1
|
Hibshman JD, Carra S, Goldstein B. Tardigrade small heat shock proteins can limit desiccation-induced protein aggregation. Commun Biol 2023; 6:121. [PMID: 36717706 PMCID: PMC9887055 DOI: 10.1038/s42003-023-04512-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Small heat shock proteins (sHSPs) are chaperones with well-characterized roles in heat stress, but potential roles for sHSPs in desiccation tolerance have not been as thoroughly explored. We identified nine sHSPs from the tardigrade Hypsibius exemplaris, each containing a conserved alpha-crystallin domain flanked by disordered regions. Many of these sHSPs are highly expressed. Multiple tardigrade and human sHSPs could improve desiccation tolerance of E. coli, suggesting that the capacity to contribute to desicco-protection is a conserved property of some sHSPs. Purification and subsequent analysis of two tardigrade sHSPs, HSP21 and HSP24.6, revealed that these proteins can oligomerize in vitro. These proteins limited heat-induced aggregation of the model enzyme citrate synthase. Heterologous expression of HSP24.6 improved bacterial heat shock survival, and the protein significantly reduced heat-induced aggregation of soluble bacterial protein. Thus, HSP24.6 likely chaperones against protein aggregation to promote heat tolerance. Furthermore, HSP21 and HSP24.6 limited desiccation-induced aggregation and loss of function of citrate synthase. This suggests a mechanism by which tardigrade sHSPs promote desiccation tolerance, by limiting desiccation-induced protein aggregation, thereby maintaining proteostasis and supporting survival. These results suggest that sHSPs provide a mechanism of general stress resistance that can also be deployed to support survival during anhydrobiosis.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Serena Carra
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Di Natale MV, Carroccio SC, Dattilo S, Cocca M, Nicosia A, Torri M, Bennici CD, Musco M, Masullo T, Russo S, Mazzola A, Cuttitta A. Polymer aging affects the bioavailability of microplastics-associated contaminants in sea urchin embryos. CHEMOSPHERE 2022; 309:136720. [PMID: 36206916 DOI: 10.1016/j.chemosphere.2022.136720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) in the marine environment undergo complex weathering factors that can affect their ability to interact with different coexisting environmental contaminants (termed here co-contaminants). In this study, the influence of artificially aging using UV on the sorption of a complex mixture of co-contaminants onto MPs was investigated in order to provide meaningful hypotheses on their individual and combined toxicities on sea urchin embryos. A mixture of artificially aged MPs (PS particles and PA microfibers) combined with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or Cd or Cu, both alone and in a mix, were used to expose embryos of Paracentrotus lividus. The effects of polymer aging on co-contaminants bioavailability were assessed by measuring changes in the transcriptional profile of genes involved in oxidative-stress response and skeletogenic and endo-mesodermal specification. Changes in the sorption ability of MPs to co-contaminants in the aqueous phase highlighted that aging did not affect the sorption of BDE-47 and Cd on MPs, although a certain influence on Cu sorption was found. Despite no morphological effects in embryos at the gastrula stage after MPs/contaminants combinatorial exposure emerged, the greatest influence of the aging process was mainly found for combined exposures which included BDE-47. Finally, the exposure to multiple contaminants generated transcriptional profiles poorly related to those activated by single contaminant, at times suggesting a mixture-dependent different aging influence. These results open new scenarios on the controversial role of vector of co-contaminants for MPs, especially when complex and different types of mixtures were considered.
Collapse
Affiliation(s)
- Marilena Vita Di Natale
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; University of Palermo, Department of Earth and Marine Sciences (DiSTEM), Via Archirafi 22, 90123, Palermo (PA), Italy.
| | | | | | - Mariacristina Cocca
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy.
| | - Aldo Nicosia
- National Research Council of Italy, Institute for Biomedical Research and Innovation (IRIB-CNR), Via Ugo La Malfa, 153, 90146, Palermo, Italy.
| | - Marco Torri
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy.
| | - Carmelo Daniele Bennici
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy.
| | - Marianna Musco
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; LUMSA University - Via Filippo Parlatore n. 65, Palermo, Italy.
| | - Tiziana Masullo
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy.
| | - Stefania Russo
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; University of Palermo, Department of Earth and Marine Sciences (DiSTEM), Via Archirafi 22, 90123, Palermo (PA), Italy.
