1
|
Pal G, Cook L, Schulze J, Verbrugge J, Alcalay RN, Merello M, Sue CM, Bardien S, Bonifati V, Chung SJ, Foroud T, Gatto E, Hall A, Hattori N, Lynch T, Marder K, Mascalzoni D, Novaković I, Thaler A, Raymond D, Salari M, Shalash A, Suchowersky O, Mencacci NE, Simuni T, Saunders‐Pullman R, Klein C. Genetic Testing in Parkinson's Disease. Mov Disord 2023; 38:1384-1396. [PMID: 37365908 PMCID: PMC10946878 DOI: 10.1002/mds.29500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/28/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Genetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gian Pal
- Department of NeurologyRutgers‐Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Lola Cook
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jeanine Schulze
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jennifer Verbrugge
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Roy N. Alcalay
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Movement Disorders Division, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Marcelo Merello
- Neuroscience Department FleniCONICET, Catholic University of Buenos AiresBuenos AiresArgentina
| | - Carolyn M. Sue
- Department of NeurologyRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Department of Neurogenetics, Kolling Institute, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research UnitStellenbosch UniversityCape TownSouth Africa
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamthe Netherlands
| | - Sun Ju Chung
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Tatiana Foroud
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Emilia Gatto
- Instituto de Neurociencias Buenos AiresAffiliated Buenos Aires UniversityBuenos AiresArgentina
| | - Anne Hall
- Parkinson's FoundationNew YorkNew YorkUSA
| | - Nobutaka Hattori
- Research Institute of Disease of Old Age, Graduate School of MedicineJuntendo UniversityTokyoJapan
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
- Neurodegenerative Disorders Collaborative LaboratoryRIKEN Center for Brain ScienceSaitamaJapan
| | - Tim Lynch
- Dublin Neurological Institute at the Mater Misericordiae University HospitalDublinIreland
| | - Karen Marder
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Deborah Mascalzoni
- Institute for Biomedicine, Eurac ResearchAffiliated Institute of the University of LübeckBolzanoItaly
- Center for Research Ethics and Bioethics, Department of Public Health and Caring SciencesUppsala UniversityUppsalaSweden
| | - Ivana Novaković
- Institute of Human Genetics, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| | - Avner Thaler
- Movement Disorders Unit, Neurological InstituteTel‐Aviv Medical CenterTel AvivIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel‐Aviv UniversityTel AvivIsrael
- Laboratory of Early Markers of Neurodegeneration, Neurological InstituteTel‐Aviv Medical CenterTel AvivIsrael
| | - Deborah Raymond
- Department of NeurologyMount Sinai Beth Israel and Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada‐e Tajrish Comprehensive Neurosurgical Center of ExcellenceShahid Beheshti University of Medical SciencesTehranIran
| | - Ali Shalash
- Department of Neurology, Faculty of MedicineAin Shams UniversityCairoEgypt
| | - Oksana Suchowersky
- Department of Medicine (Neurology), Medical Genetics and PediatricsUniversity of AlbertaEdmontonAlbertaCanada
| | - Niccolò E. Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for NeurogeneticsNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
- Parkinson's Disease and Movement Disorders CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Tanya Simuni
- Parkinson's Disease and Movement Disorders CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Rachel Saunders‐Pullman
- Department of NeurologyMount Sinai Beth Israel and Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Christine Klein
- Institute of NeurogeneticsUniversity of Lübeck and University Hospital Schleswig‐HolsteinLübeckGermany
| |
Collapse
|
2
|
Liu ZJ, Wang YL, Xu Y. Two novel heterozygote mutations of ATM in a Chinese family with dystonia-dominant ataxia telangiectasia and literature review. Front Pediatr 2023; 11:975696. [PMID: 37009283 PMCID: PMC10050558 DOI: 10.3389/fped.2023.975696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/27/2023] [Indexed: 04/04/2023] Open
Abstract
Background Ataxia-telangiectasia (A-T) is an autosomal recessive disorder with high clinical heterogeneity. A-T may present in complicated variable forms, including classic A-T and milder form of AT. Contrary to the classic A-T, the milder form does not present the cardinal features of A-T such as ataxia and telangiectasia. A few ATM mutations have been reported in variant A-T cases manifesting isolated generalized or segmental dystonia without any signs of classical A-T. Methods An A-T pedigree with predominant dystonia was collected. Genetic testing was performed by targeted panel of genes involved in movement disorders. The candidate variants were further confirmed by Sanger sequencing. We then reviewed previously published literatures of genetically confirmed A-T cases with predominant dystonia and summarized the clinical characteristics of dystonia-dominant A-T. Results Two novel ATM mutations, p.I2683T and p.S2860P, were identified in the family. The proband presented isolated segmental dystonia without any signs of ataxia and telangiectasias. We reviewed the literatures and found that the patients with dystonia-dominant A-T tend to have a later-onset and slower progression of the disease. Conclusion To our knowledge, this is the first report of A-T patient with predominant dystonia in China. Dystonia may appear as one of the predominant manifestations or initial symptom of A-T. Early ATM genetic testing should be considered for those patients with predominant dystonia, despite without accompanying ataxia or telangiectasia.
