1
|
Saranya KR, Vimina ER. DRN-CDR: A cancer drug response prediction model using multi-omics and drug features. Comput Biol Chem 2024; 112:108175. [PMID: 39191166 DOI: 10.1016/j.compbiolchem.2024.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Cancer drug response (CDR) prediction is an important area of research that aims to personalize cancer therapy, optimizing treatment plans for maximum effectiveness while minimizing potential negative effects. Despite the advancements in Deep learning techniques, the effective integration of multi-omics data for drug response prediction remains challenging. In this paper, a regression method using Deep ResNet for CDR (DRN-CDR) prediction is proposed. We aim to explore the potential of considering sole cancer genes in drug response prediction. Here the multi-omics data such as gene expressions, mutation data, and methylation data along with the molecular structural information of drugs were integrated to predict the IC50 values of drugs. Drug features are extracted by employing a Uniform Graph Convolution Network, while Cell line features are extracted using a combination of Convolutional Neural Network and Fully Connected Networks. These features are then concatenated and fed into a deep ResNet for the prediction of IC50 values between Drug - Cell line pairs. The proposed method yielded higher Pearson's correlation coefficient (rp) of 0.7938 with lowest Root Mean Squared Error (RMSE) value of 0.92 when compared with similar methods of tCNNS, MOLI, DeepCDR, TGSA, NIHGCN, DeepTTA, GraTransDRP and TSGCNN. Further, when the model is extended to a classification problem to categorize drugs as sensitive or resistant, we achieved AUC and AUPR measures of 0.7623 and 0.7691, respectively. The drugs such as Tivozanib, SNX-2112, CGP-60474, PHA-665752, Foretinib etc., exhibited low median IC50 values and were found to be effective anti-cancer drugs. The case studies with different TCGA cancer types also revealed the effectiveness of SNX-2112, CGP-60474, Foretinib, Cisplatin, Vinblastine etc. This consistent pattern strongly suggests the effectiveness of the model in predicting CDR.
Collapse
Affiliation(s)
- K R Saranya
- Department of Computer Science and IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India
| | - E R Vimina
- Department of Computer Science and IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| |
Collapse
|
2
|
Kumar S, Mishra S. MALAT1 as master regulator of biomarkers predictive of pan-cancer multi-drug resistance in the context of recalcitrant NRAS signaling pathway identified using systems-oriented approach. Sci Rep 2022; 12:7540. [PMID: 35534592 PMCID: PMC9085754 DOI: 10.1038/s41598-022-11214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
NRAS, a protein mutated in several cancer types, is involved in key drug resistance mechanisms and is an intractable target. The development of drug resistance is one of the major impediments in targeted therapy. Currently, gene expression data is used as the most predictive molecular profile in pan-cancer drug sensitivity and resistance studies. However, the common regulatory mechanisms that drive drug sensitivity/resistance across cancer types are as yet, not fully understood. We focused on GDSC data on NRAS-mutant pan-cancer cell lines, to pinpoint key signaling targets in direct or indirect associations with NRAS, in order to identify other druggable targets involved in drug resistance. Large-scale gene expression, comparative gene co-expression and protein–protein interaction network analyses were performed on selected drugs inducing drug sensitivity/resistance. We validated our data from cell lines with those obtained from primary tissues from TCGA. From our big data studies validated with independent datasets, protein-coding hub genes FN1, CD44, TIMP1, SNAI2, and SPARC were found significantly enriched in signal transduction, proteolysis, cell adhesion and proteoglycans pathways in cancer as well as the PI3K/Akt-signaling pathway. Further studies of the regulation of these hub/driver genes by lncRNAs revealed several lncRNAs as prominent regulators, with MALAT1 as a possible master regulator. Transcription factor EGR1 may control the transcription rate of MALAT1 transcript. Synergizing these studies, we zeroed in on a pan-cancer regulatory axis comprising EGR1-MALAT1-driver coding genes playing a role. These identified gene regulators are bound to provide new paradigms in pan-cancer targeted therapy, a foundation for precision medicine, through the targeting of these key driver genes in the improvement of multi-drug sensitivity or resistance.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Seema Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
