1
|
Thangadurai T, Dobretsov S, Aeby G. Exploring bacterial diversity in Acropora pharaonis: Implications for coral health and growth anomalies. Microb Pathog 2025; 205:107616. [PMID: 40294758 DOI: 10.1016/j.micpath.2025.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/07/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Coral growth anomalies (GA) affect many coral genera across the world, yet the etiology of GAs remains unknown, with limited knowledge of associated bacteria. In this study, we investigated bacterial associations between the growth anomalies (GAs) and healthy (H) portions of coral colonies in Acropora faraonis for two seasons to understand microbial dynamics. Additionally, we examined bacteria in water (W), which could be affecting coral bacterial communities. We found that alpha diversity remained consistent between healthy and GA coral tissues, but their relative abundances differed significantly. Notably, differential analysis revealed the abundance of Endozoicomonas spp., differed significantly between GA and H tissue, although it remains the dominant genus in both GA and H tissue. The high relative abundance of Endozoicomonas spp. in both GA and healthy tissue underscores its potential role in maintaining coral health. Structural modifications in GAs, such as changes in polyp sizes or densities, could be responsible for these differences in bacterial abundance. Similarly, microbial community composition remained consistent between seasons but differed in abundance again. We found differences between microbial communities of GAs and water, but no significant differences were observed between GAs and H, and no previously established bacterial pathogens were detected in GA tissue. These findings describe bacterial community patterns in GAs, but their potential role in its pathogenesis remains unknown. Further metagenomic and meta-transcriptomic analyses are needed to understand potential bacterial involvement in GAs. Additionally, investigating viruses and fungi in GA tissue is recommended to gain deeper insights into GA pathogenesis.
Collapse
Affiliation(s)
- Thinesh Thangadurai
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman; UNESCO Chair in Marine Biotechnology, Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123 PO Box 50, Muscat, Oman.
| | - Greta Aeby
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Vega Thurber RL, Silva D, Speare L, Croquer A, Veglia AJ, Alvarez-Filip L, Zaneveld JR, Muller EM, Correa AMS. Coral Disease: Direct and Indirect Agents, Mechanisms of Disease, and Innovations for Increasing Resistance and Resilience. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:227-255. [PMID: 39227183 DOI: 10.1146/annurev-marine-011123-102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
As climate change drives health declines of tropical reef species, diseases are further eroding ecosystem function and habitat resilience. Coral disease impacts many areas around the world, removing some foundation species to recorded low levels and thwarting worldwide efforts to restore reefs. What we know about coral disease processes remains insufficient to overcome many current challenges in reef conservation, yet cumulative research and management practices are revealing new disease agents (including bacteria, viruses, and eukaryotes), genetic host disease resistance factors, and innovative methods to prevent and mitigate epizootic events (probiotics, antibiotics, and disease resistance breeding programs). The recent outbreak of stony coral tissue loss disease across the Caribbean has reenergized and mobilized the research community to think bigger and do more. This review therefore focuses largely on novel emerging insights into the causes and mechanisms of coral disease and their applications to coral restoration and conservation.
