1
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
2
|
Bolt MJ, Singh P, Obkirchner CE, Powell RT, Mancini MG, Szafran AT, Stossi F, Mancini MA. Endocrine disrupting chemicals differentially alter intranuclear dynamics and transcriptional activation of estrogen receptor-α. iScience 2021; 24:103227. [PMID: 34712924 PMCID: PMC8529556 DOI: 10.1016/j.isci.2021.103227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Transcription is a highly regulated sequence of stochastic processes utilizing many regulators, including nuclear receptors (NR) that respond to stimuli. Endocrine disrupting chemicals (EDCs) in the environment can compete with natural ligands for nuclear receptors to alter transcription. As nuclear dynamics can be tightly linked to transcription, it is important to determine how EDCs affect NR mobility. We use an EPA-assembled set of 45 estrogen receptor-α (ERα) ligands and EDCs in our engineered PRL-Array model to characterize their effect upon transcription using fluorescence in situ hybridization and fluorescence recovery after photobleaching (FRAP). We identified 36 compounds that target ERα-GFP to a transcriptionally active, visible locus. Using a novel method for multi-region FRAP analysis we find a strong negative correlation between ERα mobility and inverse agonists. Our findings indicate that ERα mobility is not solely tied to transcription but affected highly by the chemical class binding the receptor.
Collapse
Affiliation(s)
- Michael J. Bolt
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Pankaj Singh
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Caroline E. Obkirchner
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Reid T. Powell
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
3
|
Vettorazzi S, Nalbantoglu D, Gebhardt JCM, Tuckermann J. A guide to changing paradigms of glucocorticoid receptor function-a model system for genome regulation and physiology. FEBS J 2021; 289:5718-5743. [PMID: 34213830 DOI: 10.1111/febs.16100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The glucocorticoid receptor (GR) is a bona fide ligand-regulated transcription factor. Cloned in the 80s, the GR has become one of the best-studied and clinically most relevant members of the nuclear receptor superfamily. Cooperative activity of GR with other transcription factors and a plethora of coregulators contribute to the tissue- and context-specific response toward the endogenous and pharmacological glucocorticoids (GCs). Furthermore, nontranscriptional activities in the cytoplasm are emerging as an additional function of GR. Over the past 40 years, the concepts of GR mechanisms of action had been constantly changing. Different methodologies in the pregenomic and genomic era of molecular biological research and recent cutting-edge technology in single-cell and single-molecule analysis are steadily evolving the views, how the GR in particular and transcriptional regulation in general act in physiological and pathological processes. In addition to the development of technologies for GR analysis, the use of model organisms provides insights how the GR in vivo executes GC action in tissue homeostasis, inflammation, and energy metabolism. The model organisms, namely the mouse, but also rats, zebrafish, and recently fruit flies carrying mutations of the GR became a major driving force to analyze the molecular function of GR in disease models. This guide provides an overview of the exciting research and paradigm shifts in the GR field from past to present with a focus on GR transcription factor networks, GR DNA-binding and single-cell analysis, and model systems.
Collapse
Affiliation(s)
- Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | - Denis Nalbantoglu
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | | | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| |
Collapse
|
4
|
Pal S, Tew BY, Lim M, Stankavich B, He M, Pufall M, Hu W, Chen Y, Jones JO. Mechanistic Investigation of the Androgen Receptor DNA-Binding Domain Inhibitor Pyrvinium. ACS OMEGA 2019; 4:2472-2481. [PMID: 30873507 PMCID: PMC6410682 DOI: 10.1021/acsomega.8b03205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Pyrvinium was identified as the first small molecule inhibitor of the androgen receptor (AR) DNA-binding domain (DBD). It was also among the first small molecules shown to directly inhibit the activity of AR splice variants (ARVs), which has important clinical implications in the treatment of castration-resistant prostate cancer. Important questions about pyrvinium's mechanism of action remain. Here, we demonstrate through mutational analysis that amino acids 609 and 612 are important for pyrvinium action. Nuclear magnetic resonance demonstrates a specific interaction between a soluble pyrvinium derivative and the AR DBD homodimer-DNA complex. Chromatin immunoprecipitation and electrophoretic mobility shift assay experiments demonstrate that, despite an interaction with this complex, pyrvinium does not alter the DNA-binding kinetics in either assay. AR immunoprecipitation followed by mass spectrometry was used to identify proteins whose interaction with AR is altered by pyrvinium. Several splicing factors, including DDX17, had reduced interactions with AR in the presence of pyrvinium. RNA sequencing of prostate cancer cells treated with pyrvinium demonstrated changes in splicing, as well as in several other pathways. However, pyrvinium did not alter the levels of ARVs in several prostate cancer cell lines. Taken together, our new data pinpoint the direct interaction between pyrvinium and AR DBD and shed light on the mechanism by which it inhibits AR transcriptional activity.