3
|
Carazo F, Bértolo C, Castilla C, Cendoya X, Campuzano L, Serrano D, Gimeno M, Planes FJ, Pio R, Montuenga LM, Rubio A. DrugSniper, a Tool to Exploit Loss-Of-Function Screens, Identifies CREBBP as a Predictive Biomarker of VOLASERTIB in Small Cell Lung Carcinoma (SCLC). Cancers (Basel) 2020; 12:E1824. [PMID: 32645997 PMCID: PMC7408696 DOI: 10.3390/cancers12071824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/30/2022] Open
Abstract
The development of predictive biomarkers of response to targeted therapies is an unmet clinical need for many antitumoral agents. Recent genome-wide loss-of-function screens, such as RNA interference (RNAi) and CRISPR-Cas9 libraries, are an unprecedented resource to identify novel drug targets, reposition drugs and associate predictive biomarkers in the context of precision oncology. In this work, we have developed and validated a large-scale bioinformatics tool named DrugSniper, which exploits loss-of-function experiments to model the sensitivity of 6237 inhibitors and predict their corresponding biomarkers of sensitivity in 30 tumor types. Applying DrugSniper to small cell lung cancer (SCLC), we identified genes extensively explored in SCLC, such as Aurora kinases or epigenetic agents. Interestingly, the analysis suggested a remarkable vulnerability to polo-like kinase 1 (PLK1) inhibition in CREBBP-mutant SCLC cells. We validated this association in vitro using four mutated and four wild-type SCLC cell lines and two PLK1 inhibitors (Volasertib and BI2536), confirming that the effect of PLK1 inhibitors depended on the mutational status of CREBBP. Besides, DrugSniper was validated in-silico with several known clinically-used treatments, including the sensitivity of Tyrosine Kinase Inhibitors (TKIs) and Vemurafenib to FLT3 and BRAF mutant cells, respectively. These findings show the potential of genome-wide loss-of-function screens to identify new personalized therapeutic hypotheses in SCLC and potentially in other tumors, which is a valuable starting point for further drug development and drug repositioning projects.
Collapse
Affiliation(s)
- Fernando Carazo
- Department of Biomedical Engineering and Sciences. School of Engineering, University of Navarra, 20018 San Sebastián, Spain; (F.C.); (C.C.); (X.C.); (M.G.); (F.J.P.)
| | - Cristina Bértolo
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), CIBERONC and Navarra’s Health Research Institute (IDISNA), 31008 Pamplona, Spain; (C.B.); (D.S.); (L.M.M.)
| | - Carlos Castilla
- Department of Biomedical Engineering and Sciences. School of Engineering, University of Navarra, 20018 San Sebastián, Spain; (F.C.); (C.C.); (X.C.); (M.G.); (F.J.P.)
| | - Xabier Cendoya
- Department of Biomedical Engineering and Sciences. School of Engineering, University of Navarra, 20018 San Sebastián, Spain; (F.C.); (C.C.); (X.C.); (M.G.); (F.J.P.)
| | - Lucía Campuzano
- University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Diego Serrano
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), CIBERONC and Navarra’s Health Research Institute (IDISNA), 31008 Pamplona, Spain; (C.B.); (D.S.); (L.M.M.)
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Marian Gimeno
- Department of Biomedical Engineering and Sciences. School of Engineering, University of Navarra, 20018 San Sebastián, Spain; (F.C.); (C.C.); (X.C.); (M.G.); (F.J.P.)
| | - Francisco J. Planes
- Department of Biomedical Engineering and Sciences. School of Engineering, University of Navarra, 20018 San Sebastián, Spain; (F.C.); (C.C.); (X.C.); (M.G.); (F.J.P.)
| | - Ruben Pio
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), CIBERONC and Navarra’s Health Research Institute (IDISNA), 31008 Pamplona, Spain; (C.B.); (D.S.); (L.M.M.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Luis M. Montuenga
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), CIBERONC and Navarra’s Health Research Institute (IDISNA), 31008 Pamplona, Spain; (C.B.); (D.S.); (L.M.M.)
