1
|
Elgamal WH, Elshenawy MM, Abdelkhalek SM, Tao D, Zhou J, Li J, Rehan M. Improving the cultivated rice Sakha104 ( Oryza sativa L.) using gene pools of some relative wild species. PeerJ 2025; 13:e19453. [PMID: 40421368 PMCID: PMC12105619 DOI: 10.7717/peerj.19453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Background Rice (Oryza sativa L.) is considered a staple food for one-half of the world's population. The yield of rice must increase to keep up with the world's population growth. Blast disease (caused by Magnaporthe oryzae) is biotic stress that threatens rice production and can result in yield losses up to 70%. Methods The present research attempted to widen the genetic base of Egyptian cultivated rice Sakha 104 (Oryza sativa), using gene pools from certain relative wild ancestors, in order to cope with blast infection and grain yield. Crossing Sakha 104 × O. glaberrima and Sakha 104 × O. glumaepatula resulted in selecting 20 genotypes. The produced genotypes and the Egyptian cultivar Sakha 104 were assessed for days to heading (HD), plant height (PH), number of tillers/plant (NTP), panicle weight (PW), 1,000-grain weight (TGW), grain yield/plant (GYP), spikelet fertility (SF), blast reaction (BR), hulling percentage (HP), milling percentage (MP), head rice (HR), and amylose content (AC). Results Line AS-AF L3 had the earliest heading date, whereas AS-AF L6 revealed the lowest and the best values in plant height. In addition, line AS-AM L9 generated the most tillers/plant and the heaviest panicle weight. For TGW, AS-AM L3 showed the uppermost value, while AS-AM L4 recorded the highest percentage in spikelet fertility and high productivity of grain yield/plant. Furthermore, all assessed genotypes presented a unity (the value of 1) across the two seasons of evaluation in blast reaction. Grain quality criteria such as hulling, milling percentages and head rice assigned to AS-AF L10 and AS-AM L3, whereas AS-AF L2 possessed the lowest values in amylose content. Moreover, genetic variance (GV), phenotypic variance (PV), genotypic and phenotypic coefficient variations (GCV and PCV) were estimated for all traits with higher PV and PCV than GV and GCV, respectively. Heritability in broad sense (h2b%) disclosed high heritability values for heading date (0.85), plant height (0.925), grain yield/plant (0.95), 1,000 grains weight (0.92), blast reaction (0.935), head rice (0.97) and amylose content (0.90), reflecting strong genetic control of these traits. Eventually, broadening the genetic background of Sakha 104 cultivar against blast infection will minimize its impact and enhance the food security in Egypt.
Collapse
Affiliation(s)
- Walid H. Elgamal
- Rice Research and Training Department, Field Crops Research Institute (FCRI), Agricultural Research Center (ARC), Sakha, Egypt
| | - Mostafa M. Elshenawy
- Rice Research and Training Department, Field Crops Research Institute (FCRI), Agricultural Research Center (ARC), Sakha, Egypt
| | - Samah M. Abdelkhalek
- Rice Research and Training Department, Field Crops Research Institute (FCRI), Agricultural Research Center (ARC), Sakha, Egypt
| | - Dayun Tao
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jiawu Zhou
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jing Li
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Medhat Rehan
- Department of Plant Production, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Qi Z, Meng X, Xu M, Du Y, Yu J, Song T, Pan X, Zhang R, Cao H, Yu M, Telebanco-Yanoria MJ, Lu G, Zhou B, Liu Y. A novel Pik allele confers extended resistance to rice blast. PLANT, CELL & ENVIRONMENT 2024; 47:4800-4814. [PMID: 39087779 DOI: 10.1111/pce.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
In the ongoing arms race between rice and Magnaporthe oryzae, the pathogen employs effectors to evade the immune response, while the host develops resistance genes to recognise these effectors and confer resistance. In this study, we identified a novel Pik allele, Pik-W25, from wild rice WR25 through bulked-segregant analysis, creating the Pik-W25 NIL (Near-isogenic Lines) named G9. Pik-W25 conferred resistance to isolates expressing AvrPik-C/D/E alleles. CRISPR-Cas9 editing was used to generate transgenic lines with a loss of function in Pik-W25-1 and Pik-W25-2, resulting in loss of resistance in G9 to isolates expressing the three alleles, confirming that Pik-W25-induced immunity required both Pik-W25-1 and Pik-W25-2. Yeast two-hybrid (Y2H) and split luciferase complementation assays showed interactions between Pik-W25-1 and the three alleles, while Pik-W25-2 could not interact with AvrPik-C, -D, and -E alleles with Y2H assay, indicating Pik-W25-1 acts as an adaptor and Pik-W25-2 transduces the signal to trigger resistance. The Pik-W25 NIL exhibited enhanced field resistance to leaf and panicle blast without significant changes in morphology or development compared to the parent variety CO39, suggesting its potential for resistance breeding. These findings advance our knowledge of rice blast resistance mechanisms and offer valuable resources for effective and sustainable control strategies.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiuli Meng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Ming Xu
- High-throughput Genotyping Shared Laboratory, Seed Administration Department of Jiangsu Province, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | | | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Bo Zhou
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
3
|
Younas MU, Qasim M, Ahmad I, Feng Z, Iqbal R, Abdelbacki AMM, Rajput N, Jiang X, Rao B, Zuo S. Allelic variation in rice blast resistance: a pathway to sustainable disease management. Mol Biol Rep 2024; 51:935. [PMID: 39180629 DOI: 10.1007/s11033-024-09854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Rice blast is a major problem in agriculture, affecting rice production and threatening food security worldwide. This disease, caused by the fungus Magnaporthe oryzae, has led to a lot of research since the discovery of the first resistance gene, pib, in 1999. Researchers have now identified more than 50 resistance genes on eight of the twelve chromosomes in rice, each targeting different strains of the pathogen.These genes are spread out across seventeen different loci. These genes, which primarily code for nucleotide-binding and leucine-rich repeat proteins, play an important part in the defense of rice against the pathogen, either alone or in combination with other genes. An important characteristic of these genes is the allelic or paralogous interactions that exist within these loci. These relationships contribute to the gene's increased capacity for evolutionary adaptation. The ability of resistance proteins to recognize and react to novel effectors is improved by the frequent occurrence of variations within the domains that are responsible for recognizing pathogen effectors. The purpose of this review is to summarize the progress that has been made in identifying these essential genes and to investigate the possibility of utilizing the allelic variants obtained from these genes in future rice breeding efforts to increase resistance to rice blast.
Collapse
Affiliation(s)
- Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Ashraf M M Abdelbacki
- Deanship of Skills Development, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nimra Rajput
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaohong Jiang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Bisma Rao
- Department of Public Health, Medical College, Yangzhou University, Yangzhou, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Yang T, Song L, Hu J, Qiao L, Yu Q, Wang Z, Chen X, Lu GD. Magnaporthe oryzae effector AvrPik-D targets a transcription factor WG7 to suppress rice immunity. RICE (NEW YORK, N.Y.) 2024; 17:14. [PMID: 38351214 PMCID: PMC10864242 DOI: 10.1186/s12284-024-00693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases for rice crops, significantly affecting crop yield and quality. During the infection process, M. oryzae secretes effector proteins that help in hijacking the host's immune responses to establish infection. However, little is known about the interaction between the effector protein AvrPik-D and the host protein Pikh, and how AvrPik-D increases disease severity to promote infection. In this study, we show that the M. oryzae effector AvrPik-D interacts with the zinc finger-type transcription factor WG7 in the nucleus and promotes its transcriptional activity. Genetic removal (knockout) of the gene WG7 in transgenic rice enhances resistance to M. oryzae and also results in an increased burst of reactive oxygen species after treatments with chitin. In addition, the hormone level of SA and JA, is increased and decreased respectively in WG7 KO plants, indicating that WG7 may negatively mediate resistance through salicylic acid pathway. Conversely, WG7 overexpression lines reduce resistance to M. oryzae. However, WG7 is not required for the Pikh-mediated resistance against rice blast. In conclusion, our results revealed that the M. oryzae effector AvrPik-D targets and promotes transcriptional activity of WG7 to suppress rice innate immunity to facilitate infection.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Linlin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Jinxian Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Luao Qiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Qing Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Fujian Universities Engineering Research Center of Marine Biology and Drugs, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou, 350108, China
| | - Xiaofeng Chen
- Fujian Universities Engineering Research Center of Marine Biology and Drugs, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou, 350108, China.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 35002, China.
| |
Collapse
|
5
|
Wei YY, Liang S, Zhu XM, Liu XH, Lin FC. Recent Advances in Effector Research of Magnaporthe oryzae. Biomolecules 2023; 13:1650. [PMID: 38002332 PMCID: PMC10669146 DOI: 10.3390/biom13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Recalcitrant rice blast disease is caused by Magnaporthe oryzae, which has a significant negative economic reverberation on crop productivity. In order to induce the disease onto the host, M. oryzae positively generates many types of small secreted proteins, here named as effectors, to manipulate the host cell for the purpose of stimulating pathogenic infection. In M. oryzae, by engaging with specific receptors on the cell surface, effectors activate signaling channels which control an array of cellular activities, such as proliferation, differentiation and apoptosis. The most recent research on effector identification, classification, function, secretion, and control mechanism has been compiled in this review. In addition, the article also discusses directions and challenges for future research into an effector in M. oryzae.
