1
|
DEBELEÇ BÜTÜNER B, ERTUNÇ HASBAL N, İŞEL E, ROGGENBUCK D, KORKMAZ KS. Androgen receptor contributes to repairing DNA damage induced by inflammation and oxidative stress in prostate cancer. Turk J Biol 2023; 47:325-335. [PMID: 38155939 PMCID: PMC10752373 DOI: 10.55730/1300-0152.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/31/2023] [Accepted: 10/11/2023] [Indexed: 12/30/2023] Open
Abstract
Background Androgen deprivation therapy remains the first-line therapy option for prostate cancer, mostly resulting in the transition of the disease to a castration-resistant state. The lack of androgen signaling during therapy affects various cellular processes, which sometimes paradoxically contributes to cancer progression. As androgen receptor (AR) signaling is known to contribute to oxidative stress regulation, loss of AR may also affect DNA damage level and the response mechanism in oxidant and inflammatory conditions of the prostate tumor microenvironment. Therefore, this study aimed to investigate the role of AR and AR-regulated tumor suppressor NKX3.1 upon oxidative stress-induced DNA damage response (DDR) in the inflammatory tumor microenvironment of the prostate. Materials and methods Intracellular reactive oxygen species (ROS) level was induced by either inflammatory conditioned media obtained from lipopolysaccharide-induced macrophages or oxidants and measured by dichlorodihydrofluorescein diacetate. In addition to this, DNA damage was subsequently quantified by counting gH2AX foci using an immunofluorescence-based Aklides platform. Altered expression of proteins function in DDR detected by western blotting. Results Cellular levels of ROS and ROS-induced DNA double-strand break damage were analyzed in the absence and presence of AR signaling upon treatment of prostate cancer cells by either oxidants or inflammatory microenvironment exposure. The results showed that AR suppresses intracellular ROS and contributes to DNA damage recognition under oxidant conditions. Besides, increased DNA damage due to loss of NKX3.1 under inflammatory conditions was alleviated by its overexpression. Moreover, the activation of the DDR mediators caused by AR and NKX3.1 activation in androgen-responsive and castration-resistant prostate cancer cells indicated that the androgen receptor function is essential both in controlling oxidative stress and in activating the ROS-induced DDR. Conclusion Taken together, it is concluded that the regulatory function of androgen receptor signaling has a vital function in the balance between antioxidant response and DDR activation.
Collapse
Affiliation(s)
- Bilge DEBELEÇ BÜTÜNER
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Nurşah ERTUNÇ HASBAL
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, İzmir,
Turkiye
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6,
Canada
| | - Elif İŞEL
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Dirk ROGGENBUCK
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg,
Germany
- Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg,
Germany
| | - Kemal Sami KORKMAZ
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, İzmir,
Turkiye
| |
Collapse
|
2
|
Saydullaeva I, Butuner BD, Korkmaz KS. NKX3.1 Expression Contributes to Epithelial-Mesenchymal Transition of Prostate Cancer Cells. ACS OMEGA 2023; 8:32580-32592. [PMID: 37720744 PMCID: PMC10500679 DOI: 10.1021/acsomega.3c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
Studies demonstrate that inflammation synergizes with high-grade aggressive prostate tumor development and ultimately metastatic spread, in which a lot of work has been done in recent years. However, the clear mechanism of inflammation inciting prostate cancer remains largely uncharacterized. Our previous study has shown that the conditioned media (CM)-mediated LNCaP cell migration is partially correlated with the loss of expression of the tumor suppressor NKX3.1. Here, we continue to investigate the inflammation-mediated migration of prostate cancer cells, and the role of NKX3.1 in this process to gain insights into cell migration-related changes comprehensively. Earlier, the model of inflammation in the tumor microenvironment have been optimized by our research group; here, we continue to investigate the time-dependent effect of CM exposure together with NKX3.1 changes, in which we observed that these changes play important roles in gaining heterogeneous epithelial-to-mesenchymal transition (EMT) phenotype. Hence, this is an important parameter of tumor progression; we depleted NKX3.1 expression using the CRISPR/Cas9 system and examined the migrating cell clusters after exposure to inflammatory cytokines. We found that the migrated cells clearly demonstrate reversible loss of E-cadherin expression, which is consistent with subsequent vimentin expression alterations in comparison to control cells. Moreover, the data suggest that the AR-mediated transcriptional program also contributes to mesenchymal-to-epithelial transition (MET) in prostate cancer progression. Furthermore, the quantitative proteomic analysis showed that migrated subpopulations from the same cell line presented different phenotypes in which the proteins overexpressed are involved in cell metabolism and RNA processing. According to KEGG pathway analysis, the ABC transporters were found to be the most significant. Thus, the dynamic process of cellular migration favors diverse genetic compositions under changing tumor microenvironments. The different levels of invasiveness are supported by shifting the cells in between these EMT and MET phenotypes.
