1
|
Suchan M, Wuerdemann N, Wagner S, Langer C, Arens C, Johannsen J, Prinz J, Sharma SJ, Charpentier A, Mayer M, Klasen C, Zimmermann P, Eckel H, Kopp C, Huebbers CU, Klein S, Siemanowski J, Meinel J, Klussmann JP, Quaas A, Arolt C. Histological and genetic criteria define a clinically relevant subgroup of HPV-positive oropharyngeal carcinoma. Oral Oncol 2025; 162:107209. [PMID: 39893876 DOI: 10.1016/j.oraloncology.2025.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Subgroups with a poorer prognosis exist among patients with human papillomavirus positive oropharyngeal squamous cell carcinoma (HPV-positive OPSCC). This study aims to identify histological and genetic differences within HPV-positive OPSCC and correlate these findings with patient outcomes. METHODS The study included 102 OPSCC patients, all tested positive for high-risk HPV DNA and p16INK4a expression. Based on histomorphological classification (HPV Prediction Classification, HPV PC), all cases were categorized as either classic HPV-positive OPSCC (cHPV) or non-classic HPV-positive OPSCC (non-cHPV). Next-generation sequencing (NGS) of selected genes was performed on 55 tumor samples, correlating results with morphological status and survival. RESULTS Of all cases, 49 % (n = 50/102) were categorized as non-cHPV, histomorphologically resembling HPV-negative OPSCC, and showed significantly poorer overall survival (p = 0.004) and five-year survival rate (5YS: 83.9 % vs. 58.4 %). Multivariate analyses identified HPV PC as an independent prognostic marker (p = 0.027). NGS revealed loss-of-Function (LOF) mutations in TP53 in three non-cHPV samples. Additionally, PIK3CA/PTEN mutations were found in 35.7 % (10/28) of non-cHPV cases. The cumulative burden of gene mutations was higher in the non-cHPV subgroup compared to the cHPV subgroup (n = 53, p = 0.1). CONCLUSION HPV PC distinguished two histomorphological subgroups within HPV-positive OPSCCs: cHPV with excellent prognosis and non-cHPV with poorer overall survival. Non-cHPV tumors also exhibited higher overall mutation rates, notably LOF-TP53 and PIK3CA/PTEN mutations. These morphological subtypes, along with their corresponding mutational profiles, warrant further investigation as potential biomarkers for de-escalation intervention trials.
Collapse
Affiliation(s)
- Malte Suchan
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany.
| | - Nora Wuerdemann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | - Steffen Wagner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Giessen, Giessen, Germany
| | - Christine Langer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Giessen, Giessen, Germany
| | - Christoph Arens
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Giessen, Giessen, Germany
| | - Jannik Johannsen
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Johanna Prinz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | - Shachi Jenny Sharma
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Arthur Charpentier
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Marcel Mayer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Charlotte Klasen
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Philipp Zimmermann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Hans Eckel
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Christopher Kopp
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Christian U Huebbers
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Molecular Head and Neck Oncology, Translational Research in Infectious Diseases and Oncology (TRIO) Research Building, University of Cologne, Cologne, Germany
| | - Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, University Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Janna Siemanowski
- Institute of Pathology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Jörn Meinel
- Institute of Pathology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Jens Peter Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Christoph Arolt
- Institute of Pathology, University of Cologne, Medical Faculty, Cologne, Germany
| |
Collapse
|
2
|
Faria CS, Baldavira CM, Mangone FRR, Agati MEM, Kulikowski LD, Nagai MA, Nascimento ECTD, Mello ESD, Capelozzi VL, Antonangelo L. Optimizing genomic DNA extraction from long-term preserved formalin-fixed and paraffin-embedded lung cancer and lymph node tissues. Braz J Med Biol Res 2024; 57:e14095. [PMID: 39607206 DOI: 10.1590/1414-431x2024e14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Personalized therapy in lung cancer (LC) has revolutionized routine histopathology and cytopathology, emphasizing the importance of obtaining adequate material for molecular studies to support oncological decisions. Adaptations of cytologic sample preparations offer benefits for molecular testing, yet their potential remains underutilized. A significant number of LC cases is identified through specimens of aspiration or exfoliative cytology. Improving screening approaches and optimizing tissue utilization for biomarker research are crucial for effective LC management. The utilization of formalin-fixed, paraffin-embedded (FFPE) tumor tissues has become standard practice in clinical and epidemiological genetic research. However, current techniques require not only a standardized sample fixation and storage but also sufficient genetic material to yield reliable results. In this study, we utilized the Qiagen GeneRead® DNA FFPE kit with an adapted protocol for two extraction methods: one involved cutting FFPE blocks and the other involved scraping tissue from slides used for histochemical and cytological analysis. Our findings emphasized the importance of increasing the number of FFPE sections, heat deparaffinization, and adjusting proteinase K digestion time to enhance genomic DNA (gDNA) yields. Notably, scraping tissue from slides yielded superior results compared to the standard FFPE protocol. A median of 2.82 and 4.34 DNA yields for tumor and lymph node, respectively, were obtained. Our results demonstrated the feasibility of this adapted protocol for gDNA extraction in clinical and epidemiological studies. We recommend scraping tissue from slides as a reliable source of gDNA and suggest fine-tuning proteinase K digestion time and heat exposure based on the input tissue volume.
Collapse
Affiliation(s)
- C S Faria
- Laboratório de Investigação Médica, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - C M Baldavira
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F R R Mangone
- Laboratório de Genética Molecular, Centro de Pesquisa Translacional em Oncologia, Centro de Estudos e Tecnologias Convergentes para Oncologia de Precisão, Instituto do Câncer do Estado de São Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M E M Agati
- Laboratório de Investigação Médica, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L D Kulikowski
- Laboratório de Investigação Médica, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M A Nagai
- Laboratório de Genética Molecular, Centro de Pesquisa Translacional em Oncologia, Centro de Estudos e Tecnologias Convergentes para Oncologia de Precisão, Instituto do Câncer do Estado de São Paulo, Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E C T do Nascimento
- Departamento de Patologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E S de Mello
- Laboratório de Patologia do Instituto do Câncer do Estado de São Paulo, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V L Capelozzi
- Laboratório de Histomorfometria e Genômica Pulmonar, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L Antonangelo
- Laboratório de Investigação Médica, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Divisão de Patologia Clínica, Departamento de Patologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
3
|
Brunetti B, de Biase D, Millanta F, Muscatello LV, Di Oto E, Marchetti R, Laddaga EL, De Leo A, Tallini G, Bacci B. Protein Expression, Amplification, and Mutation of HER2 Gene in Canine Primary Pulmonary Adenocarcinomas: Preliminary Results. Animals (Basel) 2024; 14:2625. [PMID: 39335216 PMCID: PMC11428963 DOI: 10.3390/ani14182625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Recently, human epidermal growth factor receptor 2 (HER2) has emerged as a therapeutic target of interest for non-small-cell lung cancer in humans. The role of HER2 in canine pulmonary adenocarcinomas is poorly documented. To address this gap, this study employed three methodologies: immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and next-generation sequencing (NGS) to investigate the protein expression, gene amplification, and mutation of HER2 in 19 canine primary pulmonary adenocarcinomas. By IHC, 3 out of 19 cases were overexpressed 3+, 6 were 2+, and 10 were negative. With FISH, 2 cases were amplified (12.5%), 3 were inadequate for the analyses, and the others were non-amplified. With NGS, seven cases were inadequate. All other cases were wild-type, except for one IHC 3+ case, which was amplified with FISH and with a specific mutation already described in human pulmonary adenocarcinoma, V659E. This mutation is probably sensitive to tyrosine kinase inhibitory drugs. These results are similar to those in human medicine and to the few data in the literature on canine lung carcinomas; the presence of 12.5% of amplified cases in dogs lays the foundation for future targeted drugs against HER2 alterations.
Collapse
Affiliation(s)
- Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (L.V.M.); (R.M.); (B.B.)
| | - Dario de Biase
- Department of Experimental, Diagnostics and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (D.d.B.); (A.D.L.); (G.T.)
| | - Francesca Millanta
- Department of Veterinary Sciences, University of Pisa, 56126 Pisa, Italy;
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (L.V.M.); (R.M.); (B.B.)
| | | | - Roberta Marchetti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (L.V.M.); (R.M.); (B.B.)
| | - Ester Lidia Laddaga
- Ospedale Veterinario “I Portoni Rossi”, Anicura, Zola Predosa, 40069 Bologna, Italy;
| | - Antonio De Leo
- Department of Experimental, Diagnostics and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (D.d.B.); (A.D.L.); (G.T.)
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostics and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (D.d.B.); (A.D.L.); (G.T.)
