1
|
Gupta D, Brangaccio J, Mojtabavi H, Carp JS, Wolpaw JR, Hill NJ. Frequency dependence of cortical somatosensory evoked response to peripheral nerve stimulation with controlled afferent excitation. J Neural Eng 2025; 22:026035. [PMID: 40101361 PMCID: PMC11951476 DOI: 10.1088/1741-2552/adc204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/27/2025] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
Objective.H-reflex targeted neuroplasticity (HrTNP) protocols comprise a promising rehabilitation approach to improve motor function after brain or spinal injury. In this operant conditioning protocol, concurrent measurement of cortical responses, such as somatosensory evoked potentials (SEPs), would be useful for examining supraspinal involvement and neuroplasticity mechanisms. To date, this potential has not been exploited. However, the stimulation parameters used in the HrTNP protocol deviate from the classically recommended settings for SEP measurements. Most notably, it demands a much longer pulse width, higher stimulation intensity, and lower frequency than traditional SEP settings. In this paper, we report SEP measurements performed within the HrTNP stimulation parameter constraints, specifically characterizing the effect of stimulation frequency.Approach.SEPs were acquired for tibial nerve stimulation at three stimulation frequencies (0.2, 1, and 2 Hz) in 13 subjects while maintaining the afferent volley by controlling the direct soleus muscle response via the Evoked Potential Operant Conditioning System. The amplitude and latency of the short-latency P40 and mid-latency N70 SEP components were measured at the central scalp region using non-invasive electroencephalography.Mainresults.As frequency rose from 0.2 Hz, P40 amplitude and latency did not change. In contrast, N70 amplitude decreased significantly (39% decrease at 1 Hz, and 57% decrease at 2 Hz), presumably due to gating effects. N70 latency was not affected. Across all three frequencies, N70 amplitude increased significantly with stimulation intensity and correlated with M-wave amplitude.Significance. We assess SEPs within an HrTNP protocol, focusing on P40 and N70, elicited with controlled afferent excitation at three stimulation frequencies. HrTNP conditioning protocols show promise for enhancing motor function after brain and spinal injuries. While SEPs offer valuable insights into supraspinal involvement, the stimulation parameters in HrTNP often differ from standard SEP measurement protocols. We address these deviations and provide recommendations for effectively integrating SEP assessments into HrTNP studies.
Collapse
Affiliation(s)
- Disha Gupta
- US. Department of Veterans Affairs, National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, United States of America
- Electrical and Computer Engineering Department, State University of Albany, Albany, NY, United States of America
| | - Jodi Brangaccio
- US. Department of Veterans Affairs, National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, United States of America
| | - Helia Mojtabavi
- US. Department of Veterans Affairs, National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, United States of America
| | - Jonathan S Carp
- US. Department of Veterans Affairs, National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, United States of America
- School of Public Health, State University of New York at Albany, Albany, NY, United States of America
| | - Jonathan R Wolpaw
- US. Department of Veterans Affairs, National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, United States of America
- Electrical and Computer Engineering Department, State University of Albany, Albany, NY, United States of America
- School of Public Health, State University of New York at Albany, Albany, NY, United States of America
| | - N Jeremy Hill
- US. Department of Veterans Affairs, National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, United States of America
- Electrical and Computer Engineering Department, State University of Albany, Albany, NY, United States of America
| |
Collapse
|
2
|
Ramawat S, Marc IB, Di Bello F, Bardella G, Ferraina S, Pani P, Brunamonti E. Force monitoring reveals single trial dynamics of motor control in a stop signal task. Physiol Rep 2024; 12:e70127. [PMID: 39562144 PMCID: PMC11576127 DOI: 10.14814/phy2.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
The Stop Signal Task (SST) has been the benchmark for studying the behavioral and physiological basis of movement generation and inhibition. In our study, we extended the scope beyond physiological findings related to muscle activity, focusing our analysis on the initial biomechanical state of the effector. By incorporating a force sensitive resistor (FSR), we continuously monitored the force applied by the effector (here, the index finger) during a button release version of the SST. This modified task design allowed us to examine both the baseline force before the relevant Go signal was presented and during the covert state of movement preparation. Notably, variations in force over time in response to the Go signal revealed differences across trials where movement was either generated or successfully inhibited, depending on the amount of force during the baseline period. Specifically, higher baseline force was associated with a delayed movement generation, which, simultaneously slowed down the force release, facilitating successful inhibition when requested. Our results highlight the influence of biomechanical variables in movement control, which should be accounted for by the models developed for investigating the physiology of this ability.