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Angel Rubio
- Department of Biomedical Engineering and Sciences. School of Engineering, University of Navarra, 20018 San Sebastián, Spain; (F.C.); (C.C.); (X.C.); (M.G.); (F.J.P.)
| |
Collapse
|
4
|
Öktem EK, Yazar M, Gulfidan G, Arga KY. Cancer Drug Repositioning by Comparison of Gene Expression in Humans and Axolotl (Ambystoma mexicanum) During Wound Healing. ACTA ACUST UNITED AC 2019; 23:389-405. [DOI: 10.1089/omi.2019.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elif Kubat Öktem
- Department of Genetics and Bioengineering, Istanbul Okan University, Istanbul, Turkey
| | - Metin Yazar
- Department of Genetics and Bioengineering, Istanbul Okan University, Istanbul, Turkey
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
5
|
Taguchi YH. Drug candidate identification based on gene expression of treated cells using tensor decomposition-based unsupervised feature extraction for large-scale data. BMC Bioinformatics 2019; 19:388. [PMID: 30717646 PMCID: PMC7394334 DOI: 10.1186/s12859-018-2395-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Although in silico drug discovery is necessary for drug development, two major strategies, a structure-based and ligand-based approach, have not been completely successful. Currently, the third approach, inference of drug candidates from gene expression profiles obtained from the cells treated with the compounds under study requires the use of a training dataset. Here, the purpose was to develop a new approach that does not require any pre-existing knowledge about the drug-protein interactions, but these interactions can be inferred by means of an integrated approach using gene expression profiles obtained from the cells treated with the analysed compounds and the existing data describing gene-gene interactions. RESULTS In the present study, using tensor decomposition-based unsupervised feature extraction, which represents an extension of the recently proposed principal-component analysis-based feature extraction, gene sets and compounds with a significant dose-dependent activity were screened without any training datasets. Next, after these results were combined with the data showing perturbations in single-gene expression profiles, genes targeted by the analysed compounds were inferred. The set of target genes thus identified was shown to significantly overlap with known target genes of the compounds under study. CONCLUSIONS The method is specifically designed for large-scale datasets (including hundreds of treatments with compounds), not for conventional small-scale datasets. The obtained results indicate that two compounds that have not been extensively studied, WZ-3105 and CGP-60474, represent promising drug candidates targeting multiple cancers, including melanoma, adenocarcinoma, liver carcinoma, and breast, colon, and prostate cancers, which were analysed in this in silico study.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| |
Collapse
|
6
|
Search of vasopressin analogs with antiproliferative activity on small-cell lung cancer: drug design based on two different approaches. Future Med Chem 2018; 10:879-894. [PMID: 29589487 DOI: 10.4155/fmc-2017-0178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM Development of compounds with therapeutic application requires the interaction of different disciplines. Several tumors express vasopressin (AVP; arginine vasopressin) receptors with contrasting effects depending on receptor subtype. Desmopressin (dDAVP) is an AVP-selective analog with antiproliferative properties. In this work, an evolutionary approach and a rational strategy were applied in order to design novel AVP analogs. RESULTS We designed two novel analogs; dDInotocin (dDINT, insect analog), and [V4Q5]dDAVP, and demonstrated the importance of the dDAVP conformational loop for its antiproliferative activity. [V4Q5] dDAVP showed major cytostatic effect on lung cancer cells than dDAVP and its cytostatic effect was abolished by V2R blockade. CONCLUSION Combination of these strategies could provide the basis for future studies for the development of improved compounds with potential therapeutic applications.