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
| | - Barbara Bacci
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (L.V.M.); (R.M.); (B.B.)
| |
Collapse
|
4
|
Youssef O, Loukola A, Zidi-Mouaffak YHS, Tamlander M, Ruotsalainen S, Kilpeläinen E, Mars N, Ripatti S, Palotie A, Donner K, Carpén O. High-Resolution Genotyping of Formalin-Fixed Tissue Accurately Estimates Polygenic Risk Scores in Human Diseases. J Transl Med 2024; 104:100325. [PMID: 38220043 DOI: 10.1016/j.labinv.2024.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues stored in biobanks and pathology archives are a vast but underutilized source for molecular studies on different diseases. Beyond being the "gold standard" for preservation of diagnostic human tissues, FFPE samples retain similar genetic information as matching blood samples, which could make FFPE samples an ideal resource for genomic analysis. However, research on this resource has been hindered by the perception that DNA extracted from FFPE samples is of poor quality. Here, we show that germline disease-predisposing variants and polygenic risk scores (PRS) can be identified from FFPE normal tissue (FFPE-NT) DNA with high accuracy. We optimized the performance of FFPE-NT DNA on a genome-wide array containing 657,675 variants. Via a series of testing and validation phases, we established a protocol for FFPE-NT genotyping with results comparable with blood genotyping. The median call rate of FFPE-NT samples in the validation phase was 99.85% (range 98.26%-99.94%) and median concordance with matching blood samples was 99.79% (range 98.85%-99.9%). We also demonstrated that a rare pathogenic PALB2 genetic variant predisposing to cancer can be correctly identified in FFPE-NT samples. We further imputed the FFPE-NT genotype data and calculated the FFPE-NT genome-wide PRS in 3 diseases and 4 disease risk variables. In all cases, FFPE-NT and matching blood PRS were highly concordant (all Pearson's r > 0.95). The ability to precisely genotype FFPE-NT on a genome-wide array enables translational genomics applications of archived FFPE-NT samples with the possibility to link to corresponding phenotypes and longitudinal health data.
Collapse
Affiliation(s)
- Omar Youssef
- Department of Pathology, University of Helsinki, Helsinki, Finland; Clinical and Chemical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Anu Loukola
- Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Yossra H S Zidi-Mouaffak
- Department of Pathology, University of Helsinki, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Max Tamlander
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elina Kilpeläinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Analytic and Translational Genetics Unit, Department of Medicine, and the Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kati Donner
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
5
|
Watanabe K, Kohsaka S, Tatsuno K, Shinozaki-Ushiku A, Isago H, Kage H, Ushiku T, Aburatani H, Mano H, Oda K. Analysis of quality metrics in comprehensive cancer genomic profiling using a dual DNA-RNA panel. Pract Lab Med 2024; 39:e00368. [PMID: 38404525 PMCID: PMC10883814 DOI: 10.1016/j.plabm.2024.e00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Background The nucleic acid quality from formalin-fixed paraffin-embedded (FFPE) tumor vary among samples, resulting in substantial variability in the quality of comprehensive cancer genomic profiling tests. The objective of the study is to investigate how nucleic acid quality affects sequencing quality. We also examined the variations in nucleic acid quality among different hospitals or cancer types. Methods Three nucleic acid quality metrics (ddCq, Q-value, and DV200) and five sequencing quality metrics (on-target rate, mean depth, coverage uniformity, target exon coverage, and coverage of the housekeeping gene) were examined using 585 samples from the Todai OncoPanel, a dual DNA-RNA panel. Results In the DNA panel, ddCq served as an indicator of sequencing depth and Q-value reflected the uniformity of sequencing across different regions. It was essential to have favorable values not only for ddCq but also for Q-value to obtain ideal sequencing results. For the RNA panel, DV200 proved to be a valuable metric for assessing the coverage of the housekeeping genes. Significant inter-hospital differences were observed for DNA quality (ddCq and Q-value), but not for RNA quality (DV200). Differences were also observed among cancer types, with Q-value being the lowest in lung and the highest in cervix, while DV200 was the highest in lung and the lowest in bowel. Conclusions We demonstrated distinct characteristics and high predictive performances of ddCq, Q-value, and DV200. Variations were observed in the nucleic acid quality across hospitals and cancer types. Further study is warranted on preanalytical factors in comprehensive cancer genomic profiling tests.
Collapse
Affiliation(s)
- Kousuke Watanabe
- Department of Clinical Laboratory, The University Tokyo, Tokyo, Japan
- Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science and Medicine Laboratory, RCAST, The University of Tokyo, Tokyo, Japan
| | - Aya Shinozaki-Ushiku
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Isago
- Department of Clinical Laboratory, The University Tokyo, Tokyo, Japan
- Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Kage
- Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan
- Next-Generation Precision Medicine Development Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science and Medicine Laboratory, RCAST, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Malapelle U, Angerilli V, Pepe F, Fontanini G, Lonardi S, Scartozzi M, Memeo L, Pruneri G, Marchetti A, Perrone G, Fassan M. The ideal reporting of RAS testing in colorectal adenocarcinoma: a pathologists' perspective. Pathologica 2023; 115:137-147. [PMID: 37314870 PMCID: PMC10462993 DOI: 10.32074/1591-951x-895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023] Open
Abstract
RAS gene mutational status represents an imperative predictive biomarker to be tested in the clinical management of metastatic colorectal adenocarcinoma. Even if it is one of the most studied biomarkers in the era of precision medicine, several pre-analytical and analytical factors may still impasse an adequate reporting of RAS status in clinical practice, with significant therapeutic consequences. Thus, pathologists should be aware on the main topics related to this molecular evaluation: (i) adopt diagnostic limit of detections adequate to avoid the interference of sub-clonal cancer cell populations; (ii) choose the most adequate diagnostic strategy according to the available sample and its qualification for molecular testing; (iii) provide all the information regarding the mutation detected, since many RAS mutation-specific targeted therapeutic approaches are in development and will enter into routine clinical practice. In this review, we give a comprehensive description of the current scenario about RAS gene mutational testing in the clinic focusing on the pathologist's role in patient selection for targeted therapies.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | | | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa (PI), Italy
| | - Sara Lonardi
- Medical Oncology 3, Veneto Institute of Oncology IOV-IRCCS, Padua (PD), Italy
| | - Mario Scartozzi
- Medical Oncology, University Hospital and University of Cagliari, Cagliari (CA), Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, Catania (CT), Italy
| | - Gianfranco Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Tumori and University of Milan, Milan (MI), Italy
| | - Antonio Marchetti
- Center for Advanced Studies and Technology (CAST), University Chieti-Pescara, Chieti (CH), Italy
- Diagnostic Molecular Pathology, Unit of Anatomic Pathology, SS Annunziata Hospital, Chieti (CH), Italy and Department of Medical, Oral, and Biotechnological Sciences University “G. D’Annunzio” of Chieti-Pescara, Chieti (CH), Italy
| | - Giuseppe Perrone
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico di Roma, Roma, Italy
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua (PD), Italy
- Veneto Institute of Oncology (IOV-IRCCS), Padua (PD), Italy
| |
Collapse
|
7
|
Heydt C, Ihle MA, Merkelbach-Bruse S. Overview of Molecular Detection Technologies for MET in Lung Cancer. Cancers (Basel) 2023; 15:cancers15112932. [PMID: 37296895 DOI: 10.3390/cancers15112932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
MET tyrosine kinase receptor pathway activation has become an important actionable target in solid tumors. Aberrations in the MET proto-oncogene, including MET overexpression, the activation of MET mutations, MET mutations that lead to MET exon 14 skipping, MET gene amplifications, and MET fusions, are known to be primary and secondary oncogenic drivers in cancer; these aberrations have evolved as predictive biomarkers in clinical diagnostics. Thus, the detection of all known MET aberrations in daily clinical care is essential. In this review, current molecular technologies for the detection of the different MET aberrations are highlighted, including the benefits and drawbacks. In the future, another focus will be on the standardization of detection technologies for the delivery of reliable, quick, and affordable tests in clinical molecular diagnostics.
Collapse
Affiliation(s)
- Carina Heydt
- Faculty of Medicine, Institute of Pathology, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Michaela Angelika Ihle
- Faculty of Medicine, Institute of Pathology, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sabine Merkelbach-Bruse
- Faculty of Medicine, Institute of Pathology, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
8
|
Brunetti B, de Biase D, Dellapina G, Muscatello LV, Ingravalle F, Tura G, Bacci B. Validation of p53 Immunohistochemistry (PAb240 Clone) in Canine Tumors with Next-Generation Sequencing (NGS) Analysis. Animals (Basel) 2023; 13:899. [PMID: 36899756 PMCID: PMC10000222 DOI: 10.3390/ani13050899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
In human medicine, p53 immunohistochemistry (IHC) is a common method that is used for the identification of tumors with TP53 mutations. In veterinary medicine, several studies have performed IHC for p53 in canine tumors, but it is not known how well it actually predicts the mutation. The aim of this study was to estimate the accuracy of the IHC method for p53 (clone PAb240) using a lab-developed NGS panel to analyze TP53 mutations in a subset of malignant tumors in dogs. A total of 176 tumors were analyzed with IHC and then 41 were subjected to NGS analysis; among them, 15 were IHC positive and 26 were negative, and 16 out of 41 (39%) were found to be inadequate for NGS analysis. Excluding the non-evaluable cases at NGS, of the remaining eight IHC-positive cases, six were mutants and two were wild-type. Among the 17 IHC-negative cases, 13 were wild type, and 4 were mutants. The sensitivity was 60%, specificity was 86.7%, and the accuracy was 76%. These results suggest that when using IHC for p53 with this specific antibody to predict mutation, up to 25% wrong predictions can be expected.