Collapse
Affiliation(s)
- Yun-Yun Wei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xiao-Hong Liu
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Lei LY, Xiong ZX, Li JL, Yang DZ, Li L, Chen L, Zhong QF, Yin FY, Li RX, Cheng ZQ, Xiao SQ. Biological control of Magnaporthe oryzae using natively isolated Bacillus subtilis G5 from Oryza officinalis roots. Front Microbiol 2023; 14:1264000. [PMID: 37876784 PMCID: PMC10591090 DOI: 10.3389/fmicb.2023.1264000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production causing significant crop losses and impacting grain quality. The annual loss of rice production due to this disease ranges from 10% to 30%. The use of biologically controlled strains, instead of chemical pesticides, to control plant diseases has become a research hotspot. In this study, an antagonistic endophytic bacterial strain was isolated from the roots of Oryza officinalis using the traditional isolation and culture methods. A phylogenetic tree based on 16S RNA and whole-genome sequencing identified isolate G5 as a strain of Bacillus subtilis. This isolate displayed strong antagonistic effects against different physiological strains of M. oryzae. After co-culture in LB medium for 7 days, the inhibition rates of the mycelial growth of four strains of M. oryzae, ZB15, WH97, Guy11, and T-39800E were 98.07 ± 0.0034%, 98.59 ± 0.0051%, 99.16 ± 0.0012%, and 98.69 ± 0.0065%, respectively. Isolate G5 significantly inhibited the formation of conidia of M. oryzae, with an inhibition rate of 97% at an OD600 of 2. Isolate G5 was able to provide 66.81% protection against rice blast under potted conditions. Whole-genome sequencing revealed that the genome size of isolate G5 was 4,065,878 bp, including 4,182 coding genes. Using the anti-SMASH software, 14 secondary metabolite synthesis gene clusters were predicted to encode antifungal substances, such as fengycin, surfactin, and bacilysin. The G5 isolate also contained genes related to plant growth promotion. These findings provide a theoretical basis for expounding the biocontrol mechanisms of this strain and suggest further development of biogenic agents that could effectively inhibit rice blast pathogen growth and reduce crop damage, while being environmentally friendly, conducive to ecological development, and a sustainable alternative to chemical pesticides. This study also enriches the relevant research on endophytes of wild rice, which proves that wild rice is a valuable microbial resource bank.
Collapse
Affiliation(s)
- Ling-Yun Lei
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Zi-Xuan Xiong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Jin-Lu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - De-Zheng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Liu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ling Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qiao-Fang Zhong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fu-You Yin
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Rong-Xin Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Zai-Quan Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Su-Qin Xiao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
7
|
Tian Q, Gong Y, Liu S, Ji M, Tang R, Kong D, Xue Z, Wang L, Hu F, Huang L, Qin S. Endophytic bacterial communities in wild rice ( Oryza officinalis) and their plant growth-promoting effects on perennial rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1184489. [PMID: 37645460 PMCID: PMC10461003 DOI: 10.3389/fpls.2023.1184489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Endophytic bacterial microbiomes of plants contribute to the physiological health of the host and its adaptive evolution and stress tolerance. Wild rice possesses enriched endophytic bacteria diversity, which is a potential resource for sustainable agriculture. Oryza officinalis is a unique perennial wild rice species in China with rich genetic resources. However, endophytic bacterial communities of this species and their plant growth-promoting (PGP) traits remain largely unknown. In this study, endophytic bacteria in the root, stem, and leaf tissues of O. officinalis were characterized using 16S rRNA gene Illumina sequencing. Culturable bacterial endophytes were also isolated from O. officinalis tissues and characterized for their PGP traits. The microbiome analysis showed a more complex structure and powerful function of the endophytic bacterial community in roots compared with those in other tissue compartments. Each compartment had its specific endophytic bacterial biomarkers, including Desulfomonile and Ruminiclostridium for roots; Lactobacillus, Acinetobacter, Cutibacterium and Dechloromonas for stems; and Stenotrophomonas, Chryseobacterium, Achromobacter and Methylobacterium for leaves. A total of 96 endophytic bacterial strains with PGP traits of phosphate solubilization, potassium release, nitrogen fixation, 1-aminocyclopropane-1-carboxylate (ACC) deaminase secretion, and siderophore or indole-3-acetic acid (IAA) production were isolated from O. officinalis. Among them, 11 strains identified as Enterobacter mori, E. ludwigii, E. cloacae, Bacillus amyloliquefaciens, B. siamensis, Pseudomonas rhodesiae and Kosakonia oryzae were selected for inoculation of perennial rice based on their IAA production traits. These strains showed promising PGP effects on perennial rice seedlings. They promoted plants to form a strong root system, stimulate biomass accumulation, and increase chlorophyll content and nitrogen uptake, which could fulfil the ecologically sustainable cultivation model of perennial rice. These results provide insights into the bacterial endosphere of O. officinalis and its application potential in perennial rice. There is the prospect of mining beneficial endophytic bacteria from wild rice species, which could rewild the microbiome of cultivated rice varieties and promote their growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fengyi Hu
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Liyu Huang
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Shiwen Qin
- Key Laboratory of Biology and Germplasm Innovation of Perennial Rice From Ministry of Agriculture and Rural Affairs, School of Agriculture, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Kumari M, Kapoor R, Devanna BN, Varshney S, Kamboj R, Rai AK, Sharma TR. iTRAQ based proteomic analysis of rice lines having single or stacked blast resistance genes: Pi54/ Pi54rh during incompatible interaction with Magnaporthe oryzae. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:871-887. [PMID: 37520805 PMCID: PMC10382468 DOI: 10.1007/s12298-023-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023]
Abstract
Deployment of single or multiple blast resistance (R) genes in rice plant is considered to be the most promising approach to enhance resistance against blast disease caused by fungus Magnaporthe oryzae. At the proteome level, relatively little information about R gene mediated defence mechanisms for single and stacking resistance characteristics is available. The overall objective of this study is to look at the proteomics of rice plants that have R genes; Pi54, Pi54rh and stacked Pi54 + Pi54rh in response to rice blast infection. In this study 'isobaric tag for relative and absolute quantification' (iTRAQ)-based proteomics analysis was performed in rice plants at 72-h post inoculation with Magnaporthe oryzae and various differentially expressed proteins were identified in these three transgenic lines in comparison to wild type during resistance response to blast pathogen. Through STRING analysis, the observed proteins were further examined to anticipate their linked partners, and it was shown that several defense-related proteins were co-expressed. These proteins can be employed as targets in future rice resistance breeding against Magnaporthe oryzae. The current study is the first to report a proteomics investigation of rice lines that express single blast R gene Pi54, Pi54rh and stacked (Pi54 + Pi54rh) during incompatible interaction with Magnaporthe oryzae. The differentially expressed proteins indicated that secondary metabolites, reactive oxygen species-related proteins, phenylpropanoid, phytohormones and pathogenesis-related proteins have a substantial relationship with the defense response against Magnaporthe oryzae. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01327-3.
Collapse
Affiliation(s)
- Mandeep Kumari
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan India
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab India
| | - B. N. Devanna
- ICAR-National Rice Research Institute, Cuttack, Odisha India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, Delhi India
| | - Richa Kamboj
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - T. R. Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, India
| |
Collapse
|
9
|
Approaches to Reduce Rice Blast Disease Using Knowledge from Host Resistance and Pathogen Pathogenicity. Int J Mol Sci 2023; 24:ijms24054985. [PMID: 36902415 PMCID: PMC10003181 DOI: 10.3390/ijms24054985] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Rice is one of the staple foods for the majority of the global population that depends directly or indirectly on it. The yield of this important crop is constantly challenged by various biotic stresses. Rice blast, caused by Magnaporthe oryzae (M. oryzae), is a devastating rice disease causing severe yield losses annually and threatening rice production globally. The development of a resistant variety is one of the most effective and economical approaches to control rice blast. Researchers in the past few decades have witnessed the characterization of several qualitative resistance (R) and quantitative resistance (qR) genes to blast disease as well as several avirulence (Avr) genes from the pathogen. These provide great help for either breeders to develop a resistant variety or pathologists to monitor the dynamics of pathogenic isolates, and ultimately to control the disease. Here, we summarize the current status of the isolation of R, qR and Avr genes in the rice-M. oryzae interaction system, and review the progresses and problems of these genes utilized in practice for reducing rice blast disease. Research perspectives towards better managing blast disease by developing a broad-spectrum and durable blast resistance variety and new fungicides are also discussed.
Collapse
|
10
|
Karan B, Mahapatra S, Sahu SS, Pandey DM, Chakravarty S. Computational models for prediction of protein-protein interaction in rice and Magnaporthe grisea. FRONTIERS IN PLANT SCIENCE 2023; 13:1046209. [PMID: 36816487 PMCID: PMC9929577 DOI: 10.3389/fpls.2022.1046209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Plant-microbe interactions play a vital role in the development of strategies to manage pathogen-induced destructive diseases that cause enormous crop losses every year. Rice blast is one of the severe diseases to rice Oryza sativa (O. sativa) due to Magnaporthe grisea (M. grisea) fungus. Protein-protein interaction (PPI) between rice and fungus plays a key role in causing rice blast disease. METHODS In this paper, four genomic information-based models such as (i) the interolog, (ii) the domain, (iii) the gene ontology, and (iv) the phylogenetic-based model are developed for predicting the interaction between O. sativa and M. grisea in a whole-genome scale. RESULTS AND DISCUSSION A total of 59,430 interacting pairs between 1,801 rice proteins and 135 blast fungus proteins are obtained from the four models. Furthermore, a machine learning model is developed to assess the predicted interactions. Using composition-based amino acid composition (AAC) and conjoint triad (CT) features, an accuracy of 88% and 89% is achieved, respectively. When tested on the experimental dataset, the CT feature provides the highest accuracy of 95%. Furthermore, the specificity of the model is verified with other pathogen-host datasets where less accuracy is obtained, which confirmed that the model is specific to O. sativa and M. grisea. Understanding the molecular processes behind rice resistance to blast fungus begins with the identification of PPIs, and these predicted PPIs will be useful for drug design in the plant science community.