Collapse
Affiliation(s)
- Sumanta
K. Pal
- Department
of Medical Oncology and Department of Molecular Medicine, City of Hope, East Duarte
Road, 1500 Duarte, California, United States
| | - Ben Yi Tew
- Department
of Medical Oncology and Department of Molecular Medicine, City of Hope, East Duarte
Road, 1500 Duarte, California, United States
| | - Minyoung Lim
- Department
of Medical Oncology and Department of Molecular Medicine, City of Hope, East Duarte
Road, 1500 Duarte, California, United States
| | - Brittany Stankavich
- Department
of Biochemistry, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | - Miaoling He
- Department
of Medical Oncology and Department of Molecular Medicine, City of Hope, East Duarte
Road, 1500 Duarte, California, United States
| | - Miles Pufall
- Department
of Biochemistry, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | - Weidong Hu
- Department
of Medical Oncology and Department of Molecular Medicine, City of Hope, East Duarte
Road, 1500 Duarte, California, United States
| | - Yuan Chen
- Department
of Medical Oncology and Department of Molecular Medicine, City of Hope, East Duarte
Road, 1500 Duarte, California, United States
| | - Jeremy O. Jones
- Department
of Medical Oncology and Department of Molecular Medicine, City of Hope, East Duarte
Road, 1500 Duarte, California, United States
| |
Collapse
|
5
|
Clauß K, Popp AP, Schulze L, Hettich J, Reisser M, Escoter Torres L, Uhlenhaut NH, Gebhardt JCM. DNA residence time is a regulatory factor of transcription repression. Nucleic Acids Res 2017; 45:11121-11130. [PMID: 28977492 PMCID: PMC5737411 DOI: 10.1093/nar/gkx728] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation.
Collapse
Affiliation(s)
- Karen Clauß
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Achim P Popp
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lena Schulze
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Reisser
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Laura Escoter Torres
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - N Henriette Uhlenhaut
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), IDO, Parkring 13, 85748 Garching, Munich, Germany
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
6
|
Comparing the rules of engagement of androgen and glucocorticoid receptors. Cell Mol Life Sci 2017; 74:2217-2228. [PMID: 28168446 PMCID: PMC5425506 DOI: 10.1007/s00018-017-2467-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 01/22/2023]
Abstract
Despite the diverse physiological activities of androgens and glucocorticoids, the corresponding receptors are very close members of the nuclear-receptor super family. Their action mechanisms show striking similarities, since both receptors recognize very similar DNA-response elements and recruit the same coactivators to their target genes. The specificity of the responses lies mainly in the tissue-specific expression of the receptors and in their ligand specificity. In cells, where both receptors are expressed, the mechanisms leading to the difference in target genes are less obvious. They lie in part in subtle variations of the DNA-binding sites, in cooperativity with other transcription factors and in differential allosteric signals from the DNA and ligand to other receptor domains. We will highlight the different suggestions that might explain the DNA sequence selectivity and will compare the possible allosteric routes between the response elements and the different functions in the transactivation process. The interplay of androgen and glucocorticoid receptors is also highly relevant in clinical settings, where both receptors are therapeutically targeted. We will discuss the possibility that the glucocorticoid and androgen receptors can play partially redundant roles in castration-resistant prostate cancer.