Collapse
Affiliation(s)
- Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Giulia Dellapina
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Francesco Ingravalle
- Biostatistics, Epidemiology and Risk Analysis (BEAR), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy
| | - Giorgia Tura
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Barbara Bacci
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Schamschula E, Kinzel M, Wernstedt A, Oberhuber K, Gottschling H, Schnaiter S, Friedrichs N, Merkelbach-Bruse S, Zschocke J, Gallon R, Wimmer K. Teenage-Onset Colorectal Cancers in a Digenic Cancer Predisposition Syndrome Provide Clues for the Interaction between Mismatch Repair and Polymerase δ Proofreading Deficiency in Tumorigenesis. Biomolecules 2022; 12:biom12101350. [PMID: 36291559 PMCID: PMC9599501 DOI: 10.3390/biom12101350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) in adolescents and young adults (AYA) is very rare. Known predisposition syndromes include Lynch syndrome (LS) due to highly penetrant MLH1 and MSH2 alleles, familial adenomatous polyposis (FAP), constitutional mismatch-repair deficiency (CMMRD), and polymerase proofreading-associated polyposis (PPAP). Yet, 60% of AYA-CRC cases remain unexplained. In two teenage siblings with multiple adenomas and CRC, we identified a maternally inherited heterozygous PMS2 exon 12 deletion, NM_000535.7:c.2007-786_2174+493del1447, and a paternally inherited POLD1 variant, NP_002682.2:p.Asp316Asn. Comprehensive molecular tumor analysis revealed ultra-mutation (>100 Mut/Mb) and a large contribution of COSMIC signature SBS20 in both siblings’ CRCs, confirming their predisposition to AYA-CRC results from a high propensity for somatic MMR deficiency (MMRd) compounded by a constitutional Pol δ proofreading defect. COSMIC signature SBS20 as well as SBS26 in the index patient’s CRC were associated with an early mutation burst, suggesting MMRd was an early event in tumorigenesis. The somatic second hits in PMS2 were through loss of heterozygosity (LOH) in both tumors, suggesting PPd-independent acquisition of MMRd. Taken together, these patients represent the first cases of cancer predisposition due to heterozygous variants in PMS2 and POLD1. Analysis of their CRCs supports that POLD1-mutated tumors acquire hypermutation only with concurrent MMRd.
Collapse
Affiliation(s)
- Esther Schamschula
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Kinzel
- Medicover Humangenetik—Berlin-Lichtenberg, 10315 Berlin, Germany
| | - Annekatrin Wernstedt
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Klaus Oberhuber
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Hendrik Gottschling
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Simon Schnaiter
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | | | | | - Johannes Zschocke
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Richard Gallon
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Katharina Wimmer
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
10
|
The suitability of using spectrophotometry to determine the concentration and purity of DNA extracted from processed food matrices. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Ondracek RP, Chen J, Marosy B, Szewczyk S, Medico L, Mohan AS, Nair P, Pratt R, Roh JM, Khoury T, Carpten J, Kushi LH, Palmer JR, Doheny K, Davis W, Higgins MJ, Yao S, Ambrosone CB. Results and lessons from dual extraction of DNA and RNA from formalin-fixed paraffin-embedded breast tumor tissues for a large Cancer epidemiologic study. BMC Genomics 2022; 23:614. [PMID: 36008758 PMCID: PMC9404650 DOI: 10.1186/s12864-022-08837-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of archived formalin-fixed paraffin-embedded (FFPE) tumor tissues has become a common practice in clinical and epidemiologic genetic research. Simultaneous extraction of DNA and RNA from FFPE tissues is appealing but can be practically challenging. Here we report our results and lessons learned from processing FFPE breast tumor tissues for a large epidemiologic study. METHODS Qiagen AllPrep DNA/RNA FFPE kit was adapted for dual extraction using tissue punches or sections from breast tumor tissues. The yield was quantified using Qubit and fragmentation analysis by Agilent Bioanalyzer. A subset of the DNA samples were used for genome-wide DNA methylation assays and RNA samples for sequencing. The QC metrices and performance of the assays were analyzed with pre-analytical variables. RESULTS A total of 1859 FFPE breast tumor tissues were processed. We found it critical to adjust proteinase K digestion time based on tissue volume to achieve balanced yields of DNA and RNA. Tissue punches taken from tumor-enriched regions provided the most reliable output. A median of 1475 ng DNA and 1786 ng RNA per sample was generated. The median DNA integrity number (DIN) was 3.8 and median DV200 for RNA was 33.2. Of 1294 DNA samples used in DNA methylation assays, 97% passed quality check by qPCR and 92% generated data deemed high quality. Of the 130 RNA samples with DV200 ≥ 20% used in RNA-sequencing, all but 5 generated usable transcriptomic data with a mapping rate ≥ 60%. CONCLUSIONS Dual DNA/RNA purification using Qiagen AllPrep FFPE extraction protocol is feasible for clinical and epidemiologic studies. We recommend tissue punches as a reliable source material and fine tuning of proteinase K digestion time based on tissue volume. IMPACT Our protocol and recommendations may be adapted by future studies for successful extraction of archived tumor tissues.
Collapse
Affiliation(s)
- Rochelle Payne Ondracek
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Jianhong Chen
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
| | - Beth Marosy
- Center for Inherited Disease Research, Johns Hopkins Genomics, Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sirinapa Szewczyk
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Leonard Medico
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Amrutha Sherly Mohan
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Priya Nair
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Rachel Pratt
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Janise M Roh
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - John Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Kim Doheny
- Center for Inherited Disease Research, Johns Hopkins Genomics, Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Michael J Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| |
Collapse
|
12
|
Huh YJ, Cho SY, Cho MS, Lee KE, Lee JH. Comparative analysis of cancer gene mutations using targeted sequencing in matched primary and recurrent gastric cancers after chemotherapy. Genes Genomics 2022; 44:1425-1435. [PMID: 35622232 DOI: 10.1007/s13258-022-01248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Investigation of responsiveness-associated genes using longitudinal mutation analyses after standard treatments in recurrent gastric cancer (GC) is limited. OBJECTIVE To evaluate the somatic mutations associated with resistance to combined treatment involving fluorouracil (FU) or platinum (PL) in advanced GC. METHODS Samples from patients with advanced GC treated with FU or PL alone, or surgery plus FU/PL, were studied. GC patients who relapsed after standard chemotherapy (FU/PL) and with presence of tumor samples from initial diagnosis and recurrence were included. Targeted sequencing analysis of 143 cancer-related genes was performed using an Oncomine Comprehensive Cancer Panel. RESULTS Matched samples of primary and recurrent lesions were analyzed in sixteen patients with GC. When genes with recurrent mutations in two or more patients were used as specific findings, a total of 26 genes were found. TP53 was the most predominantly increased allele frequency (AF) in recurrent GCs after standard treatment. The mutational AF of ERBB2, PTEN, and BRCA2 also commonly increased, suggesting the role of these mutations in treatment resistance, whereas the mutational AF of VLH, NF1, and STK11 frequently decreased in recurrent tumors, suggesting the role of these mutations in increasing sensitivity to treatment. TCGA gastric cancer data (n = 436) were analyzed, and mutation sites detected in 16 GC patients in this study were in agreement with TCGA cohort with some exceptions. Overall survival according to gene expression associated with chemotherapy responsiveness exhibited compatible patterns with gain or loss-of-function mutations of each gene. CONCLUSIONS Mutations in TP53, ERBB2, PTEN, BRCA2, VHL, NF1, and STK11 are candidate somatic alterations related to chemoresistance in GC.