Collapse
Affiliation(s)
- Biswajit Karan
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Satyajit Mahapatra
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Sitanshu Sekhar Sahu
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Sumit Chakravarty
- Department of Electrical and Computer Engineering, Kennesaw State University, Kennesaw, GA, United States
| |
Collapse
|
11
|
Kapoor R, Kumar G, Pawar L, Salvi P, Devanna BN, Singh K, Sharma TR. Stress responsive OsHyPRP16 promoter driven early expression of resistance gene Pi54 potentiate the resistance against Magnaporthe oryzae in transgenic rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111413. [PMID: 35963493 DOI: 10.1016/j.plantsci.2022.111413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The rice Hybrid Proline Rich Protein (HyPRP) encoding gene, OsHyPRP16 expression exhibit early upregulation in response to Magnaporthe oryzae inoculation. Here, we functionally characterized the OsHyPRP16 promoter through deletion analysis in transgenic Arabidopsis using GUS (β-glucuronidase) reporter assay. The promoter fragments, sequentially deleted from the 5' end could induce differential GUS activity in response to stresses induced by different hormones and abiotic stress conditions. In addition, a strong GUS induction was observed in M. oryzae inoculated transgenic Arabidopsis. Based on the insilico and stress-inducibility of D1 promoter fragment against various phytohormones and rice blast fungus, and with no basal activity under control conditions, we rationally selected D1 promoter fragment to drive the expression of a major rice blast resistance gene; Pi54 in the genetic background of blast susceptible TP309 rice line. The D1 promoter fragment was able to induce the expression of Pi54 at immediate-early stages of M. oryzae infection in transgenic rice. The transgenic plants with Pi54 under the control of D1 promoter fragment displayed complete resistance against M. oryzae infection as compared to control plants. The present study suggests that the D1 fragment of OsHyPRP16 promoter is a valuable tool for breeding and development of rice lines with early-inducible and pathogen-responsive enhanced disease resistance.
Collapse
Affiliation(s)
- Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gulshan Kumar
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Lata Pawar
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Prafull Salvi
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India
| | - Basavantraya N Devanna
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140306, Punjab, India; Indian council of Agricultural Research, New Delhi, India.
| |
Collapse
|
12
|
Guo J, Cheng Y. Advances in Fungal Elicitor-Triggered Plant Immunity. Int J Mol Sci 2022; 23:12003. [PMID: 36233304 PMCID: PMC9569958 DOI: 10.3390/ijms231912003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
There is an array of pathogenic fungi in the natural environment of plants, which produce some molecules including pathogen-associated molecular patterns (PAMPs) and effectors during infection. These molecules, which can be recognized by plant specific receptors to activate plant immunity, including PTI (PAMP-triggered immunity) and ETI (effector-triggered immunity), are called elicitors. Undoubtedly, identification of novel fungal elicitors and their plant receptors and comprehensive understanding about fungal elicitor-triggered plant immunity will be of great significance to effectively control plant diseases. Great progress has occurred in fungal elicitor-triggered plant immunity, especially in the signaling pathways of PTI and ETI, in recent years. Here, recent advances in fungal elicitor-triggered plant immunity are summarized and their important contribution to the enlightenment of plant disease control is also discussed.
Collapse
Affiliation(s)
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
13
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
14
|
Zhou J, Yang Y, Lv Y, Pu Q, Li J, Zhang Y, Deng X, Wang M, Wang J, Tao D. Interspecific Hybridization Is an Important Driving Force for Origin and Diversification of Asian Cultivated Rice Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2022; 13:932737. [PMID: 35845644 PMCID: PMC9280345 DOI: 10.3389/fpls.2022.932737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
As one of the most important crops, Asian cultivated rice has evolved into a complex group including several subgroups adapting various eco-climate-systems around the globe. Here, we pictured a comprehensive view of its original domestication, divergences, and the origin of different subgroups by integrating agriculture, archeology, genetics, nuclear, and cytoplasm genome results. Then, it was highlighted that interspecific hybridization-introgression has played important role in improving the genetic diversity and adaptation of Oryza sativa during its evolution process. Natural hybridization-introgression led to the origin of indica, aus, and basmatic subgroups, which adapted to changing cultivated environments, and produced feral weedy rice coexisting and competing with cultivars under production management. Artificial interspecific hybridization-introgression gained several breakthroughs in rice breeding, such as developing three-line hybrid rice, new rice for Africa (NERICA), and some important pest and disease resistance genes in rice genetic improvement, contributing to the stable increase of rice production to meet the expanding human population. We proposed a series to exploit the virtues of hybridization-introgression in the genetic improvement of Asian cultivated rice. But some key issues such as reproductive barriers especially hybrid sterility should be investigated further, which are conducive to gene exchange between cultivated rice and its relatives, and even is beneficial to exploiting interspecific hybrid vigor. New technologies help introduce favorable genes from distant wild species to Asian cultivated rice, such as transgenic and genome editing systems. Rising introgression lines in a wider range with multi-donor benefits allele mining, understanding genetic network of rice growth and development, yield formation, and environmental adaptation. Then, integration of new tools and interspecific hybridization can be a future direction to develop more usable breeding populations which can make Asian cultivated rice more resilient to the changing climate and world.
Collapse
Affiliation(s)
- Jiawu Zhou
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ying Yang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yonggang Lv
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qiuhong Pu
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jing Li
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yu Zhang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xianneng Deng
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Min Wang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Jie Wang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Dayun Tao
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
15
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
16
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 407] [Impact Index Per Article: 135.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
17
|
Deb S, Madhavan VN, Gokulan CG, Patel HK, Sonti RV. Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests. RICE (NEW YORK, N.Y.) 2021; 14:94. [PMID: 34792681 PMCID: PMC8602583 DOI: 10.1186/s12284-021-00534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - C. G. Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507 India
| |
Collapse
|
18
|
Arora K, Rai AK, Devanna BN, Dubey H, Narula A, Sharma TR. Deciphering the role of microRNAs during Pi54 gene mediated Magnaporthe oryzae resistance response in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:633-647. [PMID: 33854289 PMCID: PMC7981355 DOI: 10.1007/s12298-021-00960-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 05/08/2023]
Abstract
The broad-spectrum resistance gene Pi54 confers resistance to multiple isolates of Magnaporthe oryzae in rice. In order to decipher the molecular mechanism underlying the Pi54 mediated resistance in rice line Taipei309 Pi54 (carrying Pi54), miRNAome study was performed at 24 h post-inoculation (hpi) with M. oryzae. A total of 222 known miRNAs representing 101 miRNA families were found in this study. Of these, 29 and 24 miRNAs were respectively up- and down-regulated in the resistant Taipei309 Pi54 . Defence response (DR) genes, like, NBSGO35, and OsWAK129b, and genes related to transcription factors were up-regulated in Taipei309 Pi54 line. The vast array of miRNA candidates identified here are miR159c, miR167c, miR2100, miR2118o, miR2118l, miR319a, miR393, miR395l, miR397a, miR397b, miR398, miR439g, miR531b, miR812f, and miR815c, and they manifest their role in balancing the interplay between various DR genes during Pi54 mediated resistance. We also validated miRNA/target gene pairs involved in hormone signalling, and cross-talk among hormone pathways regulating the rice immunity. This study suggests that the Pi54 gene mediated blast resistance is influenced by several microRNAs through PTI and ETI components in the rice line Taipei309 Pi54 , leading to incompatible host-pathogen interaction.
Collapse
Affiliation(s)
- Kirti Arora
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - B. N. Devanna
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- ICAR-National Rice Research Institute, Cuttack, 753006 India
| | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - Alka Narula
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001 India
| |
Collapse
|
19
|
Khanna A, Ellur RK, Gopala Krishnan S, Vinod KK, Bhowmick PK, Nagarajan M, Haritha B, Singh AK. Utilizing Host-Plant Resistance to Circumvent Blast Disease in Rice. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Devanna BN, Singh PK, Parameswaran C, Samantaray S, Katara JL, Kumar A. Wheat Blast Management: Prospects and Retrospect. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Advances in Genetics and Genomics for Management of Blast Disease in Cereal Crops. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Sharma SK, Sharma D, Meena RP, Yadav MK, Hosahatti R, Dubey AK, Sharma P, Kumar S, Pramesh D, Nabi SU, Bhuvaneshwari S, Anand YR, Dubey SK, Singh TS. Recent Insights in Rice Blast Disease Resistance. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Chandrakanth R, Sunil L, Sadashivaiah L, Devaki NS. In silico modelling and characterization of eight blast resistance proteins in resistant and susceptible rice cultivars. J Genet Eng Biotechnol 2020; 18:75. [PMID: 33237489 PMCID: PMC7688789 DOI: 10.1186/s43141-020-00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes are the largest class of plant resistance genes which play an important role in the plant defense response. These genes are better conserved than others and function as a recognition-based immune system in plants through their encoded proteins. RESULTS Here, we report the effect of Magnaporthe oryzae, the rice blast pathogen inoculation in resistant BR2655 and susceptible HR12 rice cultivars. Transcriptomic profiling was carried out to analyze differential gene expression in these two cultivars. A total of eight NBS-LRR uncharacterized resistance proteins (RP1, RP2, RP3, RP4, RP5, RP6, RP7, and RP8) were selected in these two cultivars for in silico modeling. Modeller 9.22 and SWISS-MODEL servers were used for the homology modeling of eight RPs. ProFunc server was utilized for the prediction of secondary structure and function. The CDvist Web server and Interpro scan server detected the motif and domains in eight RPs. Ramachandran plot of eight RPs confirmed that the modeled structures occupied favorable positions. CONCLUSIONS From the present study, computational analysis of these eight RPs may afford insights into their role, function, and valuable resource for studying the intricate details of the plant defense mechanism. Furthermore, the identification of resistance proteins is useful for the development of molecular markers linked to resistance genes.