Collapse
Affiliation(s)
- Zhi-Jun Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Ling Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Wang Y, Wang C, Liu M, Xu W, Wang S, Yuan F, Luo X, Xu Q, Yin R, Wang A, Guo M, Lin L, Wang C, Cheng H, Liu Z, Zhang Y, Zeng F, Yan J, Chen Y. Segawa syndrome caused by TH gene mutation and its mechanism. Front Genet 2022; 13:1004307. [PMID: 36568392 PMCID: PMC9772685 DOI: 10.3389/fgene.2022.1004307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Dopa-responsive dystonia (DRD), also known as Segawa syndrome, is a rare neurotransmitter disease. The decrease in dopamine caused by tyrosine hydroxylase (TH) gene mutation may lead to dystonia, tremor and severe encephalopathy in children. Although the disease caused by recessive genetic mutation of the tyrosine hydroxylase (TH) gene is rare, we found that the clinical manifestations of seven children with tyrosine hydroxylase gene mutations are similar to dopa-responsive dystonia. To explore the clinical manifestations and possible pathogenesis of the disease, we analyzed the clinical data of seven patients. Next-generation sequencing showed that the TH gene mutation in three children was a reported homozygous mutation (c.698G>A). At the same time, two new mutations of the TH gene were found in other children: c.316_317insCGT, and c.832G>A (p.Ala278Thr). We collected venous blood from four patients with Segawa syndrome and their parents for real-time quantitative polymerase chain reaction analysis of TH gene expression. We predicted the structure and function of proteins on the missense mutation iterative thread assembly refinement (I-TASSER) server and studied the conservation of protein mutation sites. Combined with molecular biology experiments and related literature analysis, the qPCR results of two patients showed that the expression of the TH gene was lower than that in 10 normal controls, and the expression of the TH gene of one mother was lower than the average expression level. We speculated that mutation in the TH gene may clinically manifest by affecting the production of dopamine and catecholamine downstream, which enriches the gene pool of Segawa syndrome. At the same time, the application of levodopa is helpful to the study, diagnosis and treatment of Segawa syndrome.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Chunmei Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Meiyan Liu
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Wuhen Xu
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Simei Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Fang Yuan
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiaona Luo
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Quanmei Xu
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Rongrong Yin
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Anqi Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Miao Guo
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Longlong Lin
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Chao Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hongyi Cheng
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Zhiping Liu
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yuanfeng Zhang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Fanyi Zeng
- Shanghai Key Laboratory of Embryo and Reproduction Engineering, Key Laboratory of Embryo Molecular Biology of National Health Commission, Shanghai Institute of Medical Genetics, Shanghai Chlidren’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jingbin Yan
- Shanghai Key Laboratory of Embryo and Reproduction Engineering, Key Laboratory of Embryo Molecular Biology of National Health Commission, Shanghai Institute of Medical Genetics, Shanghai Chlidren’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yucai Chen
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China,*Correspondence: Yucai Chen,
| |
Collapse
|
4
|
Xu Q, Li K, Sun Q, Ding D, Zhao Y, Yang N, Luo Y, Liu Z, Zhang Y, Wang C, Xia K, Yan X, Jiang H, Shen L, Tang B, Guo J. Rare GCH1 heterozygous variants contributing to Parkinson's disease. Brain 2019; 140:e41. [PMID: 28582483 DOI: 10.1093/brain/awx110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China
| | - Kai Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qiying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China
| | - Dongxue Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Nannan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Chunrong Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Kun Xia
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, P.R. China.,Collaborative Innovation Center for Brain Science, Shanghai, P.R. China.,Collaborative Innovation Center for Genetics and Development, Shanghai, P.R. China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, P.R. China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, P.R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