Collapse
Affiliation(s)
- Yeon-Ju Huh
- Department of Surgery, Ewha Womans University School of Medicine, Anyangcheon-ro, Yangcheon-gu, 1071, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, Seoul, Korea
| | - Sung-Yup Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University, Seoul, Korea
| | - Min-Sun Cho
- Department of pathology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kyoung-Eun Lee
- Department of oncology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Joo-Ho Lee
- Department of Surgery, Ewha Womans University School of Medicine, Anyangcheon-ro, Yangcheon-gu, 1071, Seoul, Korea. .,Department of Surgery, Nowon Eulji Medical Center, Eulji University School of Medicine, 68, Hangeulbiseok-ro, Nowon-gu, Seoul, Korea.
| |
Collapse
|
13
|
Fu H, Shen J, Zhou H, Zhang F, Li H, Ma Z, Huang W, Chen L, Chen Y, Liu T. Mutation profiling of circulating tumor DNA identifies distinct mutation patterns in non-Hodgkin lymphoma. Eur J Haematol 2022; 108:298-309. [PMID: 34997652 DOI: 10.1111/ejh.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Circulating tumor DNA (ctDNA) is emerging as a versatile biomarker for noninvasive genotyping and response monitoring in specific B-cell lymphomas; however, few studies have been conducted to explore ctDNA-based mutation profiling across non-Hodgkin lymphomas (NHLs) and genomic changes after initiation of chemotherapy. METHODS A targeted sequencing of 362 genes was performed to detect the mutation profiles in paired blood and tissue samples from 42 NHL patients. Genomic alterations were explored in 11 diffuse large B-cell lymphoma (DLBCL) patients using paired blood samples collected pre- and post-R-CHOP chemotherapy. RESULTS The frequencies of PIM1, MYD88, MYC, ZNF292, JAK, and MAF mutations were higher in aggressive than in indolent B-cell lymphoma and NK/T subtypes. Tumor mutation burden in blood samples was higher in aggressive than in indolent B-cell lymphomas and higher in patients who progressed than in those who responded to treatments. Our data also revealed significant enhance of concordance index through integrating mutated genes that were significantly associated with prognosis into International Prognostic Index-based prognostic model. Moreover, acquisition of mutations such as PCLO_p.L1220Tfs*3 was associated with resistance to R-CHOP in DLBCL patients. CONCLUSIONS Our findings illustrated distinct mutation patterns across various NHL subtypes and suggested the association of genomic alterations in ctDNA with treatment outcomes.
Collapse
Affiliation(s)
- Haiying Fu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Jianzhen Shen
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Huarong Zhou
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Feng Zhang
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Hongping Li
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Zhiming Ma
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Wanling Huang
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Lushan Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yi Chen
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Tingbo Liu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| |
Collapse
|
14
|
Ottestad AL, Emdal EF, Grønberg BH, Halvorsen TO, Dai HY. Fragmentation assessment of FFPE DNA helps in evaluating NGS library complexity and interpretation of NGS results. Exp Mol Pathol 2022; 126:104771. [DOI: 10.1016/j.yexmp.2022.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 11/04/2022]
|
15
|
Evaluation of the TruSight Tumor 170 Assay and Its Value in Clinical Diagnostics. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Parallel sequencing technologies have become integrated into clinical practice. This study evaluated the TruSight Tumor 170 assay for the simultaneous detection of somatic gene mutations (SNPs and indels), gene fusions and CNVs, and its implementation into routine diagnostics. Methods: Forty-four formalin-fixed, paraffin-embedded tissue samples analyzed previously with validated methods were evaluated with the TruSight Tumor 170 assay (Illumina). For data analysis the TruSight Tumor 170 app, the BaseSpace Variant Interpreter (Illumina), and the Molecular Health Guide Software (Molecular Health) were used. Results: All somatic gene mutations were identified when covered by the assay. Two high-level MET amplifications were detected by CNV analysis. Focal MET amplifications with a copy number below 10 were not reliably detected at the DNA-level. Twenty-one of 31 fusions and splice variants were confirmed with the assay on the RNA-level. The remaining eight aberrations were incorrect by previous methods. In two cases, no splicing was observed. Conclusions: The TruSight Tumor 170 gives reliable results even if low DNA and RNA concentrations are applied in comparison to other methods and can be used in a routine workflow to detect somatic gene mutations, gene fusions, and splice variants. However, we were not able to detect most focal gene amplifications/deletions.
Collapse
|
16
|
Masago K, Fujita S, Oya Y, Takahashi Y, Matsushita H, Sasaki E, Kuroda H. Comparison between Fluorimetry (Qubit) and Spectrophotometry (NanoDrop) in the Quantification of DNA and RNA Extracted from Frozen and FFPE Tissues from Lung Cancer Patients: A Real-World Use of Genomic Tests. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57121375. [PMID: 34946321 PMCID: PMC8709233 DOI: 10.3390/medicina57121375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 05/26/2023]
Abstract
Background and Objectives: Panel-based next-generation sequencing (NGS) has been carried out in daily clinical settings for the diagnosis and treatment guidance of patients with non-small cell lung cancer (NSCLC). The success of genomic tests including NGS depends in large part on preparing better-quality DNA or RNA; however, there are no established operating methods for preparing genomic DNA and RNA samples. Materials and Methods: We compared the following two quantitative methods, the QubitTM and NanoDropTM, using 585 surgical specimens, 278 biopsy specimens, and 82 cell block specimens of lung cancer that were used for genetic tests, including NGS. We analyzed the success rate of the genomic tests, including NGS, which were performed with DNA and RNA with concentrations that were outliers for the Qubit Fluorometer. Results: The absolute value for DNA concentrations had a tendency to be higher when measured with NanoDropTM regardless of the type of specimen; however, this was not the case for RNA. The success rate of DNA-based genomic tests using specimens with a concentration below the lower limit of QubitTM detection was as high as approximately 96%. At less than 60%, the success rate of RNA-based genomic tests, including RT-PCR, was not as satisfactory. The success rates of the AmpliSeqTM DNA panel sequencing and RNA panel sequencing were 77.8% and 91.5%, respectively. If at least one PCR amplification product could be obtained, then all RNA-based sequencing was performed successfully. Conclusions: The concentration measurements with NanoDropTM are reliable. The success rate of NGS with samples at concentrations below the limit of detection of QubitTM was relatively higher than expected, and it is worth performing PCR-based panel sequencing, especially in cases where re-biopsy cannot be performed.
Collapse
Affiliation(s)
- Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya 4648681, Japan;
| | - Shiro Fujita
- Department of Respiratory Medicine, Kobe Central Hospital, Kobe 651115, Japan;
| | - Yuko Oya
- Department of Thoracic Surgery, Aichi Cancer Center, Nagoya 4648681, Japan; (Y.O.); (Y.T.); (H.K.)
| | - Yusuke Takahashi
- Department of Thoracic Surgery, Aichi Cancer Center, Nagoya 4648681, Japan; (Y.O.); (Y.T.); (H.K.)
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Research Institute, Nagoya 4648681, Japan;
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya 4648681, Japan;
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Aichi Cancer Center, Nagoya 4648681, Japan; (Y.O.); (Y.T.); (H.K.)
| |
Collapse
|
17
|
Siemanowski J, Schömig-Markiefka B, Buhl T, Haak A, Siebolts U, Dietmaier W, Arens N, Pauly N, Ataseven B, Büttner R, Merkelbach-Bruse S. Managing Difficulties of Microsatellite Instability Testing in Endometrial Cancer-Limitations and Advantages of Four Different PCR-Based Approaches. Cancers (Basel) 2021; 13:1268. [PMID: 33809329 PMCID: PMC8000432 DOI: 10.3390/cancers13061268] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Microsatellite instability (MSI), a common alteration in endometrial cancers (EC) is known as a biomarker for immune checkpoint therapy response alongside screening for Lynch Syndrome (LS). However, former studies described challenging MSI profiles in EC hindering analysis by using MSI testing methods intensively validated for colorectal cancer (CRC) only. In order to reduce false negatives, this study examined four different PCR-based approaches for MSI testing using 25 EC samples already tested for mismatch repair deficiency (dMMR). In a follow up validation set of 75 EC samples previously tested both for MMR and MSI, the efficiency of a seven-marker system corresponding to the Idylla system was further analyzed. Both Bethesda and Promega marker panels require trained operators to overcome interpretation complexities caused by either hardly visible additional peaks of one and two nucleotides, or small shifts in microsatellite repeat length. Using parallel sequencing adjustment of bioinformatics is needed. Applying the Idylla MSI assay, an evaluation of input material is more crucial for reliable results and is indispensable. Following MMR deficiency testing as a first-line screening procedure, additional testing with a PCR-based method is necessary if inconclusive staining of immunohistochemistry (IHC) must be clarified.
Collapse
Affiliation(s)
- Janna Siemanowski
- Institute of Pathology, University Hospital Cologne, D-50924 Cologne, Germany; (B.S.-M.); (T.B.); (R.B.); (S.M.-B.)
| | - Birgid Schömig-Markiefka
- Institute of Pathology, University Hospital Cologne, D-50924 Cologne, Germany; (B.S.-M.); (T.B.); (R.B.); (S.M.-B.)
| | - Theresa Buhl
- Institute of Pathology, University Hospital Cologne, D-50924 Cologne, Germany; (B.S.-M.); (T.B.); (R.B.); (S.M.-B.)
| | - Anja Haak
- Institute of Pathology, University Hospital Halle (Saale), D-06112 Halle, Germany; (A.H.); (U.S.)
| | - Udo Siebolts
- Institute of Pathology, University Hospital Halle (Saale), D-06112 Halle, Germany; (A.H.); (U.S.)
| | - Wolfgang Dietmaier
- Institute of Pathology, University Regensburg, D-93053 Regensburg, Germany;
| | - Norbert Arens
- Center for Histology, Cytology and Molecular Diagnostics Trier, D-54296 Trier, Germany;
| | - Nina Pauly
- Department of Gynecology and Gynecologic Oncology, Evang. Kliniken Essen-Mitte, D-45136 Essen, Germany; (N.P.); (B.A.)
| | - Beyhan Ataseven
- Department of Gynecology and Gynecologic Oncology, Evang. Kliniken Essen-Mitte, D-45136 Essen, Germany; (N.P.); (B.A.)