Collapse
Affiliation(s)
- R Chandrakanth
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India
| | - L Sunil
- Department of Plant Cell Biotechnology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - L Sadashivaiah
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India
| | - N S Devaki
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India.
| |
Collapse
|
24
|
Ramalingam J, Palanisamy S, Alagarasan G, Renganathan VG, Ramanathan A, Saraswathi R. Improvement of Stable Restorer Lines for Blast Resistance through Functional Marker in Rice ( Oryza sativa L.). Genes (Basel) 2020; 11:genes11111266. [PMID: 33121205 PMCID: PMC7692511 DOI: 10.3390/genes11111266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
Two popular stable restorer lines, CB 87 R and CB 174 R, were improved for blast resistance through marker-assisted back-cross breeding (MABB). The hybrid rice development program in South India extensively depends on these two restorer lines. However, these restorer lines are highly susceptible to blast disease. To improve the restorer lines for resistance against blasts, we introgressed the broad-spectrum dominant gene Pi54 into these elite restorer lines through two independent crosses. Foreground selection for Pi54 was done by using gene-specific functional marker, Pi54 MAS, at each back-cross generation. Back-crossing was continued until BC3 and background analysis with seventy polymorphic SSRs covering all the twelve chromosomes to recover the maximum recurrent parent genome was done. At BC3F2, closely linked gene-specific/SSR markers, DRRM-RF3-10, DRCG-RF4-8, and RM 6100, were used for the identification of fertility restoration genes, Rf3 and Rf4, along with target gene (Pi54), respectively, in the segregating population. Subsequently, at BC3F3, plants, homozygous for the Pi54 and fertility restorer genes (Rf3 and Rf4), were evaluated for blast disease resistance under uniform blast nursery (UBN) and pollen fertility status. Stringent phenotypic selection resulted in the identification of nine near-isogenic lines in CB 87 R × B 95 and thirteen in CB 174 R × B 95 as the promising restorer lines possessing blast disease resistance along with restoration ability. The improved lines also showed significant improvement in agronomic traits compared to the recurrent parents. The improved restorer lines developed through the present study are now being utilized in our hybrid development program.
Collapse
Affiliation(s)
- Jegadeesan Ramalingam
- Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, India;
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.P.); (G.A.)
- Correspondence:
| | - Savitha Palanisamy
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.P.); (G.A.)
| | - Ganesh Alagarasan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.P.); (G.A.)
| | | | - Ayyasamy Ramanathan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.R.); (R.S.)
| | - Ramasamy Saraswathi
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.R.); (R.S.)
| |
Collapse
|
25
|
Deng Y, Ning Y, Yang DL, Zhai K, Wang GL, He Z. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. MOLECULAR PLANT 2020; 13:1402-1419. [PMID: 32979566 DOI: 10.1016/j.molp.2020.09.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 05/24/2023]
Abstract
Crop diseases are major factors responsible for substantial yield losses worldwide, which affects global food security. The use of resistance (R) genes is an effective and sustainable approach to controlling crop diseases. Here, we review recent advances on R gene studies in the major crops and related wild species. Current understanding of the molecular mechanisms underlying R gene activation and signaling, and susceptibility (S) gene-mediated resistance in crops are summarized and discussed. Furthermore, we propose some new strategies for R gene discovery, how to balance resistance and yield, and how to generate crops with broad-spectrum disease resistance. With the rapid development of new genome-editing technologies and the availability of increasing crop genome sequences, the goal of breeding next-generation crops with durable resistance to pathogens is achievable, and will be a key step toward increasing crop production in a sustainable way.
Collapse
Affiliation(s)
- Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
26
|
Singh J, Gupta SK, Devanna BN, Singh S, Upadhyay A, Sharma TR. Blast resistance gene Pi54 over-expressed in rice to understand its cellular and sub-cellular localization and response to different pathogens. Sci Rep 2020; 10:5243. [PMID: 32251298 PMCID: PMC7090074 DOI: 10.1038/s41598-020-59027-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/31/2019] [Indexed: 11/26/2022] Open
Abstract
Rice blast resistance gene, Pi54 provides broad-spectrum resistance against different strains of Magnaporthe oryzae. Understanding the cellular localization of Pi54 protein is an essential step towards deciphering its place of interaction with the cognate Avr-gene. In this study, we investigated the sub-cellular localization of Pi54 with Green Fluorescent Protein (GFP) as a molecular tag through transient and stable expression in onion epidermal cells (Allium cepa) and susceptible japonica cultivar rice Taipei 309 (TP309), respectively. Confocal microscopy based observations of the onion epidermal cells revealed nucleus and cytoplasm specific GFP signals. In the stable transformed rice plants, GFP signal was recorded in the stomata, upper epidermal cells, mesophyll cells, vascular bundle, and walls of bundle sheath and bulliform cells of leaf tissues. These observations were further confirmed by Immunocytochemical studies. Using GFP specific antibodies, it was found that there was sufficient aggregation of GFP::Pi54protein in the cytoplasm of the leaf mesophyll cells and periphery of the epidermal cells. Interestingly, the transgenic lines developed in this study could show a moderate level of resistance to Xanthomonas oryzae and Rhizoctonia solani, the causal agents of the rice bacterial blight and sheath blight diseases, respectively. This study is a first detailed report, which emphasizes the cellular and subcellular distribution of the broad spectrum blast resistance gene Pi54 in rice and the impact of its constitutive expression towards resistance against other fungal and bacterial pathogens of rice.
Collapse
Affiliation(s)
- Jyoti Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Hislop College, R.T.M Nagpur University, Nagpur, India
| | | | - B N Devanna
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Sunil Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Tilak R Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India.
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India.
| |
Collapse
|
27
|
Sarkar C, Saklani BK, Singh PK, Asthana RK, Sharma TR. Variation in the LRR region of Pi54 protein alters its interaction with the AvrPi54 protein revealed by in silico analysis. PLoS One 2019; 14:e0224088. [PMID: 31689303 PMCID: PMC6830779 DOI: 10.1371/journal.pone.0224088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/05/2019] [Indexed: 11/18/2022] Open
Abstract
Rice blast, caused by the ascomycete fungus Magnaporthe oryzae is a destructive disease of rice and responsible for causing extensive damage to the crop. Pi54, a dominant blast resistance gene cloned from rice line Tetep, imparts a broad spectrum resistance against various M. oryzae isolates. Many of its alleles have been explored from wild Oryza species and landraces whose sequences are available in the public domain. Its cognate effector gene AvrPi54 has also been cloned from M. oryzae. Complying with the Flor’s gene-for-gene system, Pi54 protein interacts with AvrPi54 protein following fungal invasion leading to the resistance responses in rice cell that prevents the disease development. In the present study Pi54 alleles from 72 rice lines were used to understand the interaction of Pi54 (R) proteins with AvrPi54 (Avr) protein. The physiochemical properties of these proteins varied due to the nucleotide level polymorphism. The ab initio tertiary structures of these R- and Avr- proteins were generated and subjected to the in silico interaction. In this interaction, the residues in the LRR region of R- proteins were shown to interact with the Avr protein. These R proteins were found to have variable strengths of binding due to the differential spatial arrangements of their amino acid residues. Additionally, molecular dynamic simulations were performed for the protein pairs that showed stronger interaction than Pi54tetep (original Pi54 from Tetep) protein. We found these proteins were forming h-bond during simulation which indicated an effective binding. The root mean square deviation values and potential energy values were stable during simulation which validated the docking results. From the interaction studies and the molecular dynamics simulations, we concluded that the AvrPi54 protein interacts directly with the resistant Pi54 proteins through the LRR region of Pi54 proteins. Some of the Pi54 proteins from the landraces namely Casebatta, Tadukan, Varun dhan, Govind, Acharmita, HPR-2083, Budda, Jatto, MTU-4870, Dobeja-1, CN-1789, Indira sona, Kulanji pille and Motebangarkaddi cultivars show stronger binding with the AvrPi54 protein, thus these alleles can be effectively used for the rice blast resistance breeding program in future.