Collapse
Affiliation(s)
- Surabhi Ramawat
- Department of Physiology and PharmacologySapienza UniversityRomeItaly
| | - Isabel B. Marc
- Department of Physiology and PharmacologySapienza UniversityRomeItaly
- Behavioral Neuroscience PhD ProgramSapienza UniversityRomeItaly
| | - Fabio Di Bello
- Department of Physiology and PharmacologySapienza UniversityRomeItaly
| | | | - Stefano Ferraina
- Department of Physiology and PharmacologySapienza UniversityRomeItaly
| | - Pierpaolo Pani
- Department of Physiology and PharmacologySapienza UniversityRomeItaly
| | | |
Collapse
|
3
|
Akaiwa M, Matsuda Y, Saito H, Shibata E, Sasaki T, Sugawara K. Effects of repetitive practice of motor tasks on somatosensory gating. Front Hum Neurosci 2023; 17:1131986. [PMID: 37063102 PMCID: PMC10090363 DOI: 10.3389/fnhum.2023.1131986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionDuring voluntary muscle contraction, the amplitude of the somatosensory evoked potential (SEP) is reduced by inhibiting sensory information from a peripheral nerve supplying the contracted muscle. This phenomenon is called “gating.” We reported that participants with good motor skills indicated strong suppression of somatosensory information. The present study investigated the effects of motor performance improvement following repetitive practice on the SEP amplitude.MethodsThe ball rotation task (BR task) was practiced by 15 healthy participants repetitively. SEPs were recorded before (pre) and after (post) repetitive practice.ResultsThe BR task performance was significantly improved and the required muscle activation to perform the task was significantly reduced after the repetitive practice. The degree of gating was not significant between pre and post- for the SEP amplitude. A significant correlation was found between changes in SEP amplitude from pre to post and performance improvement.DiscussionAfter repetitive practice, the degree of gating did not change, but the performance of the BR task improved, and the muscle activity required for the BR task decreased. These results suggest that repetitive practice does not change the degree of gating but changes the mechanism of gating. Furthermore, they indicate that suppression of the somatosensory area may play a role in improving task performance.
Collapse
Affiliation(s)
- Mayu Akaiwa
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuya Matsuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Hidekazu Saito
- Department of Occupational Therapy, School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Eriko Shibata
- Department of Physical Therapy, Faculty of Human Science, Hokkaido Bunkyo University, Eniwa, Japan
| | - Takeshi Sasaki
- Department of Physical Therapy, School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Kazuhiro Sugawara
- Department of Physical Therapy, School of Health Science, Sapporo Medical University, Sapporo, Japan
- *Correspondence: Kazuhiro Sugawara,
| |
Collapse
|
4
|
Primary somatosensory cortex sensitivity may increase upon completion of a motor task. Neurosci Lett 2023; 801:137160. [PMID: 36858306 DOI: 10.1016/j.neulet.2023.137160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVES The electroencephalogram and magnetic field primary somatosensory cortex (S1)-derived components are attenuated before and during motor tasks compared to the resting state, a phenomenon called gating; however, the S1 response after a motor task has not been well studied. We aimed to investigate sensory information processing immediately after motor tasks using magnetoencephalography. MATERIALS AND METHODS We investigated sensory information processing immediately after finger movement using magnetoencephalography in 14 healthy adults. Volunteers performed a simple reaction task where they were required to press a button when they received a cue. In parallel, electrical stimulation to the right index finger was applied at regular intervals to detect the magnetic brain field changes. The end of the motor task timing was defined using the event-related synchronization (ERS) appearance latency in the brain magnetic field's beta band around the primary motor cortex. The ERS appearance latency and the sensory stimuli timing applied every 500 