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, D-81377 Munich, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, D-50924 Cologne, Germany; (B.S.-M.); (T.B.); (R.B.); (S.M.-B.)
| | - Sabine Merkelbach-Bruse
- Institute of Pathology, University Hospital Cologne, D-50924 Cologne, Germany; (B.S.-M.); (T.B.); (R.B.); (S.M.-B.)
| |
Collapse
|
18
|
Siemanowski J, Heydt C, Merkelbach-Bruse S. Predictive molecular pathology of lung cancer in Germany with focus on gene fusion testing: Methods and quality assurance. Cancer Cytopathol 2021; 128:611-621. [PMID: 32885916 DOI: 10.1002/cncy.22293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Predictive molecular testing has become an important part of the diagnosis of any patient with lung cancer. Using reliable methods to ensure timely and accurate results is inevitable for guiding treatment decisions. In the past few years, parallel sequencing has been established for mutation testing, and its use is currently broadened for the detection of other genetic alterations, such as gene fusion and copy number variations. In addition, conventional methods such as immunohistochemistry and in situ hybridization are still being used, either for formalin-fixed, paraffin-embedded tissue or for cytological specimens. For the development and broad implementation of such complex technologies, interdisciplinary and regional networks are needed. The Network Genomic Medicine (NGM) has served as a model of centralized testing and decentralized treatment of patients and incorporates all German comprehensive cancer centers. Internal quality control, laboratory accreditation, and participation in external quality assessment is mandatory for the delivery of reliable results. Here, we provide a summary of current technologies used to identify patients who have lung cancer with gene fusions, briefly describe the structures of NGM and the national NGM (nNGM), and provide recommendations for quality assurance.
Collapse
Affiliation(s)
- Janna Siemanowski
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Carina Heydt
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
19
|
Shukla NI, Siva N, Sivakumar M, Parveen R, Mishra A, Shah A, Medicherla K, Suravajhala P. Extraction of DNA and RNA from Formalin-fixed Paraffin-embedded Tissue Specimens. Bio Protoc 2021. [DOI: 10.21769/bioprotoc.4095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
20
|
Čapla J, Zajác P, Čurlej J, Belej Ľ, Kročko M, Bobko M, Benešová L, Jakabová S, Vlčko T. Procedures for the identification and detection of adulteration of fish and meat products. POTRAVINARSTVO 2020. [DOI: 10.5219/1474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The addition or exchange of cheaper fish species instead of more expensive fish species is a known form of fraud in the food industry. This can take place accidentally due to the lack of expertise or act as a fraud. The interest in detecting animal species in meat products is based on religious demands (halal and kosher) as well as on product adulterations. Authentication of fish and meat products is critical in the food industry. Meat and fish adulteration, mainly for economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Economically motivated adulteration of food is estimated to create damage of around € 8 to 12 billion per year. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat and fish adulteration. Various analytical methods often based on protein or DNA measurements are utilized to identify fish and meat species. Although many strategies have been adopted to assure the authenticity of fish and meat and meat a fish products, such as the protected designation of origin, protected geographical indication, certificate of specific characteristics, and so on, the coverage is too small, and it is unrealistic to certify all meat products for protection from adulteration. Therefore, effective supervision is very important for ensuring the suitable development of the meat industry, and rapid, effective, accurate, and reliable detection technologies are fundamental technical support for this goal. Recently, several methods, including DNA analysis, protein analysis, and fat-based analysis, have been effectively employed for the identification of meat and fish species.
Collapse
|
21
|
Utility of two DNA extraction methods using formalin-fixed paraffin-embedded tissues in identifying congenital cytomegalovirus infection by polymerase chain reaction. Diagn Microbiol Infect Dis 2020; 97:115075. [DOI: 10.1016/j.diagmicrobio.2020.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 03/28/2020] [Accepted: 05/02/2020] [Indexed: 11/18/2022]
|
22
|
Kofanova O, Bellora C, Garcia Frasquilho S, Antunes L, Hamot G, Mathay C, Mommaerts K, Muller A, DeWitt B, Betsou F. Standardization of the preanalytical phase of DNA extraction from fixed tissue for next-generation sequencing analyses. N Biotechnol 2020; 54:52-61. [DOI: 10.1016/j.nbt.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 12/25/2022]
|
23
|
Bhagwate AV, Liu Y, Winham SJ, McDonough SJ, Stallings-Mann ML, Heinzen EP, Davila JI, Vierkant RA, Hoskin TL, Frost M, Carter JM, Radisky DC, Cunningham JM, Degnim AC, Wang C. Bioinformatics and DNA-extraction strategies to reliably detect genetic variants from FFPE breast tissue samples. BMC Genomics 2019; 20:689. [PMID: 31477010 PMCID: PMC6720378 DOI: 10.1186/s12864-019-6056-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/22/2019] [Indexed: 01/20/2023] Open
Abstract
Background Archived formalin fixed paraffin embedded (FFPE) samples are valuable clinical resources to examine clinically relevant morphology features and also to study genetic changes. However, DNA quality and quantity of FFPE samples are often sub-optimal, and resulting NGS-based genetics variant detections are prone to false positives. Evaluations of wet-lab and bioinformatics approaches are needed to optimize variant detection from FFPE samples. Results As a pilot study, we designed within-subject triplicate samples of DNA derived from paired FFPE and fresh frozen breast tissues to highlight FFPE-specific artifacts. For FFPE samples, we tested two FFPE DNA extraction methods to determine impact of wet-lab procedures on variant calling: QIAGEN QIAamp DNA Mini Kit (“QA”), and QIAGEN GeneRead DNA FFPE Kit (“QGR”). We also used negative-control (NA12891) and positive control samples (Horizon Discovery Reference Standard FFPE). All DNA sample libraries were prepared for NGS according to the QIAseq Human Breast Cancer Targeted DNA Panel protocol and sequenced on the HiSeq 4000. Variant calling and filtering were performed using QIAGEN Gene Globe Data Portal. Detailed variant concordance comparisons and mutational signature analysis were performed to investigate effects of FFPE samples compared to paired fresh frozen samples, along with different DNA extraction methods. In this study, we found that five times or more variants were called with FFPE samples, compared to their paired fresh-frozen tissue samples even after applying molecular barcoding error-correction and default bioinformatics filtering recommended by the vendor. We also found that QGR as an optimized FFPE-DNA extraction approach leads to much fewer discordant variants between paired fresh frozen and FFPE samples. Approximately 92% of the uniquely called FFPE variants were of low allelic frequency range (< 5%), and collectively shared a “C > T|G > A” mutational signature known to be representative of FFPE artifacts resulting from cytosine deamination. Based on control samples and FFPE-frozen replicates, we derived an effective filtering strategy with associated empirical false-discovery estimates. Conclusions Through this study, we demonstrated feasibility of calling and filtering genetic variants from FFPE tissue samples using a combined strategy with molecular barcodes, optimized DNA extraction, and bioinformatics methods incorporating genomics context such as mutational signature and variant allelic frequency. Electronic supplementary material The online version of this article (10.1186/s12864-019-6056-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aditya Vijay Bhagwate
- Departments of Health Science Research, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Yuanhang Liu
- Departments of Health Science Research, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Stacey J Winham
- Departments of Health Science Research, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Samantha J McDonough
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | | | - Ethan P Heinzen
- Departments of Health Science Research, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jaime I Davila
- Departments of Health Science Research, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Robert A Vierkant
- Departments of Health Science Research, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Tanya L Hoskin
- Departments of Health Science Research, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Marlene Frost
- Departments of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jodi M Carter
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Derek C Radisky
- Departments of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Julie M Cunningham
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Amy C Degnim
- Departments of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Chen Wang
- Departments of Health Science Research, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
24
|
Mathieson W, Thomas G. Using FFPE Tissue in Genomic Analyses: Advantages, Disadvantages and the Role of Biospecimen Science. CURRENT PATHOBIOLOGY REPORTS 2019. [DOI: 10.1007/s40139-019-00194-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Cravero D, Cerutti F, Maniaci MG, Barzanti P, Scaramagli S, Riina MV, Ingravalle F, Acutis PL, Peletto S. Evaluation of DNA isolation procedures from meat-based foods and development of a DNA quality score. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
McDonough SJ, Bhagwate A, Sun Z, Wang C, Zschunke M, Gorman JA, Kopp KJ, Cunningham JM. Use of FFPE-derived DNA in next generation sequencing: DNA extraction methods. PLoS One 2019; 14:e0211400. [PMID: 30973937 PMCID: PMC6459541 DOI: 10.1371/journal.pone.0211400] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/20/2019] [Indexed: 12/25/2022] Open
Abstract
Archival tissues represent a rich resource for clinical genomic studies, particularly when coupled with comprehensive medical records. Use of these in next generation sequencing (NGS) is a priority. Nine formalin-fixed paraffin-embedded (FFPE) DNA extraction methods were evaluated using twelve FFPE samples of varying tissue types. Quality assessment included total yield, percent dsDNA, fragment analysis and multiplex PCR. After assessment, three tissue types from four FFPE DNA methods were selected for NGS downstream evaluation, targeted and whole exome sequencing. In addition, two low input library protocols were evaluated for WES. Analysis revealed average coverage across the target regions for WES was ~20-30X for all four FFPE DNA extraction methods. For the targeted panels, the highest molecular tag coverage was obtained with the Kingfisher FFPE extraction method. The genotype concordance was 99% for the commonly called variant positions between all four extraction methods with the targeted PCR NGS panel and 96% with WES. Assessing quality of extracted DNA aids in selecting the optimal NGS approach, and the choice of both DNA extraction and library preparation approaches can impact the performance of archival tissue in NGS.