Collapse
Affiliation(s)
- Chiranjib Sarkar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Banita Kumari Saklani
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pankaj Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | | | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
- * E-mail:
| |
Collapse
|
28
|
Wang J, Li L, Chai R, Zhang Z, Qiu H, Mao X, Hao Z, Wang Y, Sun G. Succinyl-proteome profiling of Pyricularia oryzae, a devastating phytopathogenic fungus that causes rice blast disease. Sci Rep 2019; 9:3490. [PMID: 30837482 PMCID: PMC6401317 DOI: 10.1038/s41598-018-36852-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/27/2018] [Indexed: 11/21/2022] Open
Abstract
Pyricularia oryzae is the pathogen for rice blast disease, which is a devastating threat to rice production worldwide. Lysine succinylation, a newly identified post-translational modification, is associated with various cellular processes. Here, liquid chromatography tandem-mass spectrometry combined with a high-efficiency succinyl-lysine antibody was used to identify the succinylated peptides in P. oryzae. In total, 2109 lysine succinylation sites in 714 proteins were identified. Ten conserved succinylation sequence patterns were identified, among which, K*******Ksuc, and K**Ksuc, were two most preferred ones. The frequency of lysine succinylation sites, however, greatly varied among organisms, including plants, animals, and microbes. Interestingly, the numbers of succinylation site in each protein of P. oryzae were significantly greater than that of most previous published organisms. Gene ontology and KEGG analysis showed that these succinylated peptides are associated with a wide range of cellular functions, from metabolic processes to stimuli responses. Further analyses determined that lysine succinylation occurs on several key enzymes of the tricarboxylic acid cycle and glycolysis pathway, indicating that succinylation may play important roles in the regulation of basal metabolism in P. oryzae. Furthermore, more than 40 pathogenicity-related proteins were identified as succinylated proteins, suggesting an involvement of succinylation in pathogenicity. Our results provide the first comprehensive view of the P. oryzae succinylome and may aid to find potential pathogenicity-related proteins to control the rice blast disease. Significance Plant pathogens represent a great threat to world food security, and enormous reduction in the global yield of rice was caused by P. oryzae infection. Here, the succinylated proteins in P. oryzae were identified. Furthermore, comparison of succinylation sites among various species, indicating that different degrees of succinylation may be involved in the regulation of basal metabolism. This data facilitates our understanding of the metabolic pathways and proteins that are associated with pathogenicity.
Collapse
Affiliation(s)
- Jiaoyu Wang
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Ling Li
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
- The key laboratory for quality improvement of agricultural products of Zhejiang province, School of agricultural and food sciences, Zhejiang agriculture and forest university, Hangzhou, 311300, China
| | - Rongyao Chai
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Zhen Zhang
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Haiping Qiu
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Xueqin Mao
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Zhongna Hao
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Yanli Wang
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Guochang Sun
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China.
| |
Collapse
|
29
|
Sánchez-Martín J, Keller B. Contribution of recent technological advances to future resistance breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:713-732. [PMID: 30756126 DOI: 10.1007/s00122-019-03297-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/02/2019] [Indexed: 05/23/2023]
Abstract
The development of durable host resistance strategies to control crop diseases is a primary need for sustainable agricultural production in the future. This article highlights the potential of recent progress in the understanding of host resistance for future cereal breeding. Much of the novel work is based on advancements in large-scale sequencing and genomics, rapid gene isolation techniques and high-throughput molecular marker technologies. Moreover, emerging applications on the pathogen side like effector identification or field pathogenomics are discussed. The combination of knowledge from both sides of cereal pathosystems will result in new approaches for resistance breeding. We describe future applications and innovative strategies to implement effective and durable strategies to combat diseases of major cereal crops while reducing pesticide dependency.
Collapse
Affiliation(s)
- Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| |
Collapse
|
30
|
Sureshkumar V, Dutta B, Kumar V, Prakash G, Mishra DC, Chaturvedi KK, Rai A, Sevanthi AM, Solanke AU. RiceMetaSysB: a database of blast and bacterial blight responsive genes in rice and its utilization in identifying key blast-resistant WRKY genes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5310415. [PMID: 30753479 PMCID: PMC6369264 DOI: 10.1093/database/baz015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022]
Abstract
Nearly two decades of revolution in the area of genomics serves as the basis of present-day molecular breeding in major food crops such as rice. Here we report an open source database on two major biotic stresses of rice, named RiceMetaSysB, which provides detailed information about rice blast and bacterial blight (BB) responsive genes (RGs). Meta-analysis of microarray data from different blast- and BB-related experiments across 241 and 186 samples identified 15135 unique genes for blast and 7475 for BB. A total of 9365 and 5375 simple sequence repeats (SSRs) in blast and BB RGs were identified for marker development. Retrieval of candidate genes using different search options like genotypes, tissue, developmental stage of the host, strain, hours/days post-inoculation, physical position and SSR marker information is facilitated in the database. Search options like 'common genes among varieties' and 'strains' have been enabled to identify robust candidate genes. A 2D representation of the data can be used to compare expression profiles across genes, genotypes and strains. To demonstrate the utility of this database, we queried for blast-responsive WRKY genes (fold change ≥5) using their gene IDs. The structural variations in the 12 WRKY genes so identified and their promoter regions were explored in two rice genotypes contrasting for their reaction to blast infection. Expression analysis of these genes in panicle tissue infected with a virulent and an avirulent strain of Magnaporthe oryzae could identify WRKY7, WRKY58, WRKY62, WRKY64 and WRKY76 as potential candidate genes for resistance to panicle blast, as they showed higher expression only in the resistant genotype against the virulent strain. Thus, we demonstrated that RiceMetaSysB can play an important role in providing robust candidate genes for rice blast and BB.
Collapse
Affiliation(s)
- V Sureshkumar
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Bipratip Dutta
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Vishesh Kumar
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India.,Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - G Prakash
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Dwijesh C Mishra
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi, India
| | - K K Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi, India
| | - Amitha Mithra Sevanthi
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Amolkumar U Solanke
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| |
Collapse
|
31
|
Zhang L, Nakagomi Y, Endo T, Teranishi M, Hidema J, Sato S, Higashitani A. Divergent evolution of rice blast resistance Pi54 locus in the genus Oryza. RICE (NEW YORK, N.Y.) 2018; 11:63. [PMID: 30519841 PMCID: PMC6281543 DOI: 10.1186/s12284-018-0256-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/23/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND The rice blast resistance gene Pi54 was cloned from Oryza sativa ssp. indica cv. Tetep, which conferred broad-spectrum resistance against Magnaporthe oryzae. Pi54 allelic variants have been identified in not only domesticates but also wild rice species, but the majority of japonica and some indica cultivars lost the function. RESULTS We here found that Pi54 (Os11g0639100) and its homolog Os11g0640600 (named as #11) were closely located on a 25 kbp region in japonica cv. Sasanishiki compared to a 99 kbp region in japonica cv. Nipponbare. Sasanishiki lost at least six genes containing one other R-gene cluster (Os11g0639600, Os11g0640000, and Os11g0640300). Eight AA-genome species including five wild rice species were classified into either Nipponbare or Sasanishiki type. The BB-genome wild rice species O. punctata was Sasanishiki type. The FF-genome wild rice species O. brachyantha (the basal lineage of Oryza) was neither, because Pi54 was absent and the orientation of the R-gene cluster was reversed in comparison with Nipponbare-type species. The phylogenetic analysis showed that #11gene of O. brachyantha was on the root of both Pi54 and #11 alleles. All Nipponbare-type Pi54 alleles were specifically disrupted by 143 and 37/44 bp insertions compared to Tetep and Sasanishiki type. In addition, Pi54 of japonica cv. Sasanishiki lost nucleotide-binding site and leucine-rich repeat (NBS-LRR) domains owing to additional mutations. CONCLUSIONS These results suggest that Pi54 might be derived from a tandem duplication of the ancestor #11 gene in progenitor FF-genome species. Two divergent structures of Pi54 locus caused by a mobile unit containing the nearby R-gene cluster could be developed before domestication. This study provides a potential genetic resource of rice breeding for blast resistance in modern cultivars sustainability.
Collapse
Affiliation(s)
- Lin Zhang
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yusuke Nakagomi
- Miyagi Prefectural Furukawa Agricultural Experiment Station, Osaki, 989-6227, Japan
| | - Takashi Endo
- Miyagi Prefectural Furukawa Agricultural Experiment Station, Osaki, 989-6227, Japan
| | - Mika Teranishi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
32
|
Arora K, Rai AK, Devanna BN, Kumari B, Sharma TR. Functional validation of the Pi54 gene by knocking down its expression in a blast-resistant rice line using RNA interference and its effects on other traits. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1241-1250. [PMID: 32291014 DOI: 10.1071/fp18083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/13/2018] [Indexed: 06/11/2023]
Abstract
Rice blast disease caused by Magnaporthe oryzae is one of the major diseases affecting the rice (Oryza sativa L.) crop. A major blast resistance gene, Pi54, has already been cloned and deployed in different rice varieties. To understand the role of Pi54 in providing rice blast resistance, we used the RNA interferences (RNAi) approach to knock down the expression of this gene. We showed a high frequency of Agrobacterium tumefaciens-mediated transformation of rice line Taipei 309 containing a single gene (Pi54) for blast resistance. Pi54 RNAi leads to a decreased level of Pi54 transcripts, leading to the susceptibility of otherwise M. oryzae-resistant rice lines. However, among the RNAi knockdown plants, the severity of blast disease varied between the lines. Histochemical analysis of the leaves of knockdown plants inoculated with M. oryzae spores also showed typical cell death and blast lesions. Additionally, Pi54 RNAi also showed an effect on the Hda3 gene, a florigen gene playing a role in rice flowering. By using the RNAi technique, for the first time, we showed that the directed degradation of Pi54 transcripts results in a significant reduction in the rice blast resistance response, suggesting that RNAi is a powerful tool for functional validation of genes.