Collapse
|
7
|
Zarogoulidis P, Papadopoulos V, Maragouli E, Papatsibas G, Karapantzos I, Bai C, Huang H. Tumor heterogenicity: multiple needle biopsies from different lesion sites-key to successful targeted therapy and immunotherapy. Transl Lung Cancer Res 2018. [PMID: 29531904 DOI: 10.21037/tlcr.2018.01.07] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "Theageneio" Cancer Hospital, Thessaloniki, Greece
| | | | - Elena Maragouli
- Oncology Department, University of Thessaly, Larissa, Greece
| | | | - Ilias Karapantzos
- Ear, Nose and Throat Department, "Saint Luke" Private Hospital, Panorama, Thessaloniki, Greece
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200000, China
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200000, China
| |
Collapse
|
8
|
Hyer ML, Milhollen MA, Ciavarri J, Fleming P, Traore T, Sappal D, Huck J, Shi J, Gavin J, Brownell J, Yang Y, Stringer B, Griffin R, Bruzzese F, Soucy T, Duffy J, Rabino C, Riceberg J, Hoar K, Lublinsky A, Menon S, Sintchak M, Bump N, Pulukuri SM, Langston S, Tirrell S, Kuranda M, Veiby P, Newcomb J, Li P, Wu JT, Powe J, Dick LR, Greenspan P, Galvin K, Manfredi M, Claiborne C, Amidon BS, Bence NF. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nat Med 2018; 24:186-193. [DOI: 10.1038/nm.4474] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
|
9
|
Raghu VK, Beckwitt CH, Warita K, Wells A, Benos PV, Oltvai ZN. Biomarker identification for statin sensitivity of cancer cell lines. Biochem Biophys Res Commun 2017; 495:659-665. [PMID: 29146185 DOI: 10.1016/j.bbrc.2017.11.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022]
Abstract
Statins are potent cholesterol reducing drugs that have been shown to reduce tumor cell proliferation in vitro and tumor growth in animal models. Moreover, retrospective human cohort studies demonstrated decreased cancer-specific mortality in patients taking statins. We previously implicated membrane E-cadherin expression as both a marker and mechanism for resistance to atorvastatin-mediated growth suppression of cancer cells; however, a transcriptome-profile-based biomarker signature for statin sensitivity has not yet been reported. Here, we utilized transcriptome data from fourteen NCI-60 cancer cell lines and their statin dose-response data to produce gene expression signatures that identify statin sensitive and resistant cell lines. We experimentally confirmed the validity of the identified biomarker signature in an independent set of cell lines and extended this signature to generate a proposed statin-sensitive subset of tumors listed in the TCGA database. Finally, we predicted drugs that would synergize with statins and found several predicted combination therapies to be experimentally confirmed. The combined bioinformatics-experimental approach described here can be used to generate an initial biomarker signature for anticancer drug therapy.
Collapse
Affiliation(s)
- Vineet K Raghu
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Colin H Beckwitt
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori 680-8553, Japan
| | - Alan Wells
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Panayiotis V Benos
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Zoltán N Oltvai
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
McColl K, Wildey G, Sakre N, Lipka MB, Behtaj M, Kresak A, Chen Y, Yang M, Velcheti V, Fu P, Dowlati A. Reciprocal expression of INSM1 and YAP1 defines subgroups in small cell lung cancer. Oncotarget 2017; 8:73745-73756. [PMID: 29088741 PMCID: PMC5650296 DOI: 10.18632/oncotarget.20572] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
The majority of small cell lung cancer (SCLC) patients demonstrate initial chemo-sensitivity, whereas a distinct subgroup of SCLC patients, termed chemo-refractory, do not respond to treatment. There is little understanding of how to distinguish these patients prior to disease treatment. Here we used gene expression profiling to stratify SCLC into subgroups and characterized a molecular phenotype that may identify, in part, chemo-refractive SCLC patients. Two subgroups of SCLC were identified in both cell lines and tumors by the reciprocal expression of two genes; INSM1, a neuroendocrine transcription factor, and YAP1, a key mediator of the Hippo pathway. The great majority of tumors expressed INSM1, which was prognostic for increased progression-free survival and associated with chemo-sensitivity in cell lines. YAP1 is expressed in a minority of SCLC tumors and was shown in cell lines to be downstream of the retinoblastoma protein (RB1) and associated with decreased drug sensitivity. RB1 expression in SCLC cell lines sensitizes them to CDK4/6 inhibitors. Wild-type RB1 mutation status, used as a surrogate marker of YAP1 expression, was prognostic for decreased patient survival and increased chemo-refractory tumor response. Thus, the reciprocal expression of INSM1 and YAP1 appears to stratify SCLC into distinct subgroups and may be useful, along with RB1 mutation status, to identify chemo-refractory SCLC patients.
