suggests concomitant COVID-19 may result in poor outcome of LC patients. This study provides the molecular basis and routes of the COVID-19 progression due to comorbidities. We believe these findings might be useful to further understand the intricate association of these diseases as well as for the therapeutic development.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | | | - Md Moinuddin Sheam
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Shifath Bin Syed
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Abdus Samad
- Department of Genetic Engineering and Biotechnology at the Jashore University of Science and Technology, Bangladesh
| | | | | | | | | | | | | |
Collapse
|
2
|
Endomorphin-2- and Neurotensin- Based Chimeric Peptide Attenuates Airway Inflammation in Mouse Model of Nonallergic Asthma. Int J Mol Sci 2019; 20:ijms20235935. [PMID: 31779093 PMCID: PMC6929018 DOI: 10.3390/ijms20235935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
We examined anti-inflammatory potency of hybrid peptide-PK20, composed of neurotensin (NT) and endomorphin-2 (EM-2) pharmacophores in a murine model of non-atopic asthma induced by skin sensitization with 2,4-dinitrofluorobenzene and intratracheal challenge of cognate hapten. Mice received intraperitoneally PK20, equimolar mixture of its structural elements (MIX), dexamethasone (DEX), or NaCl. Twenty-four hours following hapten challenge, the measurements of airway responsiveness to methacholine were taken. Bronchoalveolar lavage (BALF) and lungs were collected for further analyses. Treatment with PK20, similarly to dexamethasone, reduced infiltration of inflammatory cells, concentration of mouse mast cell protease, IL-1β, IL-12p40, IL-17A, CXCL1, RANTES in lungs and IL-1α, IL-2, IL-13, and TNF-α in BALF. Simple mixture of NT and EM-2 moieties was less potent. PK20, DEX, and MIX significantly decreased malondialdehyde level and secretory phospholipase 2 activity in lungs. Intensity of NF-κB immunoreactivity was diminished only after PK20 and DEX treatments. Neither PK20 nor mixture of its pharmacophores were as effective as DEX in alleviating airway hyperresponsiveness. PK20 effectively inhibited hapten-induced inflammation and mediator and signaling pathways in a manner seen with dexamethasone. Improved anti-inflammatory potency of the hybrid over the mixture of its moieties shows its preponderance and might pose a promising tool in modulating inflammation in asthma.
Collapse
|
3
|
Islam MA, Torigoe D, Kameda Y, Irie T, Kouguchi H, Nakao R, Masum MA, Ichii O, Kon Y, Tag-El-Din-Hassan HT, Morimatsu M, Yagi K, Agui T. Analysis for genetic loci controlling protoscolex development in the Echinococcus multilocularis infection using congenic mice. INFECTION GENETICS AND EVOLUTION 2018; 65:65-71. [PMID: 30030204 DOI: 10.1016/j.meegid.2018.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 11/18/2022]
Abstract
The resistance/susceptibility to Echinococcus multilocularis infection in mice is genetically controlled. However, genetic factors responsible for these differences remain unknown. Our previous study in genetic linkage analysis has revealed that there is a significant quantitative trait locus (QTL) for the establishment of cyst (Emcys1), and a highly significant QTL for the development of protoscolex of E. multilocularis larvae (Empsc1), on mouse chromosomes 6 and 1, respectively. The current study aimed to confirm these QTLs and narrow down the critical genetic region that controls resistance/susceptibility to E. multilocularis infection by establishing congenic and subcongenic lines from C57BL/6 (B6) and DBA/2 (D2) mice. For protoscolex development phenotype, two congenic lines, B6.D2-Empsc1 and D2.B6-Empsc1 were developed, where responsible QTL, Empsc1 was introgressed from D2 into B6 background and vice versa. For cyst establishment phenotype, two congenic lines, B6.D2-Emcys1 and D2.B6-Emcys1 were developed, where responsible QTL, Emcys1 was introgressed from D2 into B6 background and vice versa. Because there was no significant difference in cyst establishment between B6.D2-Emcys1 and D2.B6-Emcys1 mice after challenge with E. multilocularis, it is suggested that the Emcys1 does not solely control the cyst establishment in mouse liver. However, infection experiments with B6.D2-Empsc1 and D2.B6-Empsc1 mice showed a significant difference in protoscolex development in the cyst. It confirms that the Empsc1 controls phenotype of the protoscolex development in the cyst. Subsequently, two subcongenic lines, B6.D2-Empsc1.1 and B6.D2-Empsc1.2 from B6.D2-Emcys1 and one subcongenic line, D2.B6-Empsc1.1 from D2.B6-Empsc1 were developed to narrow down the critical region responsible for protoscolex development. From the results of infection experiments with E. multilocularis in these subcongenic mice, it is concluded that a gene responsible for protoscolex development is located between D1Mit290 (68.1 cM) and D1Mit511 (97.3 cM).
Collapse
Affiliation(s)
- Md Atiqul Islam
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Daisuke Torigoe
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yayoi Kameda
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takao Irie
- Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo 060-0819, Japan
| | - Hirokazu Kouguchi
- Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo 060-0819, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Hokkaido University, Sapporo 060-0818, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo 060-0818, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo 060-0818, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo 060-0818, Japan
| | - Hassan T Tag-El-Din-Hassan
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Poultry Production Department, Mansour University, Mansoura 35516, Egypt.; Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masami Morimatsu
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kinpei Yagi
- Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo 060-0819, Japan
| | - Takashi Agui
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| |
Collapse
|
4
|
Plethysmography Phenotype QTL in Mice Before and After Allergen Sensitization and Challenge. G3-GENES GENOMES GENETICS 2016; 6:2857-65. [PMID: 27449512 PMCID: PMC5015943 DOI: 10.1534/g3.116.032912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic asthma is common airway disease that is characterized in part by enhanced airway constriction in response to nonspecific stimuli. Genome-wide association studies have identified multiple loci associated with asthma risk in humans, but these studies have not accounted for gene-environment interactions, which are thought to be important factors in asthma. To identify quantitative trait loci (QTL) that regulate responses to a common human allergen, we applied a house dust mite mouse (HDM) model of allergic airway disease (AAD) to 146 incipient lines of the Collaborative Cross (CC) and the CC founder strains. We employed a longitudinal study design in which mice were phenotyped for response to the bronchoconstrictor methacholine both before and after HDM sensitization and challenge using whole body plethysmography (WBP). There was significant variation in methacholine responsiveness due to both strain and HDM treatment, as reflected by changes in the WBP parameter enhanced pause. We also found that distinct QTL regulate baseline [chromosome (Chr) 18] and post-HDM (Chr 19) methacholine responsiveness and that post-HDM airway responsiveness was correlated with other features of AAD. Finally, using invasive measurements of airway mechanics, we tested whether the Chr 19 QTL affects lung resistance per se using C57BL/6J mice and a consomic strain but found that QTL haplotype did not affect lung resistance. We conclude that aspects of baseline and allergen-induced methacholine responsiveness are associated with genetic variation, and that robust detection of airway resistance QTL in genetically diverse mice will be facilitated by direct measurement of airway mechanics.
Collapse
|