Collapse
Affiliation(s)
- Samantha J. McDonough
- Medical Genome Facility, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aditya Bhagwate
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Zhifu Sun
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chen Wang
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael Zschunke
- Pathology Research Core, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Joshua A. Gorman
- Pathology Research Core, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Karla J. Kopp
- Pathology Research Core, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Julie M. Cunningham
- Medical Genome Facility, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
27
|
DNA extraction from FFPE tissue samples - a comparison of three procedures. Contemp Oncol (Pozn) 2019; 23:52-58. [PMID: 31061638 PMCID: PMC6500389 DOI: 10.5114/wo.2019.83875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/26/2019] [Indexed: 12/29/2022] Open
Abstract
Aim of the study One of the critical steps in molecular oncology diagnostics is obtaining high quality genomic DNA. Therefore, it is important to evaluate and compare the techniques used to extract DNA from tissue samples. Since formalin-fixed, paraffin-embedded (FFPE) tissues are routinely used for both retrospective and prospective studies, we compared three commercially available methods of nucleic acid extraction in terms of quantity and quality of isolated DNA. Material and methods Slides prepared from 42 FFPE blocks were macro-dissected. Resulting material was divided and processed simultaneously using three extraction kits: QIAamp DNA FFPE Tissue Kit (QIAGEN), Cobas DNA Sample Preparation Kit (Roche Molecular Systems) and Maxwell 16 FFPE Plus LEV DNA Purification Kit (Promega). Subsequently, quantity and quality of obtained DNA samples were analysed spectrophotometrically (NanoDrop 2000, Thermo Scientific). Results of quantitative analysis were confirmed by a fluorometric procedure (Qubit 3.0 Fluorometer, Life Technologies). Results The results demonstrated that the yields of total DNA extracted using either Maxwell or Cobas methods were significantly higher compared to the QIAamp method (p < 0.001). The Maxwell Extraction Kit delivered DNA samples of the highest quality (p < 0.01). However, the highest total yield of extracted DNA was achieved with the Cobas technique, which may be due to a higher volume of eluate compared to the Maxwell method. Conclusions To our knowledge, this is the first paper which directly compares three extraction methods: Cobas, Maxwell and QIAamp. The data herein provide information required for the selection of a protocol that best suits the needs of the overall study design in terms of the quantity and quality of the extracted DNA.
Collapse
|
28
|
Abstract
Large-scale tumor profiling studies have generated massive amounts of data that have been instrumental for the detection of recurrent driver mutations in many tumor types. These driver mutations as well as the concurrent passenger mutations are now being used for a more accurate diagnosis of the tumor and prognosis for the patient. Moreover, therapeutic inhibitors toward specific mutations are already on the market and many clinical trials are ongoing to approve novel therapeutic drugs. The broad-range identification of these somatic mutations is key to this tailored personalized medicine approach, which preferentially has to be performed by a multigene multihotspot method such as massive parallel sequencing, also called next generation sequencing (NGS). The implementation of NGS in molecular diagnostics of tumor profiling however, requires a firm validation to minimize the occurrence of false positives and false negatives, thereby yielding highly accurate and robust clinical data.Here, we describe the different performance characteristics as well as quality metrics that should be analyzed for the robust diagnostic validation of tumor profiling in order to meet the requirements of international standards specific for medical laboratories, such as the ISO15189:2012 standard. These metrics include assays that assess the precision, limit of detection, accuracy, sensitivity, specificity, and robustness of the entire workflow from DNA enrichment up to the final report.
Collapse
Affiliation(s)
- Guy Froyen
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium.
| | - Brigitte Maes
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
| |
Collapse
|
29
|
Kresse SH, Namløs HM, Lorenz S, Berner JM, Myklebost O, Bjerkehagen B, Meza-Zepeda LA. Evaluation of commercial DNA and RNA extraction methods for high-throughput sequencing of FFPE samples. PLoS One 2018; 13:e0197456. [PMID: 29771965 PMCID: PMC5957415 DOI: 10.1371/journal.pone.0197456] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid material of adequate quality is crucial for successful high-throughput sequencing (HTS) analysis. DNA and RNA isolated from archival FFPE material are frequently degraded and not readily amplifiable due to chemical damage introduced during fixation. To identify optimal nucleic acid extraction kits, DNA and RNA quantity, quality and performance in HTS applications were evaluated. DNA and RNA were isolated from five sarcoma archival FFPE blocks, using eight extraction protocols from seven kits from three different commercial vendors. For DNA extraction, the truXTRAC FFPE DNA kit from Covaris gave higher yields and better amplifiable DNA, but all protocols gave comparable HTS library yields using Agilent SureSelect XT and performed well in downstream variant calling. For RNA extraction, all protocols gave comparable yields and amplifiable RNA. However, for fusion gene detection using the Archer FusionPlex Sarcoma Assay, the truXTRAC FFPE RNA kit from Covaris and Agencourt FormaPure kit from Beckman Coulter showed the highest percentage of unique read-pairs, providing higher complexity of HTS data and more frequent detection of recurrent fusion genes. truXTRAC simultaneous DNA and RNA extraction gave similar outputs as individual protocols. These findings show that although successful HTS libraries could be generated in most cases, the different protocols gave variable quantity and quality for FFPE nucleic acid extraction. Selecting the optimal procedure is highly valuable and may generate results in borderline quality specimens.
Collapse
Affiliation(s)
- Stine H. Kresse
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Heidi M. Namløs
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Susanne Lorenz
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jeanne-Marie Berner
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ola Myklebost
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Norwegian Cancer Genomics Consortium (cancergenomics.no), Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bodil Bjerkehagen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Leonardo A. Meza-Zepeda
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Norwegian Cancer Genomics Consortium (cancergenomics.no), Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
30
|
Bonnet E, Moutet ML, Baulard C, Bacq-Daian D, Sandron F, Mesrob L, Fin B, Delépine M, Palomares MA, Jubin C, Blanché H, Meyer V, Boland A, Olaso R, Deleuze JF. Performance comparison of three DNA extraction kits on human whole-exome data from formalin-fixed paraffin-embedded normal and tumor samples. PLoS One 2018; 13:e0195471. [PMID: 29621323 PMCID: PMC5886566 DOI: 10.1371/journal.pone.0195471] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/25/2018] [Indexed: 12/31/2022] Open
Abstract
Next-generation sequencing (NGS) studies are becoming routinely used for the detection of novel and clinically actionable DNA variants at a pangenomic scale. Such analyses are now used in the clinical practice to enable precision medicine. Formalin-fixed paraffin-embedded (FFPE) tissues are still one of the most abundant source of cancer clinical specimen, unfortunately this method of preparation is known to degrade DNA and therefore compromise subsequent analysis. Some studies have reported that variant detection can be performed on FFPE samples sequenced with NGS techniques, but few or none have done an in-depth coverage analysis and compared the influence of different state-of-the-art FFPE DNA extraction kits on the quality of the variant calling. Here, we generated 42 human whole-exome sequencing data sets from fresh-frozen (FF) and FFPE samples. These samples include normal and tumor tissues from two different organs (liver and colon), that we extracted with three different FFPE extraction kits (QIAamp DNA FFPE Tissue kit and GeneRead DNA FFPE kit from Qiagen, Maxwell™ RSC DNA FFPE Kit from Promega). We determined the rate of concordance of called variants between matched FF and FFPE samples on all common variants (representing at least 86% of the total number of variants for SNVs). The concordance rate is very high between all matched FF / FFPE pairs, with equivalent values for the three kits we analyzed. On the other hand, when looking at the difference between the total number of variants in FF and FFPE, we find a significant variation for the three different FFPE DNA extraction kits. Coverage analysis shows that FFPE samples have less good indicators than FF samples, yet the coverage quality remains above accepted thresholds. We detect limited but statistically significant variations in coverage indicator values between the three FFPE extraction kits. Globally, the GeneRead and QIAamp kits have better variant calling and coverage indicators than the Maxwell kit on the samples used in this study, although this kit performs better on some indicators and has advantages in terms of practical usage. Taken together, our results confirm the potential of FFPE samples analysis for clinical genomic studies, but also indicate that the choice of a FFPE DNA extraction kit should be done with careful testing and analysis beforehand in order to maximize the accuracy of the results.