Collapse
Affiliation(s)
- Karen McColl
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Gary Wildey
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Nneha Sakre
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Mary Beth Lipka
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Mohadese Behtaj
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Adam Kresak
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Yanwen Chen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Yang
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Vamsidhar Velcheti
- Division of Hematology and Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Afshin Dowlati
- Division of Hematology and Oncology, Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| |
Collapse
|
11
|
Awad MM, Chu QSC, Gandhi L, Stephenson JJ, Govindan R, Bradford DS, Bonomi PD, Ellison DM, Eaton KD, Fritsch H, Munzert G, Johnson BE, Socinski MA. An open-label, phase II study of the polo-like kinase-1 (Plk-1) inhibitor, BI 2536, in patients with relapsed small cell lung cancer (SCLC). Lung Cancer 2017; 104:126-130. [PMID: 28212994 DOI: 10.1016/j.lungcan.2016.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVES This phase II, open-label study was designed to evaluate the response rate to the polo-like kinase 1 (Plk-1) inhibitor BI 2536 in patients with sensitive-relapsed small cell lung cancer (SCLC). Secondary endpoints included progression-free survival (PFS), overall survival (OS), duration of response, and safety. MATERIALS AND METHODS Patients were treated with the recommended phase II dose of 200mg of BI 2536 intravenously every 21days. This was a two-stage design with an early stopping rule in place if responses were not seen in at least 2 of the first 18 enrolled patients. RESULTS AND CONCLUSION Twenty-three patients were enrolled in the study and 21 patients were evaluable for response. No responses were observed and all 23 patients have progressed. The median PFS was 1.4 months. Treatment was generally well tolerated and the most frequent adverse events were neutropenia, fatigue, nausea, vomiting, and constipation. BI 2536 is not effective in the treatment of sensitive relapsed SCLC. The criteria for expanding the trial to the second stage were not achieved, and the study was terminated for a lack of efficacy.
Collapse
Affiliation(s)
- Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Quincy S-C Chu
- Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Leena Gandhi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - David M Ellison
- Charleston Hematology Oncology Associates, Charleston, SC, USA
| | | | | | | | - Bruce E Johnson
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
12
|
Romanidou O, Imbimbo M, Mountzios G, Abidin A, Morgillo F, Califano R. Therapies in the pipeline for small-cell lung cancer. Br Med Bull 2016; 119:37-48. [PMID: 27325208 DOI: 10.1093/bmb/ldw022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 11/12/2022]
Abstract
INTRODUCTION OR BACKGROUND Small-cell lung cancer (SCLC) represents ~15% of all cases of lung cancer and is characterized by a rapid tumour doubling time, early onset disease dissemination and high sensitivity to chemotherapy. SOURCES OF DATA We searched MEDLINE and OVID databases for articles in English published from January 1980 to February 2015. AREAS OF AGREEMENT Platinum-based chemotherapy, thoracic radiotherapy and prophylactic cranial irradiation are standard of care. Benefit from second-line chemotherapy is limited. AREAS OF CONTROVERSY The role of platinum/irinotecan chemotherapy in the Western population and the role of maintenance therapies remain to be established. GROWING POINTS Knowledge of the biology of SCLC has expanded exponentially and many potential therapeutic targets have been identified. AREAS TIMELY FOR DEVELOPING RESEARCH The use of circulating tumour cells can help investigating molecular alterations occurring within tumour cells, understanding drug resistance mechanisms and evaluating new treatments.