ms were synchronized over the experimental system timeline. We examined whether there was a difference in the S1 somatosensory evoked field responses between the ERS emergence and ERS disappearance phase, focusing on the N20m-P35m peak-to-peak amplitude (N20m-P35m amplitude) value. A control experiment was also conducted in which only sensory stimulation was applied with no motor task. RESULTS The N20m-P35m mean amplitude value was significantly higher in the ERS emergence phase (15.81 nAm; standard deviation [SD], 6.54 nAm) than in the ERS disappearance phase (13.54 nAm; SD, 5.12 nAm) (p < 0.05) and the control (12.08 nAm, SD 5.61 nAm) (p = 0.013). No statistically significant differences were identified between the ERS disappearance phase and the control (p = 0.281). CONCLUSIONS The S1 sensitivity may increase rapidly after exiting from the gating influence in S1 (after completing a motor task).
Collapse
|
5
|
Akaiwa M, Matsuda Y, Soma Y, Shibata E, Saito H, Sasaki T, Sugawara K. The relationships between motor behavior and sensory gating in the ball rotation task. Exp Brain Res 2022; 240:2659-2666. [PMID: 35951094 DOI: 10.1007/s00221-022-06439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/04/2022] [Indexed: 11/04/2022]
Abstract
During voluntary muscle contraction, sensory information induced by electrostimulation of the nerves supplying the contracting muscle is inhibited and the amplitude of the corresponding somatosensory evoked potential (SEP) decreases. This phenomenon is called "gating." The reduction of the SEP amplitude is reportedly significantly larger when task performance is high. However, the relationship between dexterous movement skills and gating remains unclear. In this study, we investigated through a ball rotation (BR) task how dexterous movement skills affect the SEP amplitudes. Thirty healthy subjects performed the BR task comprising the rotation of two wooden balls as quickly as possible. We estimated the median number of ball rotations for each participant and classified the participants into two (fast and slow) groups based on the results. Moreover, we recorded SEPs, while the subjects performed BR tasks or rested. SEP amplitude reduction (P45) was significantly larger in the fast than in the slow group. We also observed that the P45 amplitude during the BR task was attenuated even more so in the case of the participants with better dexterous movement skills. Our results suggest that the participants with better dexterous movement skills might display stronger somatosensory information suppression because of increasing the motor cortex activity and the afferent input during the BR task.
Collapse
Affiliation(s)
- Mayu Akaiwa
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yuya Matsuda
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yuta Soma
- Department of Rehabilitation, Kashiwaba Neurosurgical Hospital, Sapporo, Hokkaido, Japan
| | - Eriko Shibata
- Department of Physical Therapy, Faculty of Human Science, Hokkaido Bunkyo University, Eniwa, Hokkaido, Japan
| | - Hidekazu Saito
- Department of Occupational Therapy, School of Health Science, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Takeshi Sasaki
- Department of Physical Therapy, School of Health Science, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Kazuhiro Sugawara
- Department of Physical Therapy, School of Health Science, Sapporo Medical University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
6
|
Takahara T, Yamaguchi H, Seki K, Onodera S. Modulation of subjective peripheral sensation, F-waves, and somatosensory evoked potentials in response to unilateral pinch task measured on the contractile and non-contractile sides. PLoS One 2022; 17:e0261393. [PMID: 35452456 PMCID: PMC9032341 DOI: 10.1371/journal.pone.0261393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/10/2022] [Indexed: 11/19/2022] Open
Abstract