Collapse
Affiliation(s)
- Eric Bonnet
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Marie-Laure Moutet
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Céline Baulard
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Delphine Bacq-Daian
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Florian Sandron
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Lilia Mesrob
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Bertrand Fin
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Marc Delépine
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Marie-Ange Palomares
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Claire Jubin
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Hélène Blanché
- Centre d’Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
| | - Vincent Meyer
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
- LabEx GenMed, Evry, France
- Centre d’Etude du Polymorphisme Humain, Fondation Jean Dausset, Paris, France
- Centre de REFérence, d’Innovation, d’eXpertise et de transfert (CREFIX), Evry, France
- * E-mail:
| |
Collapse
|
31
|
Genuardi E, Barbero D, Dogliotti I, Mantoan B, Drandi D, Gambella M, Zaccaria GM, Monitillo L, Della Starza I, Cavalli M, De Novi LA, Ciabatti E, Grassi S, Gazzola A, Mannu C, Del Giudice I, Galimberti S, Agostinelli C, Piccaluga PP, Ladetto M, Ferrero S. Ficoll-hypaque separation vs whole blood lysis: Comparison of efficiency and impact on minimal residual disease analysis. Int J Lab Hematol 2018; 40:201-208. [PMID: 29205868 DOI: 10.1111/ijlh.12766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/26/2017] [Indexed: 12/01/2022]
Abstract
INTRODUCTION The high-throughput era remarkably changed molecular laboratory practice. Actually, the increasing number of processed samples requires to reduce the risk of operator biases, by automating or simplifying as much as possible both the analytical and the pre-analytical phases. Minimal residual disease (MRD) studies in hematology often require a simultaneous processing of many bone marrow and peripheral blood samples from patients enrolled in prospective, multicenter, clinical trials, monitored at several planned time points. METHODS In this study, we demonstrate that red blood cell lysis (RBL) pre-analytical procedure can replace the time-consuming Ficoll stratification as cell recovering step. Here, we show a MRD comparison study using both total white blood cells and mononuclear cells recovered by the 2 procedures from 46 follicular lymphoma (FL), 15 multiple myeloma (MM), and 11 mantle cell lymphoma (MCL) patients enrolled in prospective clinical trials. RESULTS The experiments were performed in the 4 laboratories of the Fondazione Italiana Linfomi (FIL) MRD Network and showed superimposable results, in terms of good correlation (R = 0.87) of the MRD data obtained by recovering blood cells by the 2 approaches. CONCLUSION Based on these results, the FIL MRD Network suggests to optimize the pre-analytical phases introducing RBL approach for cell recovery in the clinical trials including MRD analysis.
Collapse
Affiliation(s)
- E Genuardi
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | - D Barbero
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | - I Dogliotti
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | - B Mantoan
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | - D Drandi
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | - M Gambella
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | - G M Zaccaria
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
- Division of Hematology, Department of Oncology, Santa Chiara Hospital, Pisa, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Hematopathology Section, Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
- Division of Hematology, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - L Monitillo
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| | - Irene Della Starza
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - M Cavalli
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - L A De Novi
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - E Ciabatti
- Division of Hematology, Department of Oncology, Santa Chiara Hospital, Pisa, Italy
| | - S Grassi
- Division of Hematology, Department of Oncology, Santa Chiara Hospital, Pisa, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - A Gazzola
- Hematopathology Section, Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - C Mannu
- Hematopathology Section, Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - I Del Giudice
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome, Italy
| | - S Galimberti
- Division of Hematology, Department of Oncology, Santa Chiara Hospital, Pisa, Italy
| | - C Agostinelli
- Hematopathology Section, Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - P P Piccaluga
- Hematopathology Section, Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - M Ladetto
- Division of Hematology, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - S Ferrero
- Department of Molecular Biotechnologies and Health Sciences, Division of Hematology, University of Torino, Torino, Italy
| |
Collapse
|
32
|
Fassunke J, Ihle MA, Lenze D, Lehmann A, Hummel M, Vollbrecht C, Penzel R, Volckmar AL, Stenzinger A, Endris V, Jung A, Lehmann U, Zeugner S, Baretton G, Kreipe H, Schirmacher P, Kirchner T, Dietel M, Büttner R, Merkelbach-Bruse S. EGFR T790M mutation testing of non-small cell lung cancer tissue and blood samples artificially spiked with circulating cell-free tumor DNA: results of a round robin trial. Virchows Arch 2017; 471:509-520. [DOI: 10.1007/s00428-017-2226-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/22/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
|
33
|
Influence of mucinous and necrotic tissue in colorectal cancer samples on KRAS mutation analysis. Pathol Res Pract 2017; 213:606-611. [DOI: 10.1016/j.prp.2017.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
|
34
|
Koitzsch U, Heydt C, Attig H, Immerschitt I, Merkelbach-Bruse S, Fammartino A, Büttner RH, Kong Y, Odenthal M. Use of the GeneReader NGS System in a clinical pathology laboratory: a comparative study. J Clin Pathol 2017; 70:725-728. [PMID: 28400467 PMCID: PMC5537555 DOI: 10.1136/jclinpath-2017-204342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022]
Abstract
Despite its successful use in academic research, next-generation sequencing (NGS) still represents many challenges for routine clinical adoption due to its inherent complexity and specialised expertise typically required to set-up, test and operate a complete workflow.This study aims to evaluate QIAGEN's newly launched GeneReader NGS System solution in a pathology laboratory setting by assessing the system's ease of use, sequencing accuracy and data reproducibility. Our laboratory was able to implement the system and validate its performance using clinical samples in direct comparison to an approved Sanger sequencing platform and to an alternative in-house NGS technology. The QIAGEN workflow focuses on clinically actionable hotspots maximising testing efficiency. Combined with automated upstream sample processing and integrated downstream bioinformatics, it offers a realistic solution for pathology laboratories with limited prior experience in NGS technology.
Collapse
Affiliation(s)
- Ulrike Koitzsch
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Carina Heydt
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | | | | | | | | | - Reinhard H Büttner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Yi Kong
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Löser H, Heydt C, Büttner R, Markiefka B. [BRCA diagnostics of ovarian cancer : Molecular tumor testing since the introduction of PARP inhibitor therapy]. DER PATHOLOGE 2017; 38:117-126. [PMID: 28258387 DOI: 10.1007/s00292-017-0274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Approximately 9000 women are diagnosed with ovarian cancer in Germany each year. The most common subtype is high-grade serous ovarian cancer. A relevant proportion of these tumors are associated with mutations in the breast and ovarian cancer susceptibility genes (BRCA1 and BRCA2) representing highly penetrant tumor suppressor genes with autosomal inheritance and play a crucial role in DNA repair mechanisms. These patients have predominantly germline mutations and less frequently have somatic BRCA mutations. Tumors harboring BRCA mutations show a significant improvement in progression-free survival under therapy with poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors. In 2015 the first PARP inhibitor was approved for the therapy of high-grade serous ovarian cancer with BRCA mutations. Mutation analysis can be performed on formalin-fixed paraffin-embedded (FFPE) tumor tissue within a few days.
Collapse
Affiliation(s)
- H Löser
- Institut für Pathologie, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - C Heydt
- Institut für Pathologie, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - R Büttner
- Institut für Pathologie, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - B Markiefka
- Institut für Pathologie, Uniklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland.
| |
Collapse
|
36
|
Arreaza G, Qiu P, Pang L, Albright A, Hong LZ, Marton MJ, Levitan D. Pre-Analytical Considerations for Successful Next-Generation Sequencing (NGS): Challenges and Opportunities for Formalin-Fixed and Paraffin-Embedded Tumor Tissue (FFPE) Samples. Int J Mol Sci 2016; 17:ijms17091579. [PMID: 27657050 PMCID: PMC5037844 DOI: 10.3390/ijms17091579] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
In cancer drug discovery, it is important to investigate the genetic determinants of response or resistance to cancer therapy as well as factors that contribute to adverse events in the course of clinical trials. Despite the emergence of new technologies and the ability to measure more diverse analytes (e.g., circulating tumor cell (CTC), circulating tumor DNA (ctDNA), etc.), tumor tissue is still the most common and reliable source for biomarker investigation. Because of its worldwide use and ability to preserve samples for many decades at ambient temperature, formalin-fixed, paraffin-embedded tumor tissue (FFPE) is likely to be the preferred choice for tissue preservation in clinical practice for the foreseeable future. Multiple analyses are routinely performed on the same FFPE samples (such as Immunohistochemistry (IHC), in situ hybridization, RNAseq, DNAseq, TILseq, Methyl-Seq, etc.). Thus, specimen prioritization and optimization of the isolation of analytes is critical to ensure successful completion of each assay. FFPE is notorious for producing suboptimal DNA quality and low DNA yield. However, commercial vendors tend to request higher DNA sample mass than what is actually required for downstream assays, which restricts the breadth of biomarker work that can be performed. We evaluated multiple genomics service laboratories to assess the current state of NGS pre-analytical processing of FFPE. Significant differences in pre-analytical capabilities were observed. Key aspects are highlighted and recommendations are made to improve the current practice in translational research.