Collapse
Affiliation(s)
- Rebecca L Vega Thurber
- Marine Science Institute and Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA;
| | - Denise Silva
- Marine Science Institute and Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA;
| | - Lauren Speare
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA;
| | - Aldo Croquer
- The Nature Conservancy, Caribbean Division, Punta Cana, La Altagracia, Dominican Republic
| | - Alex J Veglia
- EcoAzul, La Parguera, Puerto Rico, USA
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico, USA
| | - Lorenzo Alvarez-Filip
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Jesse R Zaneveld
- Division of Biological Sciences, School of Science, Technology, Engineering, and Mathematics, University of Washington Bothell, Bothell, Washington, USA
| | | | - Adrienne M S Correa
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Arriaga-Piñón ZP, Aguayo-Leyva JE, Álvarez-Filip L, Banaszak AT, Aguirre-Macedo ML, Paz-García DA, García-Maldonado JQ. Microbiomes of three coral species in the Mexican Caribbean and their shifts associated with the Stony Coral Tissue Loss Disease. PLoS One 2024; 19:e0304925. [PMID: 39186575 PMCID: PMC11346732 DOI: 10.1371/journal.pone.0304925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Stony Coral Tissue Loss Disease (SCTLD) has caused widespread coral mortality in the Caribbean Region. However, how the disease presence alters the microbiome community, their structure, composition, and metabolic functionality is still poorly understood. In this study, we characterized the microbial communities of the tissues of apparently healthy and diseased SCTLD colonies of the species Siderastrea siderea, Orbicella faveolata, and Montastraea cavernosa to explore putative changes related to the presence of SCTLD. Gammaproteobacteria, Alphaproteobacteria, and Bacteroidia were the best represented classes in the healthy tissues of all coral species, and alpha diversity did not show significant differences among the species. The microbial community structure between coral species was significantly different (PERMANOVA: F = 3.46, p = 0.001), and enriched genera were detected for each species: Vibrio and Photobacterium in S. siderea, Spirochaeta2 and Marivivens in O. faveolata and SAR202_clade and Nitrospira in M. cavernosa. Evidence of SCTLD in the microbial communities was more substantial in S. siderea, where differences in alpha diversity, beta diversity, and functional profiles were observed. In O. faveolata, differences were detected only in the community structure, while M. cavernosa samples showed no significant difference. Several microbial groups were found to have enriched abundances in tissue from SCTLD lesions from S. siderea and O. faveolata, but no dominant bacterial group was detected. Our results contribute to understanding microbial diversity associated with three scleractinian coral species and the shifts in their microbiomes associated with SCTLD in the Mexican Caribbean.
Collapse
Affiliation(s)
- Zita P. Arriaga-Piñón
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - J. Eduardo Aguayo-Leyva
- Laboratorio de Genética para la Conservación. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S., México
| | - Lorenzo Álvarez-Filip
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Ma. Leopoldina Aguirre-Macedo
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - David A. Paz-García
- Laboratorio de Genética para la Conservación. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S., México
| | - José Q. García-Maldonado
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| |
Collapse
|
4
|
Long-Term Heat Selection of the Coral Endosymbiont Cladocopium C1 acro (Symbiodiniaceae) Stabilizes Associated Bacterial Communities. Int J Mol Sci 2022; 23:ijms23094913. [PMID: 35563303 PMCID: PMC9101544 DOI: 10.3390/ijms23094913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Heat-tolerant strains of the coral endosymbiont, Cladocopium C1acro (Symbiodiniaceae), have previously been developed via experimental evolution. Here, we examine physiological responses and bacterial community composition (using 16S rRNA gene metabarcoding) in cultures of 10 heat-evolved (SS) and 9 wild-type (WT) strains, which had been exposed for 6 years to 31 °C and 27 °C, respectively. We also examine whether the associated bacterial communities were affected by a three-week reciprocal transplantation to both temperatures. The SS strains had bacterial communities with lower diversities that showed more stability and lower variability when exposed to elevated temperatures compared with the WT strains. Amplicon sequence variants (ASVs) of the bacterial genera Labrenzia, Algiphilus, Hyphobacterium and Roseitalea were significantly more associated with the SS strains compared with the WT strains. WT strains showed higher abundance of ASVs assigned to the genera Fabibacter and Tropicimonas. We hypothesize that these compositional differences in associated bacterial communities between SS and WT strains also contribute to the thermal tolerance of the microalgae. Future research should explore functional potential between bacterial communities using metagenomics to unravel specific genomic adaptations.