| | - Antonio Mazzola
- University of Palermo, Department of Earth and Marine Sciences (DiSTEM), Via Archirafi 22, 90123, Palermo (PA), Italy.
| | - Angela Cuttitta
- National Research Council of Italy, Institute for Studies on the Mediterranean (ISMed-CNR), Detached Unit of Palermo, Via Filippo Parlatore 95, 90145, Palermo, Italy; LUMSA University - Via Filippo Parlatore n. 65, Palermo, Italy.
| |
Collapse
|
3
|
Picciani N, Kerlin JR, Jindrich K, Hensley NM, Gold DA, Oakley TH. Light modulated cnidocyte discharge predates the origins of eyes in Cnidaria. Ecol Evol 2021; 11:3933-3940. [PMID: 33976785 PMCID: PMC8093662 DOI: 10.1002/ece3.7280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/06/2020] [Accepted: 01/20/2021] [Indexed: 11/07/2022] Open
Abstract
Complex biological traits often originate by integrating previously separate parts, but the organismal functions of these precursors are challenging to infer. If we can understand the ancestral functions of these precursors, it could help explain how they persisted and how they facilitated the origins of complex traits. Animal eyes are some of the best studied complex traits, and they include many parts, such as opsin-based photoreceptor cells, pigment cells, and lens cells. Eye evolution is understood through conceptual models that argue these parts gradually came together to support increasingly sophisticated visual functions. Despite the well-accepted logic of these conceptual models, explicit comparative studies to identify organismal functions of eye precursors are lacking. Here, we investigate how precursors functioned before they became part of eyes in Cnidaria, a group formed by sea anemones, corals, and jellyfish. Specifically, we test whether ancestral photoreceptor cells regulated the discharge of cnidocytes, the expensive single-use cells with various functions including prey capture, locomotion, and protection. Similar to a previous study of Hydra, we show an additional four distantly related cnidarian groups discharge significantly more cnidocytes when exposed to dim blue light compared with bright blue light. Our comparative analyses support the hypothesis that the cnidarian ancestor was capable of modulating cnidocyte discharge with light, which we speculate uses an opsin-based phototransduction pathway homologous to that previously described in Hydra. Although eye precursors might have had other functions like regulating timing of spawning, our findings are consistent with the hypothesis that photoreceptor cells which mediate cnidocyte discharge predated eyes, perhaps facilitating the prolific origination of eyes in Cnidaria.
Collapse
Affiliation(s)
- Natasha Picciani
- Department of Ecology, Evolution and Marine BiologyUniversity of California at Santa BarbaraSanta BarbaraCAUSA
- Present address:
Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCTUSA
| | - Jamie R. Kerlin
- Department of Ecology, Evolution and Marine BiologyUniversity of California at Santa BarbaraSanta BarbaraCAUSA
- Present address:
Department of BiologyCalifornia State UniversityNorthridgeCAUSA
| | | | - Nicholai M. Hensley
- Department of Ecology, Evolution and Marine BiologyUniversity of California at Santa BarbaraSanta BarbaraCAUSA
| | - David A. Gold
- Department of Earth and Planetary SciencesUniversity of California at DavisDavisCAUSA
| | - Todd H. Oakley
- Department of Ecology, Evolution and Marine BiologyUniversity of California at Santa BarbaraSanta BarbaraCAUSA
| |
Collapse
|
4
|
Di Natale M, Bennici C, Biondo G, Masullo T, Monastero C, Tagliavia M, Torri M, Costa S, Ragusa MA, Cuttitta A, Nicosia A. Aberrant gene expression profiles in Mediterranean sea urchin reproductive tissues after metal exposures. CHEMOSPHERE 2019; 216:48-58. [PMID: 30359916 DOI: 10.1016/j.chemosphere.2018.10.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Marine organisms are simultaneously exposed to numerous pollutants, among which metals probably represent the most abundant in marine environments. In order to evaluate the effects of metal exposure at molecular level in reproductive tissues, we profiled the sea urchin transcriptional response after non-lethal exposures using pathway-focused mRNA expression analyses. Herein, we show that exposures to relatively high concentrations of both essential and toxic metals hugely affected the gonadic expression of several genes involved in stress-response, detoxification, transcriptional and post-transcriptional regulation, without significant changes in gonadosomatic indices. Even though treatments did not result in reproductive tissues visible alterations, metal exposures negatively affected the main mechanisms of stress-response, detoxification and survival of adult P. lividus. Additionally, transcriptional changes observed in P. lividus gonads may cause altered gametogenesis and maintenance of heritable aberrant epigenetic effects. This study leads to the conclusion that exposures to metals, as usually occurs in polluted coastal areas, may affect sea urchin gametogenesis, thus supporting the hypothesis that parental exposure to environmental stressors affects the phenotype of the offspring.