Depression of the sensory input during voluntary muscle contractions has been demonstrated using electrophysiological methods in both animals and humans. However, the association between electrophysiological responses of the sensory system and subjective peripheral sensation (SPS) during a voluntary muscle contraction remains unclear. This study aimed to describe the changes in SPS, spinal α-motoneuron excitability (F-wave to M-wave amplitude), and somatosensory evoked potentials (SEPs) during a unilateral pinch-grip task. Outcome variables were measured on the side ipsilateral and contralateral to the muscle contraction and at rest (control). Participants were 8 healthy men aged 20.9±0.8 years. The isometric pinch-grip task was performed at 30% of the maximum voluntary isometric force measured for the right and left hands separately. The appearance rate of the F-wave during the task was significantly higher for the ipsilateral (right) hand than for the contralateral (left) hand and control condition. Although there was no difference in the F-wave latency between hands and the control condition, the amplitude of the F-wave was significantly higher for the ipsilateral (right) hand than for the contralateral (left) hand and the control condition. There was no difference in the amplitude of the SEP at N20. However, the amplitude at P25 was significantly lower for the ipsilateral (right) hand than for the contralateral (left) hand and the control condition. The accuracy rate of detecting tactile stimulation, evaluated for 20 repetitions using a Semmes-Weinstein monofilament at the sensory threshold for each participant, was significantly lower during the pinch-grip task for both the ipsilateral (right) and contralateral (left) hands than in the control condition. Overall, our findings show that SPS and neurophysiological parameters were not modulated in parallel during the task, with changes in the subjective sensation preceding changes in electrophysiological indices during the motor task. Our findings provide basic information on sensory-motor coordination.
Collapse
Affiliation(s)
- Terumasa Takahara
- Department of Sport Social Management, KIBI International University, Takahashi, Okayama, Japan
| | - Hidetaka Yamaguchi
- Department of Sport Social Management, KIBI International University, Takahashi, Okayama, Japan
| | - Kazutoshi Seki
- Department of Human Health and Wellbeing, University of Marketing and Distribution Science, Kobe, Hyogo, Japan
| | - Sho Onodera
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| |
Collapse
|
7
|
Kunugi S, Holobar A, Kodera T, Toyoda H, Watanabe K. Motor unit firing patterns on increasing force during force and position tasks. J Neurophysiol 2021; 126:1653-1659. [PMID: 34669517 DOI: 10.1152/jn.00299.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Different neurophysiological strategies are used to perform angle adjustments during motor tasks such as car driving and force-control tasks using a fixed-rigid pedal. However, the difference in motor unit behavior in response to an increasing exerted force between tasks is unknown. This study aimed to investigate the difference in motor unit responsiveness on increasing force between force and position tasks. Twelve healthy participants performed ramp and hold contractions during ankle plantarflexion at 20% and 30% of the maximal voluntary contraction using a rigid pedal (force task) and a free pedal with an inertial load (position task). High-density surface electromyograms were recorded of the medial gastrocnemius muscle and decomposed into individual motor unit firing patterns. Ninety and hundred and nine motor units could be tracked between different target torques in each task. The mean firing rate increased and firing rate variability decreased on 10% maximal voluntary contraction force gain during both force and position tasks. There were no significant differences in these responses between the two tasks. Our results suggest that the motor unit firing rate is similarly regulated between force and position tasks in the medial gastrocnemius muscle with an increase in the exerted force.NEW & NOTEWORTHY Different neurophysiological strategies are used to perform a force control task and angle adjustment task. Our results showed that motor unit firing rate is similarly regulated between the two tasks in the medial gastrocnemius muscle with an increase in the exerted force. Although it is reported that position tasks contribute to early fatigue, it does not seem to be a particular problem for the increase in force.