Collapse
Affiliation(s)
- Kirti Arora
- Indian Council of Agricultural Research (ICAR) National Research Centre on Plant Biotechnology, New Delhi-110012, India
| | - Amit Kumar Rai
- Indian Council of Agricultural Research (ICAR) National Research Centre on Plant Biotechnology, New Delhi-110012, India
| | - Basavantraya N Devanna
- Indian Council of Agricultural Research (ICAR) National Research Centre on Plant Biotechnology, New Delhi-110012, India
| | - Banita Kumari
- Indian Council of Agricultural Research (ICAR) National Research Centre on Plant Biotechnology, New Delhi-110012, India
| | - Tilak Raj Sharma
- Indian Council of Agricultural Research (ICAR) National Research Centre on Plant Biotechnology, New Delhi-110012, India
| |
Collapse
|
33
|
Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R, Sharma TR. Prospects of Understanding the Molecular Biology of Disease Resistance in Rice. Int J Mol Sci 2018; 19:E1141. [PMID: 29642631 PMCID: PMC5979409 DOI: 10.3390/ijms19041141] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Rice is one of the important crops grown worldwide and is considered as an important crop for global food security. Rice is being affected by various fungal, bacterial and viral diseases resulting in huge yield losses every year. Deployment of resistance genes in various crops is one of the important methods of disease management. However, identification, cloning and characterization of disease resistance genes is a very tedious effort. To increase the life span of resistant cultivars, it is important to understand the molecular basis of plant host-pathogen interaction. With the advancement in rice genetics and genomics, several rice varieties resistant to fungal, bacterial and viral pathogens have been developed. However, resistance response of these varieties break down very frequently because of the emergence of more virulent races of the pathogen in nature. To increase the durability of resistance genes under field conditions, understanding the mechanismof resistance response and its molecular basis should be well understood. Some emerging concepts like interspecies transfer of pattern recognition receptors (PRRs) and transgenerational plant immunitycan be employed to develop sustainable broad spectrum resistant varieties of rice.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Nag
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Preeti Arya
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Ritu Kapoor
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali 140 306, Punjab, India.
| |
Collapse
|
34
|
Guo L, Zhang Y, Ma M, Liu Q, Zhang Y, Peng Y, Liu J. Crystallization of the rice immune receptor RGA5A_S with the rice blast fungus effector AVR1-CO39 prepared via mixture and tandem strategies. Acta Crystallogr F Struct Biol Commun 2018; 74:262-267. [PMID: 29633975 PMCID: PMC5894111 DOI: 10.1107/s2053230x18003618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
RGA5 is a component of the Pia resistance-protein pair (RGA4/RGA5) from Oryza sativa L. japonica. It acts as an immune receptor that directly recognizes the effector AVR1-CO39 from Magnaporthe oryzae via a C-terminal non-LRR domain (RGA5A_S). The interaction between RGA5A_S and AVR1-CO39 relieves the repression of RGA4, leading to effector-independent cell death. To determine the structure of the complex of RGA5A_S and AVR1-CO39 and to understand the details of this interaction, the complex was prepared by fusing the proteins together, by mixing them in vitro or by co-expressing them in one host cell. Samples purified via the first two strategies were crystallized under two different conditions. A mixture of AVR1-CO39 and RGA5A_S (complex I) crystallized in 1.1 M ammonium tartrate dibasic, 0.1 M sodium acetate-HCl pH 4.6, while crystals of the fusion complex RGA5A_S-TEV-AVR1-CO39 (complex II) were grown in 2 M NaCl. The crystal of complex I belonged to space group P3121, with unit-cell parameters a = b = 66.2, c = 108.8 Å, α = β = 90, γ = 120°. The crystals diffracted to a Bragg spacing of 2.4 Å, and one molecule each of RGA5A_S and AVR1-CO39 were present in the asymmetric unit of the initial model. The crystal of complex II belonged to space group I4, with unit-cell parameters a = b = 137.4, c = 66.2 Å, α = β = γ = 90°. The crystals diffracted to a Bragg spacing of 2.72 Å, and there were two molecules of RGA5A_S and two molecules of AVR1-CO39 in the asymmetric unit of the initial model. Further structural characterization of the interaction between RGA5A_S and AVR1-CO39 will lead to a better understanding of the mechanism underlying effector recognition by R proteins.
Collapse
Affiliation(s)
- Liwei Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Yikun Zhang
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Mengqi Ma
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Qiang Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Yanan Zhang
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Youliang Peng
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Junfeng Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| |
Collapse
|
35
|
Stacking of blast resistance orthologue genes in susceptible indica rice line improves resistance against Magnaporthe oryzae. 3 Biotech 2018; 8:37. [PMID: 29291150 DOI: 10.1007/s13205-017-1062-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023] Open
Abstract
The emergence of new strains of Magnaporthe oryzae (M. oryzae) is associated with recurrent failure of resistance response mediated by single resistance (R) gene in rice. Therefore, stacking or combining of multiple R genes could improve the durability of resistance against multiple strains of M. oryzae. To achieve this, in the present study, intragenic stacking of rice blast resistance orthologue genes Pi54 and Pi54rh was performed through co-transformation approach. Both these genes were expressed under the control of independent promoters and blast susceptible indica rice line IET17021 was used for transformation. The highly virulent M. oryzae strain Mo-ei-ger1 that could knock down most of the major single blast R genes including Pi54 and exhibiting 89% virulence spectrum was used for phenotypic analysis. The stacked transgenic IET17021 lines (Pi54 + Pi54rh) have shown complete resistance to Mo-ei-ger1 strain in comparison to non-transgenic lines. These two R gene stacked indica transgenic lines could serves as a novel germplasm for rice blast resistance breeding programmes.
Collapse
|
36
|
Tripathy K, Singh B, Singh N, Rai V, Misra G, Singh NK. A database of wild rice germplasm of Oryza rufipogon species complex from different agro-climatic zones of India. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5048025. [PMID: 29982559 PMCID: PMC6030808 DOI: 10.1093/database/bay058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
Rice is a staple food for the people of Asia that supplies more than 50% of the food energy globally. It is widely accepted that the crop domestication process has left behind substantial useful genetic diversity in their wild progenitor species that has huge potential for developing crop varieties with enhanced resistance to an array of biotic and abiotic stresses. In this context, Oryza rufipogon, Oryza nivara and their intermediate types wild rice germplasm/s collected from diverse agro-climatic regions would provide a rich repository of genes and alleles that could be utilized for rice improvement using genomics-assisted breeding. Here we present a database of detailed information on 614 such diverse wild rice accessions collected from different agro-climatic zones of India, including 46 different morphological descriptors, complete passport data and DNA fingerprints. The information has been stored in a web-based database entitled ‘Indian Wild Rice (IWR) Database’. The information provided in the IWR Database will be useful for the rice geneticists and breeders for improvement of rice cultivars for yield, quality and resilience to climate change. Database URL: http://nksingh.nationalprof.in: 8080/iwrdb/index.jsp
Collapse
Affiliation(s)
- Kabita Tripathy
- ICAR, National Research Center on Plant Biotechnology, Pusa Campus, New Delhi 110012, India.,Amity Institute of Biotechnology, Amity University Campus, J-3 Block, Sector-125, Noida 201303, Uttar Pradesh, India
| | - Balwant Singh
- ICAR, National Research Center on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Nisha Singh
- ICAR, National Research Center on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Vandna Rai
- ICAR, National Research Center on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Gauri Misra
- Amity Institute of Biotechnology, Amity University Campus, J-3 Block, Sector-125, Noida 201303, Uttar Pradesh, India
| | - Nagendra Kumar Singh
- ICAR, National Research Center on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
37
|
Kumari M, Rai AK, Devanna BN, Singh PK, Kapoor R, Rajashekara H, Prakash G, Sharma V, Sharma TR. Co-transformation mediated stacking of blast resistance genes Pi54 and Pi54rh in rice provides broad spectrum resistance against Magnaporthe oryzae. PLANT CELL REPORTS 2017; 36:1747-1755. [PMID: 28905253 DOI: 10.1007/s00299-017-2189-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/27/2017] [Indexed: 05/25/2023]
Abstract
This is the first report of stacking two major blast resistance genes in blast susceptible rice variety using co-transformation method to widen the resistance spectrum against different isolates of Magnaporthe oryzae. Single resistance (R-) gene mediated approach for the management of rice blast disease has met with frequent breakdown in resistance response. Besides providing the durable resistance, gene pyramiding or stacking also imparts broad spectrum resistance against plant pathogens, including rice blast. In the present study, we stacked two R-genes; Pi54 and Pi54rh having broad spectrum resistance against multiple isolates of Magnaporthe oryzae (M. oryzae). Both Pi54 and Pi54rh expressed under independent promoters were transferred into the blast susceptible japonica rice Taipei 309 (TP309) using particle gun bombardment method. Functional complementation analysis of stacked transgenic rice lines showed higher level of resistance to a set of highly virulent M. oryzae isolates collected from different rice growing regions. qRT-PCR analysis has shown M. oryzae induced expression of both the R-genes in stacked transgenic lines. The present study also demonstrated the effectiveness of the strategy for rapid single step gene stacking using co-transformation approach to engineer durable resistance against rice blast disease and also this is the first report in which two blast R-genes are stacked together using co-transformation approach. The two-gene-stacked transgenic line developed in this study can be used further to understand the molecular aspects of defense-related pathways vis-a-vis single R-gene containing transgenic lines.