Collapse
Affiliation(s)
- Marilena Di Natale
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Carmelo Bennici
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Girolama Biondo
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Tiziana Masullo
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Calogera Monastero
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Marcello Tagliavia
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Marco Torri
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Angela Cuttitta
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Aldo Nicosia
- National Research Council-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021, Torretta Granitola (TP), Sicily, Italy.
| |
Collapse
|
5
|
Zheng JW, Liu SL, Lu SH, Li HY, Liu JS, Yang WD. Proteomic profile in the mussel Perna viridis after short-term exposure to the brown tide alga Aureococcus anophagefferens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:365-375. [PMID: 30007186 DOI: 10.1016/j.ecoenv.2018.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Blooms of Aureococcus anophagefferens, referred to as brown tides are responsible for massive mortalities and recruitment failure of some bivalves. However, the molecular mechanisms underlying the toxicity remain elusive despite its biological significance, and the information currently available on the molecular effects is still insufficient. In this study, to evaluate the toxicity and associated mechanism of A. anophagefferens on bivalves, we analyzed the protein expression profiles in digestive glands of the A. anophagefferens-exposed Perna viridis by using iTRAQ. A total of 3138 proteins were identified in the digestive glands of A. anophagefferens-exposed P. viridis based on iTRAQ. Amongst, a repertoire of 236 proteins involved in cell, cell part, catalytic activity, metabolic process, biological regulation, immune system process, and response to stimulus were found to be differentially expressed. Functional analysis of the differentially expressed proteins demonstrated that innate immune system of P. viridis was activated, and some proteins associated with stress response and lipid metabolism were induced after exposure to A. anophagefferens. Additionally, MDA content, SOD activity and GSH-Px activity was increased significantly in the digestive gland of A. anophagefferens-exposed P. viridis. Taken together, our results indicated that the A. anophagefferens could induce oxidative stress, activate complement system and alter fat acid metabolism of P. viridis.
Collapse
Affiliation(s)
- Jian-Wei Zheng
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Su-Li Liu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Song-Hui Lu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Nicosia A, Mikov A, Cammarata M, Colombo P, Andreev Y, Kozlov S, Cuttitta A. The Anemonia viridis Venom: Coupling Biochemical Purification and RNA-Seq for Translational Research. Mar Drugs 2018; 16:E407. [PMID: 30366463 PMCID: PMC6266578 DOI: 10.3390/md16110407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
Blue biotechnologies implement marine bio-resources for addressing practical concerns. The isolation of biologically active molecules from marine animals is one of the main ways this field develops. Strikingly, cnidaria are considered as sustainable resources for this purpose, as they possess unique cells for attack and protection, producing an articulated cocktail of bioactive substances. The Mediterranean sea anemone Anemonia viridis has been studied extensively for years. In this short review, we summarize advances in bioprospecting of the A. viridis toxin arsenal. A. viridis RNA datasets and toxin data mining approaches are briefly described. Analysis reveals the major pool of neurotoxins of A. viridis, which are particularly active on sodium and potassium channels. This review therefore integrates progress in both RNA-Seq based and biochemical-based bioprospecting of A. viridis toxins for biotechnological exploitation.
Collapse
Affiliation(s)
- Aldo Nicosia
- National Research Council-Institute for the Study of Anthropogenic Impacts and Sustainability in the Marine Environment (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Capo Granitola, Via del mare, Campobello di Mazara (TP), 91021 Sicily, Italy.
| | - Alexander Mikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, GSP-7, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - Matteo Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90100 Palermo, Italy.
| | - Paolo Colombo
- Istituto di Biomedicina e di Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Yaroslav Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, GSP-7, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
- Institute of Molecular Medicine, Ministry of Healthcare of the Russian Federation, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Sergey Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, GSP-7, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - Angela Cuttitta
- National Research Council-Institute for the Study of Anthropogenic Impacts and Sustainability in the Marine Environment (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Capo Granitola, Via del mare, Campobello di Mazara (TP), 91021 Sicily, Italy.