Collapse
|
7
|
Yao J. Imaging Transcriptional Regulation of Eukaryotic mRNA Genes: Advances and Outlook. J Mol Biol 2017; 429:14-31. [DOI: 10.1016/j.jmb.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 01/07/2023]
|
8
|
Zhao ZW, White MD, Bissiere S, Levi V, Plachta N. Quantitative imaging of mammalian transcriptional dynamics: from single cells to whole embryos. BMC Biol 2016; 14:115. [PMID: 28010727 PMCID: PMC5180410 DOI: 10.1186/s12915-016-0331-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Probing dynamic processes occurring within the cell nucleus at the quantitative level has long been a challenge in mammalian biology. Advances in bio-imaging techniques over the past decade have enabled us to directly visualize nuclear processes in situ with unprecedented spatial and temporal resolution and single-molecule sensitivity. Here, using transcription as our primary focus, we survey recent imaging studies that specifically emphasize the quantitative understanding of nuclear dynamics in both time and space. These analyses not only inform on previously hidden physical parameters and mechanistic details, but also reveal a hierarchical organizational landscape for coordinating a wide range of transcriptional processes shared by mammalian systems of varying complexity, from single cells to whole embryos.
Collapse
Affiliation(s)
- Ziqing W Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Melanie D White
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Stephanie Bissiere
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Valeria Levi
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Conicet, Buenos Aires, C1428EHA, Argentina
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
9
|
Braadland PR, Grytli HH, Ramberg H, Katz B, Kellman R, Gauthier-Landry L, Fazli L, Krobert KA, Wang W, Levy FO, Bjartell A, Berge V, Rennie PS, Mellgren G, Mælandsmo GM, Svindland A, Barbier O, Taskén KA. Low β₂-adrenergic receptor level may promote development of castration resistant prostate cancer and altered steroid metabolism. Oncotarget 2016; 7:1878-94. [PMID: 26646591 PMCID: PMC4811504 DOI: 10.18632/oncotarget.6479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
The underlying mechanisms responsible for the development of castration-resistant prostate cancer (CRPC) in patients who have undergone androgen deprivation therapy are not fully understood. This is the first study to address whether β2-adrenergic receptor (ADRB2)- mediated signaling may affect CRPC progression in vivo. By immunohistochemical analyses, we observed that low levels of ADRB2 is associated with a more rapid development of CRPC in a Norwegian patient cohort. To elucidate mechanisms by which ADRB2 may affect CRPC development, we stably transfected LNCaP cells with shRNAs to mimic low and high expression of ADRB2. Two UDP-glucuronosyltransferases, UGT2B15 and UGT2B17, involved in phase II metabolism of androgens, were strongly downregulated in two LNCaP shADRB2 cell lines. The low-ADRB2 LNCaP cell lines displayed lowered glucuronidation activities towards androgens than high-ADRB2 cells. Furthermore, increased levels of testosterone and enhanced androgen responsiveness were observed in LNCaP cells expressing low level of ADRB2. Interestingly, these cells grew faster than high-ADRB2 LNCaP cells, and sustained their low glucuronidation activity in castrated NOD/SCID mice. ADRB2 immunohistochemical staining intensity correlated with UGT2B15 staining intensity in independent TMA studies and with UGT2B17 in one TMA study. Similar to ADRB2, we show that low levels of UGT2B15 are associated with a more rapid CRPC progression. We propose a novel mechanism by which ADRB2 may affect the development of CRPC through downregulation of UGT2B15 and UGT2B17.