Collapse
Affiliation(s)
- Mandeep Kumari
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Amit Kumar Rai
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - B N Devanna
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Pankaj Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Ritu Kapoor
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - H Rajashekara
- Crop Protection Section, Vivekananda Institute of Hill Agriculture, Almora, 263 601, Uttarakhand, India
| | - G Prakash
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Vinay Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.
| |
Collapse
|
38
|
Lv Q, Huang Z, Xu X, Tang L, Liu H, Wang C, Zhou Z, Xin Y, Xing J, Peng Z, Li X, Zheng T, Zhu L. Allelic variation of the rice blast resistance gene Pid3 in cultivated rice worldwide. Sci Rep 2017; 7:10362. [PMID: 28871108 PMCID: PMC5583387 DOI: 10.1038/s41598-017-10617-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/11/2017] [Indexed: 11/12/2022] Open
Abstract
In this study, the re-sequencing data from 3,000 rice genomes project (3 K RGP) was used to analyze the allelic variation at the rice blast resistance (R) Pid3 locus. A total of 40 haplotypes were identified based on 71 nucleotide polymorphic sites among 2621 Pid3 homozygous alleles in the 3k genomes. Pid3 alleles in most japonica rice accessions were pseudogenes due to premature stop mutations, while those in most indica rice accessions were identical to the functional haplotype Hap_6, which had a similar resistance spectrum as the previously reported Pid3 gene. By sequencing and CAPS marker analyzing the Pid3 alleles in widespread cultivars in China, we verified that Hap_6 had been widely deployed in indica rice breeding of China. Thus, we suggest that the priority for utilization of the Pid3 locus in rice breeding should be on introducing the functional Pid3 alleles into japonica rice cultivars and the functional alleles of non-Hap_6 haplotypes into indica rice cultivars for increasing genetic diversity.
Collapse
Affiliation(s)
- Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.,State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiyuan Huang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Xiao Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Hai Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Chunchao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhuangzhi Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yeyun Xin
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Zhirong Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lihuang Zhu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China. .,State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
39
|
Galhano R, Illana A, Ryder LS, Rodríguez-Romero J, Demuez M, Badaruddin M, Martinez-Rocha AL, Soanes DM, Studholme DJ, Talbot NJ, Sesma A. Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus. PLoS Pathog 2017; 13:e1006516. [PMID: 28742127 PMCID: PMC5542705 DOI: 10.1371/journal.ppat.1006516] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/03/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
The establishment of polarity is a critical process in pathogenic fungi, mediating infection-related morphogenesis and host tissue invasion. Here, we report the identification of TPC1 (Transcription factor for Polarity Control 1), which regulates invasive polarized growth in the rice blast fungus Magnaporthe oryzae. TPC1 encodes a putative transcription factor of the fungal Zn(II)2Cys6 family, exclusive to filamentous fungi. Tpc1-deficient mutants show severe defects in conidiogenesis, infection-associated autophagy, glycogen and lipid metabolism, and plant tissue colonisation. By tracking actin-binding proteins, septin-5 and autophagosome components, we show that Tpc1 regulates cytoskeletal dynamics and infection-associated autophagy during appressorium-mediated plant penetration. We found that Tpc1 interacts with Mst12 and modulates its DNA-binding activity, while Tpc1 nuclear localisation also depends on the MAP kinase Pmk1, consistent with the involvement of Tpc1 in this signalling pathway, which is critical for appressorium development. Importantly, Tpc1 directly regulates NOXD expression, the p22phox subunit of the fungal NADPH oxidase complex via an interaction with Mst12. Tpc1 therefore controls spatial and temporal regulation of cortical F-actin through regulation of the NADPH oxidase complex during appressorium re-polarisation. Consequently, Tpc1 is a core developmental regulator in filamentous fungi, linking the regulated synthesis of reactive oxygen species and the Pmk1 pathway, with polarity control during host invasion. Cellular polarity is an intrinsic feature of filamentous fungal growth and pathogenesis. In this study, we identified a gene required for fungal polar growth and virulence in the rice blast fungus Magnaporthe oryzae. This gene has been named TPC1 (Transcription factor for Polarity Control 1). The Tpc1 protein belongs to the fungal Zn(II)2Cys6 binuclear cluster family. This DNA-binding motif is present exclusively in the fungal kingdom. We have characterised defects associated with lack of Tpc1 in M. oryzae. We show that Tpc1 is involved in polarised growth and virulence. The M. oryzae Δtpc1 mutant shows a delay in glycogen and lipid metabolism, and infection-associated autophagy–processes that regulate appressorium-mediated M. oryzae plant infection. The saprophytic fungus Neurospora crassa contains a Tpc1 homolog (NcTpc1) involved in vegetative growth and sustained tip elongation, suggesting that Tpc1-like proteins act as core regulators of polarised growth and development in filamentous fungi. A comparative transcriptome analysis has allowed us to identify genes regulated by Tpc1 in M. oryzae including NoxD, an important component of the fungal NADPH complex. Significantly, Tpc1 interacts with Mst12, a component of the Pmk1 signalling pathway essential for appressorium development, and modulates Mst12 binding affinity to NOXD promoter region. We conclude that Tpc1 is a key regulator of polarity in M. oryzae that regulates growth, autophagy and septin-mediated reorientation of the F-actin cytoskeleton to facilitate plant cell invasion.
Collapse
Affiliation(s)
- Rita Galhano
- Disease & Stress Biology Dept. John Innes Centre, Norwich, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Adriana Illana
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Lauren S. Ryder
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Julio Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Marie Demuez
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Muhammad Badaruddin
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | | | - Darren M. Soanes
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - David J. Studholme
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Ane Sesma
- Disease & Stress Biology Dept. John Innes Centre, Norwich, United Kingdom
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
- * E-mail:
| |
Collapse
|
40
|
Isolation and Characterization of Avirulence Genes in Magnaporthe oryzae. BORNEO JOURNAL OF RESOURCE SCIENCE AND TECHNOLOGY 2017. [DOI: 10.33736/bjrst.389.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Magnaporthe oryzae is a fungal pathogen contributing to rice blast diseases globally via their Avr (avirulence) gene. Although the occurrence of M. oryzae has been reported in Sarawak since several decades ago, however, none has focused specifically on Avr genes, which confer resistance against pathogen associated molecular pattern-triggered immunity (PTI) in host. The objective of this study is to isolate Avr genes from M. oryzae 7’ (a Sarawak isolate) that may contribute to susceptibility of rice towards diseases. In this study, AvrPiz-t, AVR-Pik, Avr-Pi54, and AVR-Pita1 genes were isolated via PCR and cloning approaches. The genes were then compared with set of similar genes from related isolates derived from NCBI. Results revealed that all eight Avr genes (including four other global isolates) shared similar N-myristoylation site and a novel motif. 3D modeling revealed similar β-sandwich structure in AvrPiz-t and AVR-Pik despite sequence dissimilarities. In conclusion, it is confirmed of the presence of these genes in the Sarawak (M. oryzae) isolate. This study implies that Sarawak isolate may confer similar avirulence properties as their counterparts worldwide. Further R/Avr gene-for-gene relationship studies may aid in strategic control of rice blast diseases in future.
Collapse
|
41
|
Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK. Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India. RICE (NEW YORK, N.Y.) 2016; 9:1. [PMID: 26743769 PMCID: PMC4705060 DOI: 10.1186/s12284-015-0073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/22/2015] [Indexed: 05/05/2023]
Abstract
Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
42
|
Vasudevan K, Vera Cruz CM, Gruissem W, Bhullar NK. Geographically Distinct and Domain-Specific Sequence Variations in the Alleles of Rice Blast Resistance Gene Pib. FRONTIERS IN PLANT SCIENCE 2016; 7:915. [PMID: 27446145 PMCID: PMC4917536 DOI: 10.3389/fpls.2016.00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level.
Collapse
Affiliation(s)
- Kumar Vasudevan
- Plant Biotechnology, Department of Biology ETH Zurich, Switzerland
| | | | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology ETH Zurich, Switzerland
| | | |
Collapse
|
43
|
De Novo Transcriptome Sequencing of Oryza officinalis Wall ex Watt to Identify Disease-Resistance Genes. Int J Mol Sci 2015; 16:29482-95. [PMID: 26690414 PMCID: PMC4691121 DOI: 10.3390/ijms161226178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 01/08/2023] Open
Abstract
Oryza officinalis Wall ex Watt is one of the most important wild relatives of cultivated rice and exhibits high resistance to many diseases. It has been used as a source of genes for introgression into cultivated rice. However, there are limited genomic resources and little genetic information publicly reported for this species. To better understand the pathways and factors involved in disease resistance and accelerating the process of rice breeding, we carried out a de novo transcriptome sequencing of O. officinalis. In this research, 137,229 contigs were obtained ranging from 200 to 19,214 bp with an N50 of 2331 bp through de novo assembly of leaves, stems and roots in O. officinalis using an Illumina HiSeq 2000 platform. Based on sequence similarity searches against a non-redundant protein database, a total of 88,249 contigs were annotated with gene descriptions and 75,589 transcripts were further assigned to GO terms. Candidate genes for plant–pathogen interaction and plant hormones regulation pathways involved in disease-resistance were identified. Further analyses of gene expression profiles showed that the majority of genes related to disease resistance were all expressed in the three tissues. In addition, there are two kinds of rice bacterial blight-resistant genes in O. officinalis, including two Xa1 genes and three Xa26 genes. All 2 Xa1 genes showed the highest expression level in stem, whereas one of Xa26 was expressed dominantly in leaf and other 2 Xa26 genes displayed low expression level in all three tissues. This transcriptomic database provides an opportunity for identifying the genes involved in disease-resistance and will provide a basis for studying functional genomics of O. officinalis and genetic improvement of cultivated rice in the future.