| |
Collapse
|
7
|
Nicosia A, Bennici C, Biondo G, Costa S, Di Natale M, Masullo T, Monastero C, Ragusa MA, Tagliavia M, Cuttitta A. Characterization of Translationally Controlled Tumour Protein from the Sea Anemone Anemonia viridis and Transcriptome Wide Identification of Cnidarian Homologues. Genes (Basel) 2018; 9:genes9010030. [PMID: 29324689 PMCID: PMC5793182 DOI: 10.3390/genes9010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Gene family encoding translationally controlled tumour protein (TCTP) is defined as highly conserved among organisms; however, there is limited knowledge of non-bilateria. In this study, the first TCTP homologue from anthozoan was characterised in the Mediterranean Sea anemone, Anemonia viridis. The release of the genome sequence of Acropora digitifera, Exaiptasia pallida, Nematostella vectensis and Hydra vulgaris enabled a comprehensive study of the molecular evolution of TCTP family among cnidarians. A comparison among TCTP members from Cnidaria and Bilateria showed conserved intron exon organization, evolutionary conserved TCTP signatures and 3D protein structure. The pattern of mRNA expression profile was also defined in A. viridis. These analyses revealed a constitutive mRNA expression especially in tissues with active proliferation. Additionally, the transcriptional profile of A. viridis TCTP (AvTCTP) after challenges with different abiotic/biotic stresses showed induction by extreme temperatures, heavy metals exposure and immune stimulation. These results suggest the involvement of AvTCTP in the sea anemone defensome taking part in environmental stress and immune responses.
Collapse
Affiliation(s)
- Aldo Nicosia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Carmelo Bennici
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Girolama Biondo
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Sicily, Italy.
| | - Marilena Di Natale
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Tiziana Masullo
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Calogera Monastero
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Sicily, Italy.
| | - Marcello Tagliavia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Angela Cuttitta
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| |
Collapse
|
8
|
|
9
|
Cuttitta A, Ragusa MA, Costa S, Bennici C, Colombo P, Mazzola S, Gianguzza F, Nicosia A. Evolutionary conserved mechanisms pervade structure and transcriptional modulation of allograft inflammatory factor-1 from sea anemone Anemonia viridis. FISH & SHELLFISH IMMUNOLOGY 2017; 67:86-94. [PMID: 28579525 DOI: 10.1016/j.fsi.2017.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Gene family encoding allograft inflammatory factor-1 (AIF-1) is well conserved among organisms; however, there is limited knowledge in lower organisms. In this study, the first AIF-1 homologue from cnidarians was identified and characterised in the sea anemone Anemonia viridis. The full-length cDNA of AvAIF-1 was of 913 bp with a 5' -untranslated region (UTR) of 148 bp, a 3'-UTR of 315 and an open reading frame (ORF) of 450 bp encoding a polypeptide with149 amino acid residues and predicted molecular weight of about 17 kDa. The predicted protein possesses evolutionary conserved EF hand Ca2+ binding motifs, post-transcriptional modification sites and a 3D structure which can be superimposed with human members of AIF-1 family. The AvAIF-1 transcript was constitutively expressed in all tested tissues of unchallenged sea anemone, suggesting that AvAIF-1 could serve as a general protective factor under normal physiological conditions. Moreover, we profiled the transcriptional activation of AvAIF-1 after challenges with different abiotic/biotic stresses showing induction by warming conditions, heavy metals exposure and immune stimulation. Thus, mechanisms associated to inflammation and immune challenges up-regulated AvAIF-1 mRNA levels. Our results suggest its involvement in the inflammatory processes and immune response of A. viridis.
Collapse
Affiliation(s)
- Angela Cuttitta
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy
| | - Salvatore Costa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy
| | - Carmelo Bennici
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy
| | - Paolo Colombo
- Istituto di Biomedicina e di Immunologia Molecolare - Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Salvatore Mazzola
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy
| | - Fabrizio Gianguzza
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy
| | - Aldo Nicosia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy.