Collapse
Affiliation(s)
- Peder Rustøen Braadland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Helene Hartvedt Grytli
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Håkon Ramberg
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Betina Katz
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ralf Kellman
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Louis Gauthier-Landry
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Kurt Allen Krobert
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Wanzhong Wang
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Finn Olav Levy
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmø, Sweden.,Department of Clinical Sciences Malmø, Division of Urological Cancers, Lund University, Lund, Sweden
| | - Viktor Berge
- Department of Urology, Oslo University Hospital, Oslo, Norway
| | - Paul S Rennie
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute for Pharmacy, Faculty of Health Science, University of Tromsø, Tromsø, Norway
| | - Aud Svindland
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | - Kristin Austlid Taskén
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Tesikova M, Dezitter X, Nenseth HZ, Klokk TI, Mueller F, Hager GL, Saatcioglu F. Divergent Binding and Transactivation by Two Related Steroid Receptors at the Same Response Element. J Biol Chem 2016; 291:11899-910. [PMID: 27056330 DOI: 10.1074/jbc.m115.684480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 01/19/2023] Open
Abstract
Transcription factor (TF) recruitment to chromatin is central to activation of transcription. TF-chromatin interactions are highly dynamic, which are evaluated by recovery half time (t1/2) in seconds, determined by fluorescence recovery experiments in living cells, and chromatin immunoprecipitation (ChIP) analysis, measured in minutes. These two states are related: the larger the t1/2, the longer the ChIP occupancy resulting in increased transcription. Here we present data showing that this relationship does not always hold. We found that histone deacetylase inhibitors (HDACis) significantly increased t1/2 of green fluorescent protein (GFP) fused androgen receptor (AR) on a tandem array of positive hormone response elements (HREs) in chromatin. This resulted in increased ChIP signal of GFP-AR. Unexpectedly, however, transcription was inhibited. In contrast, the GFP-fused glucocorticoid receptor (GR), acting through the same HREs, displayed a profile consistent with current models. We provide evidence that these differences are mediated, at least in part, by HDACs. Our results provide insight into TF action in living cells and show that very closely related TFs may trigger significantly divergent outcomes at the same REs.
Collapse
Affiliation(s)
- Martina Tesikova
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Xavier Dezitter
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Hatice Z Nenseth
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tove I Klokk
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Florian Mueller
- Computational Imaging and Modeling Unit, Institut Pasteur, 75015 Paris, France
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, NCI, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Fahri Saatcioglu
- From the Department of Biosciences, University of Oslo, 0316 Oslo, Norway, Institute for Cancer Genetics and Informatics, Division of Cancer and Surgery, Oslo University Hospital, 0310 Oslo, Norway
| |
Collapse
|
11
|
Chiu CL, Patsch K, Cutrale F, Soundararajan A, Agus DB, Fraser SE, Ruderman D. Intracellular kinetics of the androgen receptor shown by multimodal Image Correlation Spectroscopy (mICS). Sci Rep 2016; 6:22435. [PMID: 26936218 PMCID: PMC4776155 DOI: 10.1038/srep22435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) pathway plays a central role in prostate cancer (PCa) growth and progression and is a validated therapeutic target. In response to ligand binding AR translocates to the nucleus, though the molecular mechanism is not well understood. We therefore developed multimodal Image Correlation Spectroscopy (mICS) to measure anisotropic molecular motion across a live cell. We applied mICS to AR translocation dynamics to reveal its multimodal motion. By integrating fluorescence imaging methods we observed evidence for diffusion, confined movement, and binding of AR within both the cytoplasm and nucleus of PCa cells. Our findings suggest that in presence of cytoplasmic diffusion, the probability of AR crossing the nuclear membrane is an important factor in determining the AR distribution between cytoplasm and the nucleus, independent of functional microtubule transport. These findings may have implications for the future design of novel therapeutics targeting the AR pathway in PCa.
Collapse
Affiliation(s)
- Chi-Li Chiu
- Center for Applied Molecular Medicine, University of Southern, California, USA
| | - Katherin Patsch
- Center for Applied Molecular Medicine, University of Southern, California, USA
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern, California, USA
| | | | - David B Agus
- Center for Applied Molecular Medicine, University of Southern, California, USA
| | - Scott E Fraser
- Translational Imaging Center, University of Southern, California, USA
| | - Daniel Ruderman
- Center for Applied Molecular Medicine, University of Southern, California, USA
| |
Collapse
|
12
|
Belikov S, Berg OG, Wrange Ö. Quantification of transcription factor-DNA binding affinity in a living cell. Nucleic Acids Res 2015; 44:3045-58. [PMID: 26657626 PMCID: PMC4838337 DOI: 10.1093/nar/gkv1350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/19/2015] [Indexed: 12/17/2022] Open
Abstract
The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element.
Collapse
Affiliation(s)
- Sergey Belikov
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Otto G Berg
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-75124 Uppsala, Sweden
| | - Örjan Wrange
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|