Collapse
Affiliation(s)
- Gladys Arreaza
- Translational Medicine, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Ping Qiu
- Translational Medicine, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Ling Pang
- Translational Medicine, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Andrew Albright
- Translational Medicine, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Lewis Z Hong
- Translational Biomarkers, Merck Research Laboratories, Merck Sharp & Dohme, Singapore 609927, Singapore.
| | - Matthew J Marton
- Translational Medicine, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Diane Levitan
- Translational Medicine, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| |
Collapse
|
37
|
Discrimination of Aspergillosis, Mucormycosis, Fusariosis, and Scedosporiosis in Formalin-Fixed Paraffin-Embedded Tissue Specimens by Use of Multiple Real-Time Quantitative PCR Assays. J Clin Microbiol 2016; 54:2798-2803. [PMID: 27605714 DOI: 10.1128/jcm.01185-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
In a retrospective multicenter study, 102 formalin-fixed paraffin-embedded (FFPE) tissue specimens with histopathology results were tested. Two 4- to 5-μm FFPE tissue sections from each specimen were digested with proteinase K, followed by automated nucleic acid extraction. Multiple real-time quantitative PCR (qPCR) assays targeting the internal transcribed spacer 2 (ITS2) region of ribosomal DNA, using fluorescently labeled primers, was performed to identify clinically important genera and species of Aspergillus, Fusarium, Scedosporium, and the Mucormycetes The molecular identification was correlated with results from histological examination. One of the main findings of our study was the high sensitivity of the automated DNA extraction method, which was estimated to be 94%. The qPCR procedure that was evaluated identified a range of fungal genera/species, including Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Aspergillus niger, Fusarium oxysporum, Fusarium solani, Scedosporium apiospermum, Rhizopus oryzae, Rhizopus microsporus, Mucor spp., and Syncephalastrum Fusarium oxysporum and F. solani DNA was amplified from five specimens from patients initially diagnosed by histopathology as having aspergillosis. Aspergillus flavus, S. apiospermum, and Syncephalastrum were detected from histopathological mucormycosis samples. In addition, examination of four samples from patients suspected of having concomitant aspergillosis and mucormycosis infections resulted in the identification of two A. flavus isolates, one Mucor isolate, and only one sample having both R. oryzae and A. flavus Our results indicate that histopathological features of molds may be easily confused in tissue sections. The qPCR assay used in this study is a reliable tool for the rapid and accurate identification of fungal pathogens to the genus and species levels directly from FFPE tissues.
Collapse
|
38
|
Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJK, van de Velde CJH, Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M, Walch A. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 2016; 11:1428-43. [PMID: 27414759 DOI: 10.1038/nprot.2016.081] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissue specimens are the gold standard for histological examination, and they provide valuable molecular information in tissue-based research. Metabolite assessment from archived tissue samples has not been extensively conducted because of a lack of appropriate protocols and concerns about changes in metabolite content or chemical state due to tissue processing. We present a protocol for the in situ analysis of metabolite content from FFPE samples using a high-mass-resolution matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR-MSI) platform. The method involves FFPE tissue sections that undergo deparaffinization and matrix coating by 9-aminoacridine before MALDI-MSI. Using this platform, we previously detected ∼1,500 m/z species in the mass range m/z 50-1,000 in FFPE samples; the overlap compared with fresh frozen samples is 72% of m/z species, indicating that metabolites are largely conserved in FFPE tissue samples. This protocol can be reproducibly performed on FFPE tissues, including small samples such as tissue microarrays and biopsies. The procedure can be completed in a day, depending on the size of the sample measured and raster size used. Advantages of this approach include easy sample handling, reproducibility, high throughput and the ability to demonstrate molecular spatial distributions in situ. The data acquired with this protocol can be used in research and clinical practice.
Collapse
Affiliation(s)
- Alice Ly
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karin Gorzolka
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gregor Weirich
- Institute of Pathology, Technische Universität München, Munich, Germany
| | | | - Rupert Langer
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Liam McDonnell
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, the Netherlands.,Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
39
|
Potluri K, Mahas A, Kent MN, Naik S, Markey M. Genomic DNA extraction methods using formalin-fixed paraffin-embedded tissue. Anal Biochem 2015; 486:17-23. [DOI: 10.1016/j.ab.2015.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/05/2015] [Accepted: 06/23/2015] [Indexed: 02/06/2023]
|
40
|
Fassunke J, Haller F, Hebele S, Moskalev EA, Penzel R, Pfarr N, Merkelbach-Bruse S, Endris V. Utility of different massive parallel sequencing platforms for mutation profiling in clinical samples and identification of pitfalls using FFPE tissue. Int J Mol Med 2015; 36:1233-43. [PMID: 26352389 PMCID: PMC4601747 DOI: 10.3892/ijmm.2015.2339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
In the growing field of personalised medicine, the analysis of numerous potential targets is becoming a challenge in terms of work load, tissue availability, as well as costs. The molecular analysis of non-small cell lung cancer (NSCLC) has shifted from the analysis of the epidermal growth factor receptor (EGFR) mutation status to the analysis of different gene regions, including resistance mutations or translocations. Massive parallel sequencing (MPS) allows rapid comprehensive mutation testing in routine molecular pathological diagnostics even on small formalin-fixed, paraffin-embedded (FFPE) biopsies. In this study, we compared and evaluated currently used MPS platforms for their application in routine pathological diagnostics. We initiated a first round-robin testing of 30 cases diagnosed with NSCLC and a known EGFR gene mutation status. In this study, three pathology institutes from Germany received FFPE tumour sections that had been individually processed. Fragment libraries were prepared by targeted multiplex PCR using institution-specific gene panels. Sequencing was carried out using three MPS systems: MiSeq™, GS Junior and PGM Ion Torrent™. In two institutes, data analysis was performed with the platform-specific software and the Integrative Genomics Viewer. In one institute, data analysis was carried out using an in-house software system. Of 30 samples, 26 were analysed by all institutes. Concerning the EGFR mutation status, concordance was found in 26 out of 26 samples. The analysis of a few samples failed due to poor DNA quality in alternating institutes. We found 100% concordance when comparing the results of the EGFR mutation status. A total of 38 additional mutations were identified in the 26 samples. In two samples, minor variants were found which could not be confirmed by qPCR. Other characteristic variants were identified as fixation artefacts by reanalyzing the respective sample by Sanger sequencing. Overall, the results of this study demonstrated good concordance in the detection of mutations using different MPS platforms. The failure with samples can be traced back to different DNA extraction systems and DNA quality. Unknown or ambiguous variations (transitions) need verification with another method, such as qPCR or Sanger sequencing.
Collapse
Affiliation(s)
- Jana Fassunke
- Institute of Pathology, University of Cologne, Medical Centre, D-50924 Cologne, Germany
| | - Florian Haller
- Institute of Pathology, University of Erlangen, Medical Centre, D-91054 Erlangen, Germany
| | - Simone Hebele
- Institute of Pathology, University of Erlangen, Medical Centre, D-91054 Erlangen, Germany
| | - Evgeny A Moskalev
- Institute of Pathology, University of Erlangen, Medical Centre, D-91054 Erlangen, Germany
| | - Roland Penzel
- Institute of Pathology, University of Heidelberg, Medical Centre, D-69120 Heidelberg, Germany
| | - Nicole Pfarr
- Institute of Pathology, University of Heidelberg, Medical Centre, D-69120 Heidelberg, Germany
| | | | - Volker Endris
- Institute of Pathology, University of Heidelberg, Medical Centre, D-69120 Heidelberg, Germany
| |
Collapse
|
41
|
Roemen GM, zur Hausen A, Speel EJM. Adequate tissue for adequate diagnosis: what do we really need? Lung Cancer 2015. [DOI: 10.1183/2312508x.10010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Abstract
Many methods have been developed for DNA integrity assessment including electrophoresis-based procedures, quantitative PCR, and, more recently, microfluidics-based procedures. DNA integrity evaluation can be employed for characterizing biological samples quality before extensive genomic analysis and also finds applications in reproductive medicine, prenatal diagnostics, or cancer research. In this chapter, we will focus on the assessment of DNA integrity in cancer research. In particular, we will present the application of the determination of DNA integrity for tracking of circulating tumor DNA. Finally, we will conclude by illustrating the potential innovative application of DNA integrity as a biomarker in clinical research, especially for prognostic purposes, patient follow-up, or early diagnosis.
Collapse
|