Collapse
|
5
|
Brown T, Sonett D, Zaneveld JR, Padilla-Gamiño JL. Characterization of the microbiome and immune response in corals with chronic Montipora white syndrome. Mol Ecol 2021; 30:2591-2606. [PMID: 33763924 DOI: 10.1111/mec.15899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023]
Abstract
Coral diseases have increased in frequency and intensity around the tropics worldwide. However, in many cases, little is known about their etiology. Montipora white syndrome (MWS) is a common disease affecting the coral Montipora capitata, a major reef builder in Hawai'i. Chronic Montipora white syndrome (cMWS) is a slow-moving form of the disease that affects M. capitata throughout the year. The effects of this chronic disease on coral immunology and microbiology are currently unknown. In this study, we use prophenoloxidase immune assays and 16S rRNA gene amplicon sequencing to characterize the microbiome and immunological response associated with cMWS. Our results show that immunological and microbiological responses are highly localized. Relative to diseased samples, apparently healthy portions of cMWS corals differed in immune activity and in the relative abundance of microbial taxa. Coral tissues with cMWS showed decreased tyrosinase-type catecholase and tyrosinase-type cresolase activity and increased laccase-type activity. Catecholase and cresolase activity were negatively correlated across all tissue types with microbiome richness. The localized effect of cMWS on coral microbiology and immunology is probably an important reason for the slow progression of the disease. This local confinement may facilitate interventions that focus on localized treatments on tissue types. This study provides an important baseline to understand the interplay between the microbiome and immune system and the mechanisms used by corals to manage chronic microbial perturbations associated with white syndrome.
Collapse
Affiliation(s)
- Tanya Brown
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, Washington, USA
| | - Dylan Sonett
- Division of Biological Sciences, University of Washington, Bothell, Washington, USA
| | - Jesse R Zaneveld
- Division of Biological Sciences, University of Washington, Bothell, Washington, USA
| | | |
Collapse
|
6
|
Claar DC, McDevitt-Irwin JM, Garren M, Vega Thurber R, Gates RD, Baum JK. Increased diversity and concordant shifts in community structure of coral-associated Symbiodiniaceae and bacteria subjected to chronic human disturbance. Mol Ecol 2020; 29:2477-2491. [PMID: 32495958 DOI: 10.1111/mec.15494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/16/2020] [Accepted: 05/28/2020] [Indexed: 12/27/2022]
Abstract
Both coral-associated bacteria and endosymbiotic algae (Symbiodiniaceae spp.) are vitally important for the biological function of corals. Yet little is known about their co-occurrence within corals, how their diversity varies across coral species, or how they are impacted by anthropogenic disturbances. Here, we sampled coral colonies (n = 472) from seven species, encompassing a range of life history traits, across a gradient of chronic human disturbance (n = 11 sites on Kiritimati [Christmas] atoll) in the central equatorial Pacific, and quantified the sequence assemblages and community structure of their associated Symbiodiniaceae and bacterial communities. Although Symbiodiniaceae alpha diversity did not vary with chronic human disturbance, disturbance was consistently associated with higher bacterial Shannon diversity and richness, with bacterial richness by sample almost doubling from sites with low to very high disturbance. Chronic disturbance was also associated with altered microbial beta diversity for Symbiodiniaceae and bacteria, including changes in community structure for both and increased variation (dispersion) of the Symbiodiniaceae communities. We also found concordance between Symbiodiniaceae and bacterial community structure, when all corals were considered together, and individually for two massive species, Hydnophora microconos and Porites lobata, implying that symbionts and bacteria respond similarly to human disturbance in these species. Finally, we found that the dominant Symbiodiniaceae ancestral lineage in a coral colony was associated with differential abundances of several distinct bacterial taxa. These results suggest that increased beta diversity of Symbiodiniaceae and bacterial communities may be a reliable indicator of stress in the coral microbiome, and that there may be concordant responses to chronic disturbance between these communities at the whole-ecosystem scale.