Collapse
|
44
|
Identification of novel alleles of the rice blast resistance gene Pi54. Sci Rep 2015; 5:15678. [PMID: 26498172 PMCID: PMC4620502 DOI: 10.1038/srep15678] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022] Open
Abstract
Rice blast is one of the most devastating rice diseases and continuous resistance breeding is required to control the disease. The rice blast resistance gene Pi54 initially identified in an Indian cultivar confers broad-spectrum resistance in India. We explored the allelic diversity of the Pi54 gene among 885 Indian rice genotypes that were found resistant in our screening against field mixture of naturally existing M. oryzae strains as well as against five unique strains. These genotypes are also annotated as rice blast resistant in the International Rice Genebank database. Sequence-based allele mining was used to amplify and clone the Pi54 allelic variants. Nine new alleles of Pi54 were identified based on the nucleotide sequence comparison to the Pi54 reference sequence as well as to already known Pi54 alleles. DNA sequence analysis of the newly identified Pi54 alleles revealed several single polymorphic sites, three double deletions and an eight base pair deletion. A SNP-rich region was found between a tyrosine kinase phosphorylation site and the nucleotide binding site (NBS) domain. Together, the newly identified Pi54 alleles expand the allelic series and are candidates for rice blast resistance breeding programs.
Collapse
|
45
|
Vasudevan K, Gruissem W, Bhullar NK. Identification of novel alleles of the rice blast resistance gene Pi54. Sci Rep 2015. [PMID: 26498172 DOI: 10.1038/srep15678.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Rice blast is one of the most devastating rice diseases and continuous resistance breeding is required to control the disease. The rice blast resistance gene Pi54 initially identified in an Indian cultivar confers broad-spectrum resistance in India. We explored the allelic diversity of the Pi54 gene among 885 Indian rice genotypes that were found resistant in our screening against field mixture of naturally existing M. oryzae strains as well as against five unique strains. These genotypes are also annotated as rice blast resistant in the International Rice Genebank database. Sequence-based allele mining was used to amplify and clone the Pi54 allelic variants. Nine new alleles of Pi54 were identified based on the nucleotide sequence comparison to the Pi54 reference sequence as well as to already known Pi54 alleles. DNA sequence analysis of the newly identified Pi54 alleles revealed several single polymorphic sites, three double deletions and an eight base pair deletion. A SNP-rich region was found between a tyrosine kinase phosphorylation site and the nucleotide binding site (NBS) domain. Together, the newly identified Pi54 alleles expand the allelic series and are candidates for rice blast resistance breeding programs.
Collapse
Affiliation(s)
- Kumar Vasudevan
- Plant Biotechnology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Navreet K Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
46
|
Ose T, Oikawa A, Nakamura Y, Maenaka K, Higuchi Y, Satoh Y, Fujiwara S, Demura M, Sone T, Kamiya M. Solution structure of an avirulence protein, AVR-Pia, from Magnaporthe oryzae. JOURNAL OF BIOMOLECULAR NMR 2015; 63:229-235. [PMID: 26362280 DOI: 10.1007/s10858-015-9979-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Toyoyuki Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, N12, W6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Azusa Oikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, N12, W6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yukiko Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, N12, W6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, N12, W6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yuya Higuchi
- Graduate School of Agriculture, Hokkaido University, N9, W9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Yuki Satoh
- Graduate School of Agriculture, Hokkaido University, N9, W9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Shiho Fujiwara
- Graduate School of Agriculture, Hokkaido University, N9, W9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Teruo Sone
- Graduate School of Agriculture, Hokkaido University, N9, W9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.
| | - Masakatsu Kamiya
- Faculty of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
47
|
Urso S, Desiderio F, Biselli C, Bagnaresi P, Crispino L, Piffanelli P, Abbruscato P, Assenza F, Guarnieri G, Cattivelli L, Valè G. Genetic analysis of durable resistance to Magnaporthe oryzae in the rice accession Gigante Vercelli identified two blast resistance loci. Mol Genet Genomics 2015; 291:17-32. [PMID: 26141566 DOI: 10.1007/s00438-015-1085-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022]
Abstract
Rice cultivars exhibiting durable resistance to blast, the most important rice fungal disease provoking up to 30 % of rice losses, are very rare and searching for sources of such a resistance represents a priority for rice-breeding programs. To this aim we analyzed Gigante Vercelli (GV) and Vialone Nano (VN), two temperate japonica rice cultivars in Italy displaying contrasting response to blast, with GV showing a durable and broad-spectrum resistance, whereas VN being highly susceptible. An SSR-based genetic map developed using a GV × VN population segregating for blast resistance identified two blast resistance loci, localized to the long arm of chromosomes 1 and 4 explaining more than 78 % of the observed phenotypic variation for blast resistance. The pyramiding of two blast resistance QTLs was therefore involved in the observed durable resistance in GV. Mapping data were integrated with information obtained from RNA-seq expression profiling of all classes of resistance protein genes (resistance gene analogs, RGAs) and with the map position of known cloned or mapped blast resistance genes to search candidates for the GV resistant response. A co-localization of RGAs with the LOD peak or the marker interval of the chromosome 1 QTL was highlighted and a valuable tool for selecting the resistance gene during breeding programs was developed. Comparative analysis with known blast resistance genes revealed co-positional relationships between the chromosome 1 QTL with the Pi35/Pish blast resistance alleles and showed that the chromosome 4 QTL represents a newly identified blast resistance gene. The present genetic analysis has therefore allowed the identification of two blast resistance loci in the durable blast-resistant rice cultivar GV and tools for molecular selection of these resistance genes.
Collapse
Affiliation(s)
- Simona Urso
- Council for Agricultural Research and Economics (CRA), Genomics Research Centre, Via S. Protaso, 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics (CRA), Genomics Research Centre, Via S. Protaso, 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy
| | - Chiara Biselli
- Council for Agricultural Research and Economics (CRA), Genomics Research Centre, Via S. Protaso, 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy.,Council for Agricultural Research and Economics (CRA), Rice Research Unit, S.S. 11 to Torino, Km 2,5, 13100, Vercelli, Italy
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics (CRA), Genomics Research Centre, Via S. Protaso, 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy
| | - Laura Crispino
- Rice Genomics Group, Parco Tecnologico Padano, Via Einstein, 26900, Lodi, Italy
| | - Pietro Piffanelli
- Rice Genomics Group, Parco Tecnologico Padano, Via Einstein, 26900, Lodi, Italy
| | - Pamela Abbruscato
- Rice Genomics Group, Parco Tecnologico Padano, Via Einstein, 26900, Lodi, Italy
| | - Federica Assenza
- Council for Agricultural Research and Economics (CRA), Genomics Research Centre, Via S. Protaso, 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy.,Plant Biochemistry, Institute of Agricultural Sciences, ETH Zürich, LFW D 38 Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Giada Guarnieri
- Council for Agricultural Research and Economics (CRA), Genomics Research Centre, Via S. Protaso, 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy.,Continental Semences S.p.A., via Monzato 9, 43029, Traversetolo, PR, Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CRA), Genomics Research Centre, Via S. Protaso, 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy
| | - Giampiero Valè
- Council for Agricultural Research and Economics (CRA), Genomics Research Centre, Via S. Protaso, 302, 29017, Fiorenzuola d'Arda, Piacenza, Italy. .,Council for Agricultural Research and Economics (CRA), Rice Research Unit, S.S. 11 to Torino, Km 2,5, 13100, Vercelli, Italy.
| |
Collapse
|
48
|
Vijayan J, Devanna BN, Singh NK, Sharma TR. Cloning and functional validation of early inducible Magnaporthe oryzae responsive CYP76M7 promoter from rice. FRONTIERS IN PLANT SCIENCE 2015; 6:371. [PMID: 26052337 PMCID: PMC4441127 DOI: 10.3389/fpls.2015.00371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/11/2015] [Indexed: 05/04/2023]
Abstract
Cloning and functional characterization of plant pathogen inducible promoters is of great significance for their use in the effective management of plant diseases. The rice gene CYP76M7 was up regulated at 24, 48, and 72 hours post inoculation (hpi) with two isolates of Magnaporthe oryzae Mo-ei-11 and Mo-ni-25. In this study, the promoter of CYP76M7 gene was cloned from rice cultivar HR-12, characterized and functionally validated. The Transcription Start Site of CYP76M7 was mapped at 45 bases upstream of the initiation codon. To functionally validate the promoter, 5' deletion analysis of the promoter sequences was performed and the deletion fragments fused with the β-glucuronidase (GUS) reporter gene were used for generating stable transgenic Arabidopsis plants as well as for transient expression in rice. The spatial and temporal expression pattern of GUS in transgenic Arabidopsis plants and also in transiently expressed rice leaves revealed that the promoter of CYP76M7 gene was induced by M. oryzae. The induction of CYP76M7 promoter was observed at 24 hpi with M. oryzae. We report that, sequences spanning -222 bp to -520 bp, with the cluster of three W-boxes, two ASF1 motifs and a single GT-1 element may contribute to the M. oryzae inducible nature of CYP76M7 promoter. The promoter characterized in this study would be an ideal candidate for the overexpression of defense genes in rice for developing durable blast resistance rice lines.
Collapse
Affiliation(s)
| | | | | | - Tilak R. Sharma
- *Correspondence: Tilak R. Sharma, National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi 110 012, India ;
| |
Collapse
|