Collapse
Affiliation(s)
- Shun Kunugi
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, grid.411620.0Chukyo University, Aichi, Japan
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | | | | | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, grid.411620.0Chukyo University, Aichi, Japan
| |
Collapse
|
8
|
Wasaka T, Kida T, Kakigi R. Dexterous manual movement facilitates information processing in the primary somatosensory cortex: A magnetoencephalographic study. Eur J Neurosci 2021; 54:4638-4648. [PMID: 33987876 PMCID: PMC8361953 DOI: 10.1111/ejn.15310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
The interaction between the somatosensory and motor systems is important for control of movement in humans. Cortical activity related to somatosensory response and sensory perception is modulated by the influence of movement executing mechanisms. This phenomenon has been observed as inhibition in the short‐latency components of somatosensory evoked potentials and magnetic fields (SEPs/SEFs). Although finger is the most dexterous among all the body parts, the sensorimotor integration underlying this dexterity has not yet been elucidated. The purpose of this study was to examine the sensorimotor integration mechanisms in the primary somatosensory cortex (SI) during simple and complicated finger movement. The participant performed tasks that involved picking up a wooden block (PM task) and picking up and turning the wooden block 180° (PTM task) using the right‐hand fingers. During these tasks, the SEFs following right median nerve stimulation were recorded using magnetoencephalography. The amplitude of the M20 and M30 components showed a significant reduction during both manual tasks compared to the stationary task, whereas the M38 component showed a significant enhancement in amplitude. Furthermore, the SEFs recorded during continuous rotation of the block (rotation task) revealed a characteristic pattern of SI activity that was first suppressed and then facilitated. Since this facilitation is noticeable during complicated movement of the fingers, this phenomenon is thought to underlie a neural mechanism related to finger dexterity.
Collapse
Affiliation(s)
- Toshiaki Wasaka
- Department of Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tetsuo Kida
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,Higher Brain Function Unit, Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan.,Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
9
|
Matsumoto T, Watanabe T, Kuwabara T, Yunoki K, Chen X, Kubo N, Kirimoto H. Excitability of the Ipsilateral Primary Motor Cortex During Unilateral Goal-Directed Movement. Front Hum Neurosci 2021; 15:617146. [PMID: 33679346 PMCID: PMC7925409 DOI: 10.3389/fnhum.2021.617146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Previous transcranial magnetic stimulation (TMS) studies have revealed that the activity of the primary motor cortex ipsilateral to an active hand (ipsi-M1) plays an important role in motor control. The aim of this study was to investigate whether the ipsi-M1 excitability would be influenced by goal-directed movement and laterality during unilateral finger movements. Method Ten healthy right-handed subjects performed four finger tapping tasks with the index finger: (1) simple tapping (Tap) task, (2) Real-word task, (3) Pseudoword task, and (4) Visually guided tapping (VT) task. In the Tap task, the subject performed self-paced simple tapping on a touch screen. In the real-word task, the subject tapped letters displayed on the screen one by one to create a Real-word (e.g., apple). Because the action had a specific purpose (i.e., creating a word), this task was considered to be goal-directed as compared to the Tap task. In the Pseudoword task, the subject tapped the letters to create a pseudoword (e.g., gdiok) in the same manner as in the Real-word task; however, the word was less meaningful. In the VT task, the subject was required to touch a series of illuminated buttons. This task was considered to be less goal-directed than the Pseudoword task. The tasks were performed with the right and left hand, and a rest condition was added as control. Single- and paired-pulse TMS were applied to the ipsi-M1 to measure corticospinal excitability and short- and long-interval intracortical inhibition (SICI and LICI) in the resting first dorsal interosseous (FDI) muscle. Results We found the smaller SICI in the ipsi-M1 during the VT task compared with the resting condition. Further, both SICI and LICI were smaller in the right than in the left M1, regardless of the task conditions. Discussion We found that SICI in the ipsi-M1 is smaller during visual illumination-guided finger movement than during the resting condition. Our finding provides basic data for designing a rehabilitation program that modulates the M1 ipsilateral to the moving limb, for example, for post-stroke patients with severe hemiparesis.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayuki Kuwabara