Collapse
Affiliation(s)
- Danielle C Claar
- Department of Biology, University of Victoria, Victoria, BC, Canada.,School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Jamie M McDevitt-Irwin
- Department of Biology, University of Victoria, Victoria, BC, Canada.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Melissa Garren
- School of Natural Sciences, California State University Monterey Bay, Seaside, CA, USA
| | | | - Ruth D Gates
- Hawai`i Institute of Marine Biology, University of Hawai`i, Honolulu, HI, USA
| | - Julia K Baum
- Department of Biology, University of Victoria, Victoria, BC, Canada.,Hawai`i Institute of Marine Biology, University of Hawai`i, Honolulu, HI, USA
| |
Collapse
|
7
|
Camp EF, Kahlke T, Nitschke MR, Varkey D, Fisher NL, Fujise L, Goyen S, Hughes DJ, Lawson CA, Ros M, Woodcock S, Xiao K, Leggat W, Suggett DJ. Revealing changes in the microbiome of Symbiodiniaceae under thermal stress. Environ Microbiol 2020; 22:1294-1309. [DOI: 10.1111/1462-2920.14935] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Emma F. Camp
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Tim Kahlke
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Matthew R. Nitschke
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
- School of Biological SciencesVictoria University of Wellington Wellington New Zealand
| | - Deepa Varkey
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
- Department of Molecular SciencesMacquarie University Sydney NSW 2109 Australia
| | - Nerissa L. Fisher
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Lisa Fujise
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Samantha Goyen
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - David J. Hughes
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Caitlin A. Lawson
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Mickael Ros
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Stephen Woodcock
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - Kun Xiao
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| | - William Leggat
- School of Environmental and Life SciencesUniversity of Newcastle Ourimbah NSW 2308 Australia
| | - David J. Suggett
- Climate Change ClusterUniversity of Technology Sydney Broadway NSW 2007 Australia
| |
Collapse
|
8
|
Advanced biofilm analysis in streams receiving organic deicer runoff. PLoS One 2020; 15:e0227567. [PMID: 31968006 PMCID: PMC6975536 DOI: 10.1371/journal.pone.0227567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023] Open
Abstract
Prolific heterotrophic biofilm growth is a common occurrence in airport receiving streams containing deicers and anti-icers, which are composed of low-molecular weight organic compounds. This study investigated biofilm spatiotemporal patterns and responses to concurrent and antecedent (i.e., preceding biofilm sampling) environmental conditions at stream sites upstream and downstream from Milwaukee Mitchell International Airport in Milwaukee, Wisconsin, during two deicing seasons (2009-2010; 2010-2011). Biofilm abundance and community composition were investigated along spatial and temporal gradients using field surveys and microarray analyses, respectively. Given the recognized role of Sphaerotilus in organically enriched environments, additional analyses were pursued to specifically characterize its abundance: a consensus sthA sequence was determined via comparison of whole metagenome sequences with a previously identified sthA sequence, the primers developed for this gene were used to characterize relative Sphaerotilus abundance using quantitative real-time PCR, and a Sphaerotilus strain was isolated to validate the determined sthA sequence. Results indicated that biofilm abundance was stimulated by elevated antecedent chemical oxygen demand concentrations, a surrogate for deicer concentrations, with minimal biofilm volumes observed when antecedent chemical oxygen demand concentrations remained below 48 mg/L. Biofilms were composed of diverse communities (including sheathed bacterium Thiothrix) whose composition appeared to shift in relation to antecedent temperature and chemical oxygen demand. The relative abundance of sthA correlated most strongly with heterotrophic biofilm volume (positive) and dissolved oxygen (negative), indicating that Sphaerotilus was likely a consistent biofilm member and thrived under low oxygen conditions. Additional investigations identified the isolate as a new strain of Sphaerotilus montanus (strain KMKE) able to use deicer components as carbon sources and found that stream dissolved oxygen concentrations related inversely to biofilm volume as well as to antecedent temperature and chemical oxygen demand. The airport setting provides insight into potential consequences of widescale adoption of organic deicers for roadway deicing.
Collapse
|
9
|
Bonthond G, Merselis DG, Dougan KE, Graff T, Todd W, Fourqurean JW, Rodriguez-Lanetty M. Inter-domain microbial diversity within the coral holobiont Siderastrea siderea from two depth habitats. PeerJ 2018; 6:e4323. [PMID: 29441234 PMCID: PMC5808317 DOI: 10.7717/peerj.4323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Corals host diverse microbial communities that are involved in acclimatization, pathogen defense, and nutrient cycling. Surveys of coral-associated microbes have been particularly directed toward Symbiodinium and bacteria. However, a holistic understanding of the total microbiome has been hindered by a lack of analyses bridging taxonomically disparate groups. Using high-throughput amplicon sequencing, we simultaneously characterized the Symbiodinium, bacterial, and fungal communities associated with the Caribbean coral Siderastrea siderea collected from two depths (17 and 27 m) on Conch reef in the Florida Keys. S. siderea hosted an exceptionally diverse Symbiodinium community, structured differently between sampled depth habitats. While dominated at 27 m by a Symbiodinium belonging to clade C, at 17 m S. siderea primarily hosted a mixture of clade B types. Most fungal operational taxonomic units were distantly related to available reference sequences, indicating the presence of a high degree of fungal novelty within the S. siderea holobiont and a lack of knowledge on the diversity of fungi on coral reefs. Network analysis showed that co-occurrence patterns in the S. siderea holobiont were prevalent among bacteria, however, also detected between fungi and bacteria. Overall, our data show a drastic shift in the associated Symbiodinium community between depths on Conch Reef, which might indicate that alteration in this community is an important mechanism facilitating local physiological adaptation of the S. siderea holobiont. In contrast, bacterial and fungal communities were not structured differently between depth habitats.