Collapse
Affiliation(s)
- Ourania Romanidou
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK Department of Medical Oncology, Papageorgiou General Hospital, Thessaloniki 56403, Greece
| | - Martina Imbimbo
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Aidalena Abidin
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Floriana Morgillo
- Dipartimento di internistica clinica e sperimentale 'F. Magrassi e A. Lanzara', Seconda Università degli studi di Napoli, Naples, Italy
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK Department of Medical Oncology, University Hospital of South Manchester, Manchester M23 9LT, UK
| |
Collapse
|
13
|
Owonikoko TK, Zhang G, Kim HS, Stinson RM, Bechara R, Zhang C, Chen Z, Saba NF, Pakkala S, Pillai R, Deng X, Sun SY, Rossi MR, Sica GL, Ramalingam SS, Khuri FR. Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J Transl Med 2016; 14:111. [PMID: 27142472 PMCID: PMC4855771 DOI: 10.1186/s12967-016-0861-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023] Open
Abstract
Background SCLC has limited treatment options and inadequate preclinical models. Promising activity of arsenic trioxide (ASO) recorded in conventional preclinical models of SCLC supported the clinical evaluation of ASO in patients. We assessed the efficacy of ASO in relapsed SCLC patients and in corresponding patient-derived xenografts (PDX). Methods Single arm, Simon 2-stage, phase II trial to enroll patients with relapsed SCLC who have failed at least one line of therapy. ASO was administered as an intravenous infusion over 1–2 h daily for 4 days in week 1 and for 2 days in weeks 2–6 of an 8-week cycle. Treatment continued until disease progression. Pretreatment tumor biopsy was employed for PDX generation through direct implantation into subcutaneous pockets of SCID mice without in vitro manipulation and serially propagated for five generations. Ex vivo efficacy of cisplatin (3 mg/kg i.p. weekly) and ASO (3.75 mg/kg i.p. every other day) was tested in PDX representative of platinum sensitive and platinum refractory SCLC. Results The best response in 17 evaluable patients was stable disease in 2 (12 %), progressive disease in 15 (88 %) patients and median time-to-progression of seven (range 1–7) weeks. PDX was successfully grown in 5 of 9 (56 %) transplanted biopsy samples. Serially-propagated PDXs preserved characteristic small cell histology and genomic stability confirmed by immunohistochemistry, short tandem repeat (STR) profiling and targeted sequencing. ASO showed in vitro cytotoxicity but lacked in vivo efficacy against SCLC PDX tumor growth. Conclusions Cisplatin inhibited growth of PDX derived from platinum-sensitive SCLC but was ineffective against PDX from platinum-refractory SCLC. Strong concordance between clinical and ex vivo effects of ASO and cisplatin in SCLC supports the use of PDX models to prescreen promising anticancer agents prior to clinical testing in SCLC patients. Trial Registration The study was registered at http://www.clinicaltrials.gov (NCT01470248) Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0861-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taofeek K Owonikoko
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA.
| | - Guojing Zhang
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Hyun S Kim
- Department of Radiology, Division of Interventional Radiology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | | | - Rabih Bechara
- Department of Medicine, Division of Interventional Pulmonology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Chao Zhang
- Department of Biostatistics, Rollins School of Public Health and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Zhengjia Chen
- Department of Biostatistics, Rollins School of Public Health and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Suchita Pakkala
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Rathi Pillai
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Shi-Yong Sun
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Michael R Rossi
- Department of Radiation Oncology, Winship Cancer Institute, Atlanta, GA, 30322, USA.,Department of Pathology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Gabriel L Sica
- Department of Pathology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Suresh S Ramalingam
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Fadlo R Khuri
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| |
Collapse
|
14
|
Koinis F, Kotsakis A, Georgoulias V. Small cell lung cancer (SCLC): no treatment advances in recent years. Transl Lung Cancer Res 2016; 5:39-50. [PMID: 26958492 PMCID: PMC4758968 DOI: 10.3978/j.issn.2218-6751.2016.01.03] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/28/2015] [Indexed: 12/23/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy with a distinct natural history and dismal prognosis. Given its predisposition for early dissemination, patients are commonly diagnosed with metastatic disease and chemotherapy is regarded as the cornerstone of approved treatment strategies. However, over the last 30 years there has been a distinct paucity of significant breakthroughs in SCLC therapy. Thus, SCLC is characterized as a recalcitrant neoplasm with limited therapeutic options. By employing well-established research approaches, proven to be efficacious in non-small cell lung cancer (NSCLC), a growing amount of data has shed light on the molecular biology of SCLC and enhanced our knowledge of the "drivers" of tumor cell survival and proliferation. New therapeutic targets have emerged, but no significant improvement in patients' survival has been demonstrated thus far. In a sense, the more we know, the more we fail. Nowadays this is starting to change and methodical research efforts are underway. It is anticipated that the next decade will see a revolution in the treatment of SCLC patients with the application of effective precision medicine and immunotherapy strategies.