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Yunoki
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Xiaoxiao Chen
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nami Kubo
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Takahara T, Yamaguchi H, Seki K, Onodera S. Sensory gating and suppression of subjective peripheral sensations during voluntary muscle contraction. BMC Neurosci 2020; 21:41. [PMID: 33003995 PMCID: PMC7528260 DOI: 10.1186/s12868-020-00592-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND During voluntary muscle contraction, sensory information induced by electrostimulation of the nerves supplying the contracting muscle is inhibited and the somatosensory evoked potentials (SEPs) amplitude decreases. This depression of sensory input during voluntary muscle contraction has been demonstrated by many studies using electrophysiological methods. However, the association between the electrophysiological response of the sensory system during sustained muscle contraction and subjective peripheral sensation (SPS) is still unclear. The aim of this study was to investigate changes in spinal excitability, SEPs, and SPS during voluntary muscle contraction. RESULTS The appearance rate of the F-wave was significantly higher during muscle contraction than rest, whereas no significant difference was observed in F-wave latency between muscle contraction and rest. Furthermore, the P25 amplitude of SEPs was significantly lower during muscle contraction than rest, whereas the N20 amplitude of SEPs exhibited no significant differences. The SPS was significantly lower during muscle contraction than rest CONCLUSIONS: We conclude that sensory gating, which is found in the P25 component of SEPs during muscle contraction, is one of the neurophysiological mechanisms underlying the suppression of SPS.
Collapse
Affiliation(s)
- Terumasa Takahara
- Department of Sport Social Management, KIBI International University, 8 Igamachi, Takahashi, Okayama, 716-8508, Japan.
| | - Hidetaka Yamaguchi
- Department of Sport Social Management, KIBI International University, 8 Igamachi, Takahashi, Okayama, 716-8508, Japan
| | - Kazutoshi Seki
- Department of Human Health and Wellbeing, University of Marketing and Distribution Science, Kobe. 3-1 Gakuen-Nishimachi, Nishi-ku, Kobe, Hyogo, 651-2188, Japan
| | - Sho Onodera
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| |
Collapse
|
11
|
Gating of Sensory Input at Subcortical and Cortical Levels during Grasping in Humans. J Neurosci 2018; 38:7237-7247. [PMID: 29976624 DOI: 10.1523/jneurosci.0545-18.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 01/27/2023] Open
Abstract
Afferent input from the periphery to the cortex contributes to the control of grasping. How sensory input is gated along the ascending sensory pathway and its functional role during gross and fine grasping in humans remain largely unknown. To address this question, we assessed somatosensory-evoked potential components reflecting activation at subcortical and cortical levels and psychophysical tests at rest, during index finger abduction, precision, and power grip. We found that sensory gating at subcortical level and in the primary somatosensory cortex (S1), as well as intracortical inhibition in the S1, increased during power grip compared with the other tasks. To probe the functional relevance of gating in the S1, we examined somatosensory temporal discrimination threshold by measuring the shortest time interval to perceive a pair of electrical stimuli. Somatosensory temporal discrimination threshold increased during power grip, and higher threshold was associated with increased intracortical inhibition in the S1. These novel findings indicate that humans gate sensory input at subcortical level and in the S1 largely during gross compared with fine grasping. Inhibitory processes in the S1 may increase discrimination threshold to allow better performance during power grip.SIGNIFICANCE STATEMENT Most of our daily life actions involve grasping. Here, we demonstrate that gating of afferent input increases at subcortical level and in the primary somatosensory cortex (S1) during gross compared with fine grasping in intact humans. The precise timing of sensory information is critical for human perception and behavior. Notably, we found that the ability to perceive a pair of electrical stimuli, as measured by the somatosensory temporal discrimination threshold, increased during power grip compared with the other tasks. We propose that reduced afferent input to the S1 during gross grasping behaviors diminishes temporal discrimination of sensory processes related, at least in part, to increased inhibitory processes within the S1.