Collapse
Affiliation(s)
- Guido Bonthond
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel G Merselis
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Katherine E Dougan
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | | | - James W Fourqurean
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | |
Collapse
|
10
|
Weber L, DeForce E, Apprill A. Optimization of DNA extraction for advancing coral microbiota investigations. MICROBIOME 2017; 5:18. [PMID: 28179023 PMCID: PMC5299696 DOI: 10.1186/s40168-017-0229-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/04/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND DNA-based sequencing approaches are commonly used to identify microorganisms and their genes and document trends in microbial community diversity in environmental samples. However, extraction of microbial DNA from complex environmental samples like corals can be technically challenging, and extraction methods may impart biases on microbial community structure. METHODS We designed a two-phase study in order to propose a comprehensive and efficient method for DNA extraction from microbial cells present in corals and investigate if extraction method influences microbial community composition. During phase I, total DNA was extracted from seven coral species in a replicated experimental design using four different MO BIO Laboratories, Inc., DNA Isolation kits: PowerSoil®, PowerPlant® Pro, PowerBiofilm®, and UltraClean® Tissue & Cells (with three homogenization permutations). Technical performance of the treatments was evaluated using DNA yield and amplification efficiency of small subunit ribosomal RNA (SSU ribosomal RNA (rRNA)) genes. During phase II, potential extraction biases were examined via microbial community analysis of SSU rRNA gene sequences amplified from the most successful DNA extraction treatments. RESULTS In phase I of the study, the PowerSoil® and PowerPlant® Pro extracts contained low DNA concentrations, amplified poorly, and were not investigated further. Extracts from PowerBiofilm® and UltraClean® Tissue and Cells permutations were further investigated in phase II, and analysis of sequences demonstrated that overall microbial community composition was dictated by coral species and not extraction treatment. Finer pairwise comparisons of sequences obtained from Orbicella faveolata, Orbicella annularis, and Acropora humilis corals revealed subtle differences in community composition between the treatments; PowerBiofilm®-associated sequences generally had higher microbial richness and the highest coverage of dominant microbial groups in comparison to the UltraClean® Tissue and Cells treatments, a result likely arising from using a combination of different beads during homogenization. CONCLUSIONS Both the PowerBiofilm® and UltraClean® Tissue and Cells treatments are appropriate for large-scale analyses of coral microbiota. However, studies interested in detecting cryptic microbial members may benefit from using the PowerBiofilm® DNA treatment because of the likely enhanced lysis efficiency of microbial cells attributed to using a variety of beads during homogenization. Consideration of the methodology involved with microbial DNA extraction is particularly important for studies investigating complex host-associated microbiota.
Collapse
Affiliation(s)
- Laura Weber
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA 02139 USA
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543 USA
| | | | - Amy Apprill
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543 USA
| |
Collapse
|
11
|
Kellogg CA, Ross SW, Brooke SD. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus. PeerJ 2016; 4:e2529. [PMID: 27703865 PMCID: PMC5047221 DOI: 10.7717/peerj.2529] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023] Open
Abstract
Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.