Collapse
|
15
|
Li J, Fang B, Kinose F, Bai Y, Kim JY, Chen YA, Rix U, Koomen JM, Haura EB. Target Identification in Small Cell Lung Cancer via Integrated Phenotypic Screening and Activity-Based Protein Profiling. Mol Cancer Ther 2016; 15:334-42. [PMID: 26772203 DOI: 10.1158/1535-7163.mct-15-0444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023]
Abstract
To overcome hurdles in identifying key kinases in small cell lung cancer (SCLC), we integrated a target-agnostic phenotypic screen of kinase inhibitors with target identification using activity-based protein profiling (ABPP) in which a desthiobiotin-ATP probe was used. We screened 21 SCLC cell lines with known c-MYC amplification status for alterations in viability using a chemical library of 235 small-molecule kinase inhibitors. One screen hit compound was interrogated with ABPP, and, through this approach, we reidentified Aurora kinase B as a critical kinase in MYC-amplified SCLC cells. We next extended the platform to a second compound that had activity in SCLC cell lines lacking c-MYC amplification and identified TANK-binding kinase 1, a kinase that affects cell viability, polo-like kinase-1 signaling, G2-M arrest, and apoptosis in SCLC cells lacking MYC amplification. These results demonstrate that phenotypic screening combined with ABPP can identify key disease drivers, suggesting that this approach, which combines new chemical probes and disease cell screens, has the potential to identify other important targets in other cancer types. Mol Cancer Ther; 15(2); 334-42. ©2016 AACR.
Collapse
Affiliation(s)
- Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Bin Fang
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jae-Young Kim
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yian A Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
16
|
Gerber DE, Paik PK, Dowlati A. Beyond adenocarcinoma: current treatments and future directions for squamous, small cell, and rare lung cancer histologies. Am Soc Clin Oncol Educ Book 2015:147-162. [PMID: 25993153 DOI: 10.14694/edbook_am.2015.35.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lung cancer encompasses a diverse spectrum of histologic subtypes. Until recently, the majority of therapeutic advances were limited to the minority of patients with adenocarcinoma. With the advent of comprehensive genomic profiling of squamous and small cell lung cancers, new therapeutic targets have emerged. For squamous tumors, the most promising of these include fibroblast growth factor receptor (FGFR), the phosphatidylinositol 3-kinase (PI3K) pathway, discoidin domain receptor 2 (DDR2), and G1/S checkpoint regulators. In 2014, the antiangiogenic agent ramucirumab was approved for all non-small cell lung cancer (NSCLC) histologies, including squamous tumors. Immunotherapeutic approaches also appear to be promising for these cases. Genomic analysis of small cell lung cancer has revealed a high mutation burden, but relatively few druggable driver oncogenic alterations. Current treatment strategies under investigation are focusing on targeting mitotic, cell cycle, and DNA repair regulation, as well as immunotherapy. Pulmonary neuroendocrine tumors represent a diverse spectrum of diseases that may be treated with somatostatin analogs, cytotoxic agents, and molecularly targeted therapies. Radiolabeled somatostatin analogs and combinations with mammalian target of rapamycin (mTOR) inhibitors also show potential. Large cell neuroendocrine tumors share numerous clinical, pathologic, and molecular features with small cell lung cancer; however, whether they should be treated similarly or according to a NSCLC paradigm remains a matter of debate.
Collapse
Affiliation(s)
- David E Gerber
- From The University of Texas Southwestern Medical Center, Dallas, TX; Memorial Sloan Kettering Cancer Center, New York, NY; Case Western Reserve University, Cleveland, OH
| | - Paul K Paik
- From The University of Texas Southwestern Medical Center, Dallas, TX; Memorial Sloan Kettering Cancer Center, New York, NY; Case Western Reserve University, Cleveland, OH
| | - Afshin Dowlati
- From The University of Texas Southwestern Medical Center, Dallas, TX; Memorial Sloan Kettering Cancer Center, New York, NY; Case Western Reserve University, Cleveland, OH
| |
Collapse
|