| |
Collapse
|
10
|
Ragusa MA, Costa S, Cuttitta A, Gianguzza F, Nicosia A. Coexposure to sulfamethoxazole and cadmium impairs development and attenuates transcriptional response in sea urchin embryo. CHEMOSPHERE 2017; 180:275-284. [PMID: 28411544 DOI: 10.1016/j.chemosphere.2017.04.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Among sulfonamides, sulfamethoxazole represents one of the most widely employed. A considerable amount of sulfamethoxazole is introduced into the marine environment after utilization in aquaculture. The cytotoxicity of sulfamethoxazole relies mainly on arylhydroxylamine metabolites and it is associated with the production of reactive oxygen species. Cadmium represents a metal largely employed in several anthropic activities and it is toxic for all living organisms even at low concentrations. Since it is not degraded, cadmium irreversibly accumulates into cells. In order to understand the mechanisms of response to changes in the chemical environment, we investigated by light microscopy observations and RT-qPCR assays the impact of sulfamethoxazole and cadmium in P. lividus sea urchin embryos. During development, embryos were exposed to sulfamethoxazole amount comparable to that usually used in aquaculture procedures and/or sublethal levels of cadmium chloride. Impairment of development and biomarkers for inflammation, detoxification, metal scavenging and cell death were inspected. Even though treatment with sulfamethoxazole apparently did not affect development, it stimulated a remarkable molecular response to oxidative stress. Moreover, combined exposure seriously compromised development and the defense mechanisms to cadmium were blocked. This study leads to the conclusion that coexposure to sulfamethoxazole and cadmium induces neutralizing effects on sea urchin embryos. Thus, in marine areas nearby aquaculture farms, where sulfamethoxazole discharge represents an important environmental contaminant, cadmium occurrence may alter population dynamics of P. lividus.
Collapse
Affiliation(s)
- Maria Antonietta Ragusa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Salvatore Costa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Angela Cuttitta
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy.
| | - Fabrizio Gianguzza
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy.
| | - Aldo Nicosia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy.
| |
Collapse
|
11
|
Partially Purified Extracts of Sea Anemone Anemonia viridis Affect the Growth and Viability of Selected Tumour Cell Lines. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3849897. [PMID: 27725939 PMCID: PMC5048049 DOI: 10.1155/2016/3849897] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/26/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
In the last few years, marine species have been investigated for the presence of natural products with anticancer activity. Using reversed phase chromatography, low molecular weight proteins were fractionated from the sea anemone Anemonia viridis. Four different fractions were evaluated for their cytotoxic activity by means of erythrocyte haemolysis test, MTS, and LDH assays. Finally, the antiproliferative activities of three of these fractions were studied on PC3, PLC/PRF/5, and A375 human cancer cell lines. Our analysis revealed that the four fractions showed different protein contents and diverse patterns of activity towards human PBMC and cancer cell lines. Interestingly, fractions III and IV exerted cytotoxic effects on human cells. Conversely, fractions I and II displayed very low toxic effects associated with antiproliferative activities on cancer cell lines.
Collapse
|
12
|
Nicosia A, Maggio T, Costa S, Salamone M, Tagliavia M, Mazzola S, Gianguzza F, Cuttitta A. Maintenance of a Protein Structure in the Dynamic Evolution of TIMPs over 600 Million Years. Genome Biol Evol 2016; 8:1056-71. [PMID: 26957029 PMCID: PMC4860685 DOI: 10.1093/gbe/evw052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Deciphering the events leading to protein evolution represents a challenge, especially for protein families showing complex evolutionary history. Among them, TIMPs represent an ancient eukaryotic protein family widely distributed in the animal kingdom. They are known to control the turnover of the extracellular matrix and are considered to arise early during metazoan evolution, arguably tuning essential features of tissue and epithelial organization. To probe the structure and molecular evolution of TIMPs within metazoans, we report the mining and structural characterization of a large data set of TIMPs over approximately 600 Myr. The TIMPs repertoire was explored starting from the Cnidaria phylum, coeval with the origins of connective tissue, to great apes and humans. Despite dramatic sequence differences compared with highest metazoans, the ancestral proteins displayed the canonical TIMP fold. Only small structural changes, represented by an α-helix located in the N-domain, have occurred over the evolution. Both the occurrence of such secondary structure elements and the relative solvent accessibility of the corresponding residues in the three-dimensional structures raises the possibility that these sites represent unconserved element prone to accept variations.
Collapse
Affiliation(s)
- Aldo Nicosia
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy
| | - Teresa Maggio
- Institute for Environmental Protection and Research-ISPRA, Palermo, Sicily, Italy
| | - Salvatore Costa
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Sicily, Italy
| | - Monica Salamone
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy
| | - Marcello Tagliavia
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy
| | - Salvatore Mazzola
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy
| | - Fabrizio Gianguzza
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Sicily, Italy
| | - Angela Cuttitta
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy
| |
Collapse
|