Collapse
Affiliation(s)
- Christina A Kellogg
- St. Petersburg Coastal and Marine Science Center, US Geological Survey , St. Petersburg , FL , United States of America
| | - Steve W Ross
- Center for Marine Science, University of North Carolina at Wilmington , Wilmington , NC , United States of America
| | - Sandra D Brooke
- Coastal and Marine Laboratory, Florida State University , St. Teresa , FL , United States of America
| |
Collapse
|
12
|
Meyer JL, Rodgers JM, Dillard BA, Paul VJ, Teplitski M. Epimicrobiota Associated with the Decay and Recovery of Orbicella Corals Exhibiting Dark Spot Syndrome. Front Microbiol 2016; 7:893. [PMID: 27375605 PMCID: PMC4894883 DOI: 10.3389/fmicb.2016.00893] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/26/2016] [Indexed: 02/01/2023] Open
Abstract
Dark Spot Syndrome (DSS) is one of the most common diseases of boulder corals in the Caribbean. It presents as sunken brown lesions in coral tissue, which can spread quickly over coral colonies. With this study, we tested the hypothesis that similar to other coral diseases, DSS is a dysbiosis characterized by global shifts in the coral microbiome. Because Black Band Disease (BBD) was sometimes found following DSS lesions, we also tested the hypothesis that DSS is a precursor of BBD. To track disease initiation and progression 24 coral colonies were tagged. Of them five Orbicella annularis corals and three O. faveolata corals exhibited DSS lesions at tagging. Microbiota of lesions and apparently healthy tissues from DSS-affected corals over the course of 18 months were collected. Final visual assessment showed that five of eight corals incurred substantial tissue loss while two corals remained stable and one appeared to recover from DSS lesions. Illumina sequencing of the V6 region of bacterial 16S rRNA genes demonstrated no significant differences in bacterial community composition associated with healthy tissue or DSS lesions. The epimicrobiomes of both healthy tissue and DSS lesions contained high relative abundances of Operational Taxonomic Units assigned to Halomonas, an unclassified gammaproteobacterial genus, Moritella, an unclassified Rhodobacteraceae genus, Renibacterium, Pseudomonas, and Acinetobacter. The relative abundance of bacterial taxa was not significantly different between samples when grouped by tissue type (healthy tissue vs. DSS lesion), coral species, collection month, or the overall outcome of DSS-affected corals (substantial tissue loss vs. stable/recovered). Two of the tagged corals with substantial tissue loss also developed BBD during the 18-month sampling period. The bacterial community of the BBD layer was distinct from both healthy tissue and DSS lesions, with high relative abundances of the presumed BBD pathogen Roseofilum reptotaenium and an unclassified Bacteroidales genus, similar to previous results. Roseofilum was detected in all samples from this study, with the highest relative abundance in healthy tissue from DSS-affected corals sampled in August, suggesting that while DSS is not a precursor to BBD, DSS-affected corals are in a weakened state and therefore more susceptible to additional infections.
Collapse
Affiliation(s)
- Julie L Meyer
- Soil and Water Science Department, University of Florida-Institute of Food and Agricultural Sciences, Genetics Institute, Gainesville FL, USA
| | - John M Rodgers
- Soil and Water Science Department, University of Florida-Institute of Food and Agricultural Sciences, Genetics Institute, Gainesville FL, USA
| | - Brian A Dillard
- Soil and Water Science Department, University of Florida-Institute of Food and Agricultural Sciences, Genetics Institute, Gainesville FL, USA
| | | | - Max Teplitski
- Soil and Water Science Department, University of Florida-Institute of Food and Agricultural Sciences, Genetics Institute, GainesvilleFL, USA; Smithsonian Marine Station, Fort PierceFL, USA
| |
Collapse
|
13
|
Röthig T, Ochsenkühn MA, Roik A, van der Merwe R, Voolstra CR. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome. Mol Ecol 2016; 25:1308-23. [PMID: 26840035 PMCID: PMC4804745 DOI: 10.1111/mec.13567] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 01/03/2023]
Abstract
Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater run-off and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here, we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high-salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high-salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulphur oxidation and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition.