5
|
Vasquez-Vivar J, Shi Z, Luo K, Thirugnanam K, Tan S. Tetrahydrobiopterin in antenatal brain hypoxia-ischemia-induced motor impairments and cerebral palsy. Redox Biol 2017; 13:594-599. [PMID: 28803128 PMCID: PMC5554922 DOI: 10.1016/j.redox.2017.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022] Open
Abstract
Antenatal brain hypoxia-ischemia, which occurs in cerebral palsy, is considered a significant cause of motor impairments in children. The mechanisms by which antenatal hypoxia-ischemia causes brain injury and motor deficits still need to be elucidated. Tetrahydrobiopterin is an important enzyme cofactor that is necessary to produce neurotransmitters and to maintain the redox status of the brain. A genetic deficiency of this cofactor from mutations of biosynthetic or recycling enzymes is a well-recognized factor in the development of childhood neurological disorders characterized by motor impairments, developmental delay, and encephalopathy. Experimental hypoxia-ischemia causes a decline in the availability of tetrahydrobiopterin in the immature brain. This decline coincides with the loss of brain function, suggesting this occurrence contributes to neuronal dysfunction and motor impairments. One possible mechanism linking tetrahydrobiopterin deficiency, hypoxia-ischemia, and neuronal injury is oxidative injury. Evidence of the central role of the developmental biology of tetrahydrobiopterin in response to hypoxic ischemic brain injury, especially the development of motor deficits, is discussed.
Collapse
Affiliation(s)
- Jeannette Vasquez-Vivar
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Zhongjie Shi
- Wayne State University School of Medicine and Children's Hospital of Michigan, 3901 Beaubien, Room 5177, Carls Bldg., Detroit, MI 48201, USA
| | - Kehuan Luo
- Wayne State University School of Medicine and Children's Hospital of Michigan, 3901 Beaubien, Room 5177, Carls Bldg., Detroit, MI 48201, USA
| | - Karthikeyan Thirugnanam
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Sidhartha Tan
- Wayne State University School of Medicine and Children's Hospital of Michigan, 3901 Beaubien, Room 5177, Carls Bldg., Detroit, MI 48201, USA.
| |
Collapse
|
6
|
Yan YP, Zhang B, Mao YF, Guo ZY, Tian J, Zhao GH, Pu JL, Luo W, Ouyang ZY, Zhang BR. A novel tyrosine hydroxylase variant in a group of Chinese patients with dopa-responsive dystonia. Int J Neurosci 2016; 127:694-700. [PMID: 27619486 DOI: 10.1080/00207454.2016.1236381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dopa-responsive dystonia (DRD) comprises a heterogeneous group of movement disorders. A limited number of studies of Chinese patients with DRD have been reported. In the present study, we investigated the clinical and genetic features of 12 Chinese DRD families. Point mutation analysis of the GTP-cyclohydrolase I (GCH1), tyrosine hydroxylase (TH) and sepiapterin reductase (SPR) genes was conducted by direct sequencing. In addition, multiplex ligation-dependent probe amplification targeting GCH1 and TH was performed in "mutation-free" patients. Three reported mutations (IVS2-2A>G, c.293C>T, c.550C>T) were detected in GCH1, whereas two compound heterozygous variants were identified in TH, one of which was novel (c.1083C>A). Furthermore, this novel variant was not detected in any of the 250 ethnicity-matched, healthy controls. No exon deletions or duplicate mutations in the two genes were found in patients with DRD. No mutation in SPR was found. In addition, one patient with the IVS2-2A>G mutation in GCH1 showed signs of Parkinsonism. In conclusion, we here identified a novel heterozygous variant in TH (c.1083C>A). It is important to perform routine screening of GCH1 and TH for patients with DRD. While for patients with Parkinsonism, GCH1 mutation analysis should be performed after screening of genes like PARKIN, PARK7 (DJ-1) and PINK1.
Collapse
Affiliation(s)
- Ya-Ping Yan
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China
| | - Bo Zhang
- b Department of Surgery, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China
| | - Yan-Fang Mao
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China
| | - Zhang-Yu Guo
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China
| | - Jun Tian
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China
| | - Guo-Hua Zhao
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China
| | - Jia-Li Pu
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China
| | - Wei Luo
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China
| | - Zhi-Yuan Ouyang
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China
| | - Bao-Rong Zhang
- a Department of Neurology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China
| |
Collapse
|