1
|
Kleino I, Nowlan K, Kotimaa J, Kekäläinen E. Optimising protein detection with fixable custom oligo-labelled antibodies for single-cell multi-omics approaches. Biotechnol J 2022; 17:e2100213. [PMID: 35174641 DOI: 10.1002/biot.202100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND AIM Single-cell RNA sequencing (scRNA-seq) is a powerful method utilising transcriptomic data for detailed characterisation of heterogeneous cell populations. The use of oligonucleotide-labelled antibodies for targeted proteomics addresses the shortcomings of the scRNA-seq-only based approach by improving detection of low expressing targets. However, optimisation of large antibody panels is challenging and depends on the availability of co-functioning oligonucleotide-labelled antibodies. MAIN METHODS AND RESULTS We present here a simple adjustable oligonucleotide-antibody conjugation method which enables desired level of oligo-conjugation per antibody. The mean labelling in the produced antibody batches varied from 1 to 6 oligos per antibody. In the scRNA-seq multimodal experiment, the highest sensitivity was seen with moderate antibody labelling as the high activation and/or labelling was detrimental to antibody performance. The conjugates were also tested for compatibility with the fixation and freeze storage protocols. The oligo-antibody signal was stable in fixed cells indicating feasibility of the stain, fix, store, and analyse later type of workflow for multimodal scRNA-seq. CONCLUSIONS AND IMPLICATIONS Optimised oligo-labelling will improve detection of weak protein targets in scRNA-seq multimodal experiments and reduce sequencing costs due to a more balanced amplification of different antibody signals in CITE-seq libraries. Furthermore, the use of a pre-stain, fix, run later protocol will allow for flexibility, facilitate sample pooling, and ease logistics in scRNA-seq multimodal experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Iivari Kleino
- Translational Immunology Research Program, University of Helsinki
| | - Kirsten Nowlan
- Doctoral Programme in Biomedicine, University of Helsinki
| | - Juha Kotimaa
- Complement Group, University of Helsinki, Department of Bacteriology and Immunology
| | - Eliisa Kekäläinen
- Dept. of Bacteriology and Immunology, University of Helsinki, and Helsinki University Hospital
| |
Collapse
|
2
|
Wiener J, Kokotek D, Rosowski S, Lickert H, Meier M. Preparation of single- and double-oligonucleotide antibody conjugates and their application for protein analytics. Sci Rep 2020; 10:1457. [PMID: 31996713 PMCID: PMC6989672 DOI: 10.1038/s41598-020-58238-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
Oligonucleotide-conjugated antibodies have gained importance for their use in protein diagnostics. The possibility to transfer the readout signal from the protein to the DNA level with an oligonucleotide-conjugated antibody increased the sensitivity of protein assays by orders of magnitude and enabled new multiplexing strategies. A bottleneck in the generation of larger oligonucleotide-conjugated antibody panels is the low conjugation yield between antibodies and oligonucleotides, as well as the lack of product purification methods. In this study, we combined a non-site-directed antibody conjugation technique using copper-free click chemistry with ion-exchange chromatography to obtain purified single and double oligonucleotide-conjugated antibodies. We optimized the click conjugation reaction of antibodies with oligonucleotides by evaluating crosslinker, reaction temperature, duration, oligonucleotide length, and secondary structure. As a result, we were able to achieve conjugation yields of 30% at a starting quantity as low as tens of nanograms of antibody, which makes the approach applicable for a wide variety of protein analytical assays. In contrast to previous non-site-directed conjugation methods, we also optimized the conjugation reaction for antibody specificity, confirmed by testing with knockout cell lines. The advantages of using single or double oligonucleotide-conjugated antibodies in regards to signal noise reduction are shown within immunofluorescence, proximity ligation assays, and single cell CITE-seq experiments.
Collapse
Affiliation(s)
- Julius Wiener
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.,Microfluidic and Biological Engineering, IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Daniel Kokotek
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Simon Rosowski
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,Technical University of Munich, School of Medicine, Munich, Germany
| | - Matthias Meier
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
3
|
Stiller C, Aghelpasand H, Frick T, Westerlund K, Ahmadian A, Karlström AE. Fast and Efficient Fc-Specific Photoaffinity Labeling To Produce Antibody-DNA Conjugates. Bioconjug Chem 2019; 30:2790-2798. [PMID: 31609586 DOI: 10.1021/acs.bioconjchem.9b00548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antibody-DNA conjugates are powerful tools for DNA-assisted protein analysis. Growing usage of these methods demands efficient production of high-quality conjugates. We developed an easy and fast synthesis route yielding covalent antibody-DNA conjugates with a defined conjugation site and low batch-to-batch variability. We utilize the Z domain from protein A, containing the unnatural amino acid 4-benzoylphenylalanine (BPA) for photoaffinity labeling of the antibodies' Fc region. Z(xBPA) domains are C-terminally modified with triple-glycine (G3)-modified DNA-oligonucleotides via enzymatic Sortase A coupling. We show reliable modification of the most commonly used IgG's. To prove our conjugates' functionality, we detected antibody-antigen binding events in an assay called Droplet Barcode Sequencing for Protein analysis (DBS-Pro). It confirms not only retained functionality for both conjugate parts but also the potential of using DBS-Pro for quantifying protein abundances. As intermediates are easily storable and our approach is modular, it offers a convenient strategy for screening various antibody-DNA conjugates using the same starting material.
Collapse
Affiliation(s)
- Christiane Stiller
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| | - Hooman Aghelpasand
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, Science for Life Laboratory , 171 65 Solna , Sweden
| | - Tobias Frick
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, Science for Life Laboratory , 171 65 Solna , Sweden
| | - Kristina Westerlund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| | - Afshin Ahmadian
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, Science for Life Laboratory , 171 65 Solna , Sweden
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| |
Collapse
|
4
|
Advances in the Application of Designed Ankyrin Repeat Proteins (DARPins) as Research Tools and Protein Therapeutics. Methods Mol Biol 2018; 1798:307-327. [PMID: 29868969 DOI: 10.1007/978-1-4939-7893-9_23] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonimmunoglobulin scaffolds have been developed to overcome the limitations of monoclonal antibodies with regard to stability and size. Of these scaffolds, the class of designed ankyrin repeat proteins (DARPins) has advanced the most in biochemical and biomedical applications. This review focuses on the recent progress in DARPin technology, highlighting the scaffold's potential and possibilities.
Collapse
|