Collapse
Affiliation(s)
- Till Röthig
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Michael A Ochsenkühn
- Biological and Organometallic Catalysis Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Anna Roik
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Riaan van der Merwe
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Randall CJ, Jordán-Garza AG, Muller EM, van Woesik R. Does Dark-Spot Syndrome Experimentally Transmit among Caribbean Corals? PLoS One 2016; 11:e0147493. [PMID: 26788918 PMCID: PMC4720368 DOI: 10.1371/journal.pone.0147493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Over the last half-century, coral diseases have contributed to the rapid decline of coral populations throughout the Caribbean region. Some coral diseases appear to be potentially infectious, yet little is known about their modes of transmission. This study experimentally tested whether dark-spot syndrome on Siderastrea siderea was directly or indirectly transmissible to neighboring coral colonies. We also tested whether open wounds were necessary to facilitate disease transmission. At the completion of the experiments, we sampled bacterial communities on diseased, exposed, and healthy coral colonies to determine whether bacterial pathogens had transmitted to the susceptible colonies. We saw no evidence of either direct or waterborne transmission of dark-spot syndrome, and corals that received lesions by direct contact with diseased tissue, healed and showed no signs of infection. There were no significant differences among bacterial communities on healthy, exposed, and diseased colonies, although nine individual ribotypes were significantly higher in diseased corals compared with healthy and exposed corals, indicating a lack of transmission. Although our experiments do not fully refute the possibility that dark-spot syndrome is infectious and transmissible, our results suggest that in situ macroscopic signs of dark-spot syndrome are not always contagious.
Collapse
Affiliation(s)
- Carly J. Randall
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
- * E-mail:
| | - Adán G. Jordán-Garza
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - Erinn M. Muller
- Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Robert van Woesik
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
| |
Collapse
|
15
|
Ng JCY, Chan Y, Tun HM, Leung FCC, Shin PKS, Chiu JMY. Pyrosequencing of the bacteria associated with Platygyra carnosus corals with skeletal growth anomalies reveals differences in bacterial community composition in apparently healthy and diseased tissues. Front Microbiol 2015; 6:1142. [PMID: 26539174 PMCID: PMC4611154 DOI: 10.3389/fmicb.2015.01142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Corals are rapidly declining globally due to coral diseases. Skeletal growth anomalies (SGA) or "coral tumors" are a group of coral diseases that affect coral reefs worldwide, including Hong Kong waters in the Indo-Pacific region. To better understand how bacterial communities may vary in corals with SGA, for the first time, we examined the bacterial composition associated with the apparently healthy and the diseased tissues of SGA-affected Platgyra carnosus using 16S ribosomal rRNA gene pyrosequencing. Taxonomic analysis revealed Proteobacteria, Bacteroidetes, Cyanobacteria, and Actinobacteria as the main phyla in both the apparently healthy and the diseased tissues. A significant difference in the bacterial community composition was observed between the two conditions at the OTU level. Diseased tissues were associated with higher abundances of Acidobacteria and Gemmatimonadetes, and a lower abundance of Spirochaetes. Several OTUs belonging to Rhodobacteraceae, Rhizobiales, Gammaproteobacteria, and Cytophaga-Flavobacterium-Bacteroidetes (CFB) were strongly associated with the diseased tissues. These groups of bacteria may contain potential pathogens involved with the development of SGA or opportunistic secondary or tertiary colonizers that proliferated upon the health-compromised coral host. We suggest that these bacterial groups to be further studied based on inoculation experiments and testing of Koch's postulates in efforts to understand the etiology and progression of SGA.
Collapse
Affiliation(s)
- Jenny C Y Ng
- Department of Biology, Hong Kong Baptist University Hong Kong, Hong Kong
| | - Yuki Chan
- Department of Biology, Hong Kong Baptist University Hong Kong, Hong Kong ; Oral Biosciences, Faculty of Dentistry, The University of Hong Kong Hong Kong, Hong Kong ; School of Applied Sciences, Institute for Applied Ecology New Zealand, Auckland University of Technology Auckland, New Zealand
| | - Hein M Tun
- School of Biological Sciences, The University of Hong Kong Hong Kong, Hong Kong ; Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Frederick C C Leung
- School of Biological Sciences, The University of Hong Kong Hong Kong, Hong Kong
| | - Paul K S Shin
- Department of Biology and Chemistry, City University of Hong Kong Hong Kong, Hong Kong ; State Key Laboratory in Marine Pollution Hong Kong, Hong Kong
| | - Jill M Y Chiu
- Department of Biology, Hong Kong Baptist University Hong Kong, Hong Kong ; State Key Laboratory in Marine Pollution Hong Kong, Hong Kong
| |
Collapse
|