Collapse
|
12
|
Lei Y, Perez MA. Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity. J Physiol 2017; 595:6203-6217. [PMID: 28513860 DOI: 10.1113/jp274504] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS It has long been known that the somatosensory cortex gates sensory inputs from the contralateral side of the body. Here, we examined the contribution of the ipsilateral somatosensory cortex (iS1) to sensory gating during index finger voluntary activity. The amplitude of the P25/N33, but not other somatosensory evoked potential (SSEP) components, was reduced during voluntary activity compared with rest. Interhemispheric inhibition between S1s and intracortical inhibition in the S1 modulated the amplitude of the P25/N33. Note that changes in interhemispheric inhibition between S1s correlated with changes in cortical circuits in the ipsilateral motor cortex. Our findings suggest that cortical circuits, probably from somatosensory and motor cortex, contribute to sensory gating in the iS1 during voluntary activity in humans. ABSTRACT An important principle in the organization of the somatosensory cortex is that it processes afferent information from the contralateral side of the body. The role of the ipsilateral somatosensory cortex (iS1) in sensory gating in humans remains largely unknown. Using electroencephalographic (EEG) recordings over the iS1 and electrical stimulation of the ulnar nerve at the wrist, we examined somatosensory evoked potentials (SSEPs; P14/N20, N20/P25 and P25/N33 components) and paired-pulse SSEPs between S1s (interhemispheric inhibition) and within (intracortical inhibition) the iS1 at rest and during tonic index finger voluntary activity. We found that the amplitude of the P25/N33, but not other SSEP components, was reduced during voluntary activity compared with rest. Interhemispheric inhibition increased the amplitude of the P25/N33 and intracortical inhibition reduced the amplitude of the P25/N33, suggesting a cortical origin for this effect. The P25/N33 receives inputs from the motor cortex, so we also examined the contribution of distinct sets of cortical interneurons by testing the effect of ulnar nerve stimulation on motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the ipsilateral motor cortex with the coil in the posterior-anterior (PA) and anterior-posterior (AP) orientation. Afferent input attenuated PA, but not AP, MEPs during voluntary activity compared with rest. Notably, changes in interhemispheric inhibition correlated with changes in PA MEPs. Our novel findings suggest that interhemispheric projections between S1s and intracortical circuits, probably from somatosensory and motor cortex, contribute to sensory gating in the iS1 during voluntary activity in humans.
Collapse
Affiliation(s)
- Yuming Lei
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA
| | - Monica A Perez
- University of Miami, Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, 33136, USA.,Bruce W. Carter Department of Veterans Affairs Medical Centre, 1201 NW 16th Street, Miami, FL, 33125, USA
| |
Collapse
|
13
|
Effect of muscle contraction strength on gating of somatosensory magnetic fields. Exp Brain Res 2016; 234:3389-3398. [PMID: 27435203 DOI: 10.1007/s00221-016-4736-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
Abstract
Afferent somatosensory information is modulated before the afferent input arrives at the primary somatosensory cortex during voluntary movement. The aim of the present study was to clarify the effect of muscular contraction strength on somatosensory evoked fields (SEFs) during voluntary movement. In addition, we examined the differences in gating between innervated and non-innervated muscle during contraction. We investigated the changes in gating effect by muscular contraction strength and innervated and non-innervated muscles in human using 306-channel magnetoencephalography. SEFs were recorded following the right median nerve stimulation in a resting condition and during isometric muscular contractions from 10 % electromyographic activity (EMG), 20 and 30 % EMG of the right extensor indicis muscle and abductor pollicis brevis muscle. Our results showed that the equivalent current dipole (ECD) strength for P35m decreased with increasing strength of muscular contraction of the right abductor pollicis brevis muscle. However, changes were observed only at 30 % EMG contraction level of the right extensor indicis muscle, which was not innervated by the median nerve. There were no significant changes in the peak latencies and ECD locations of each component in all conditions. The ECD strength did not differ significantly for N20m and P60m regardless of the strength of muscular contraction and innervation. Therefore, we suggest that the gating of SEF waveforms following peripheral nerve stimulation was affected by the strength of muscular contraction and innervation of the contracting muscle.
Collapse
|