Collapse
Affiliation(s)
- Iroda Saydullaeva
- Faculty
of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| | - Bilge Debelec Butuner
- Faculty
of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Izmir 35040, Turkey
| | - Kemal Sami Korkmaz
- Faculty
of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| |
Collapse
|
3
|
Alvizi L, Nani D, Brito LA, Kobayashi GS, Passos-Bueno MR, Mayor R. Neural crest E-cadherin loss drives cleft lip/palate by epigenetic modulation via pro-inflammatory gene-environment interaction. Nat Commun 2023; 14:2868. [PMID: 37225711 PMCID: PMC10209087 DOI: 10.1038/s41467-023-38526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Gene-environment interactions are believed to play a role in multifactorial phenotypes, although poorly described mechanistically. Cleft lip/palate (CLP), the most common craniofacial malformation, has been associated with both genetic and environmental factors, with little gene-environment interaction experimentally demonstrated. Here, we study CLP families harbouring CDH1/E-Cadherin variants with incomplete penetrance and we explore the association of pro-inflammatory conditions to CLP. By studying neural crest (NC) from mouse, Xenopus and humans, we show that CLP can be explained by a 2-hit model, where NC migration is impaired by a combination of genetic (CDH1 loss-of-function) and environmental (pro-inflammatory activation) factors, leading to CLP. Finally, using in vivo targeted methylation assays, we demonstrate that CDH1 hypermethylation is the major target of the pro-inflammatory response, and a direct regulator of E-cadherin levels and NC migration. These results unveil a gene-environment interaction during craniofacial development and provide a 2-hit mechanism to explain cleft lip/palate aetiology.
Collapse
Affiliation(s)
- Lucas Alvizi
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Diogo Nani
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Luciano Abreu Brito
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gerson Shigeru Kobayashi
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
4
|
Application of Proteogenomics to Urine Analysis towards the Identification of Novel Biomarkers of Prostate Cancer: An Exploratory Study. Cancers (Basel) 2022; 14:cancers14082001. [PMID: 35454907 PMCID: PMC9031064 DOI: 10.3390/cancers14082001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is one of the most common cancers. Due to the limited and invasive approaches for PCa diagnosis, it is crucial to identify more accurate and non-invasive biomarkers for its detection. The aim of our study was to non-invasively uncover new protein targets for detecting PCa using a proteomics and proteogenomics approach. This work identified several dysregulated mutant protein isoforms in urine from PCa patients, some of them predicted to have a protective or an adverse role in these patients. These results are promising given urine’s non-invasive nature and offers an auspicious opportunity for research and development of PCa biomarkers. Abstract To identify new protein targets for PCa detection, first, a shotgun discovery experiment was performed to characterize the urinary proteome of PCa patients. This revealed 18 differentially abundant urinary proteins in PCa patients. Second, selected targets were clinically tested by immunoblot, and the soluble E-cadherin fragment was detected for the first time in the urine of PCa patients. Third, the proteogenome landscape of these PCa patients was characterized, revealing 1665 mutant protein isoforms. Statistical analysis revealed 6 differentially abundant mutant protein isoforms in PCa patients. Analysis of the likely effects of mutations on protein function and PPIs involving the dysregulated mutant protein isoforms suggests a protective role of mutations HSPG2*Q1062H and VASN*R161Q and an adverse role of AMBP*A286G and CD55*S162L in PCa patients. This work originally characterized the urinary proteome, focusing on the proteogenome profile of PCa patients, which is usually overlooked in the analysis of PCa and body fluids. Combined analysis of mass spectrometry data using two different software packages was performed for the first time in the context of PCa, which increased the robustness of the data analysis. The application of proteogenomics to urine proteomic analysis can be very enriching in mutation-related diseases such as cancer.
Collapse
|
5
|
Li J, Xie G, Tian Y, Li W, Wu Y, Chen F, Lin Y, Lin X, Wing-Ngor Au S, Cao J, He W, Wang H. RNA m 6A methylation regulates the dissemination of cancer cells via modulating expression and membrane localization of β-catenin. Mol Ther 2022; 30:1578-1596. [PMID: 35033632 PMCID: PMC9077323 DOI: 10.1016/j.ymthe.2022.01.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/23/2021] [Accepted: 01/12/2022] [Indexed: 12/01/2022] Open
Abstract
N6-methyladenosine (m6A) methylation, which is modified by METTL3/METTL14 complex, is a dominant internal modification in mammalian RNA and tightly links to cancer progression. Here, we reveal that METTL3-promoted cell migration, invasion and epithelial to mesenchymal transition (EMT) are associated with the expression and membrane localization of β-catenin (encoded by CTNNB1), as opposed to Wnt signaling activation in various types of cancer cells, including cervical, lung, and liver cancers. Specifically, METTL3 regulates the transcription, mRNA decay, translation and sub-cellular localization of β-catenin. For CTNNB1 expression, METTL3 indirectly suppresses CTNNB1 transcription via stabilizing its transcription suppressor E2F1 mRNA; deposition of 5'UTR m6A in CTNNB1 promotes its decay in a content-dependent manner via YTHDF2 recognition; 5'UTR m6A in CTNNB1 suppresses its translation efficiency, while global METTL3 level controls the canonical and non-canonical translation of CTNNB1, which is probably associated with the interaction between YTHDF1 and eIF4E1/eIF4E3. For β-catenin translocation, METTL3 represses membrane localization of β-catenin and its interaction with E-Cadherin by downregulating c-Met kinase, leading to the inhibition of cell motility. In vitro, in vivo and clinical analysis confirm the essential roles of β-catenin and its expression regulators in cancer cell dissemination. The findings not only expand our understanding of m6A modification and its roles in gene expression and subcellular localization of targets, but also suggest that METTL3/β-catenin axis might be a potential target to inhibit cancer metastasis.
Collapse
Affiliation(s)
- Jiexin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Guoyou Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yifan Tian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wanglin Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, China
| | - Yingmin Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Feng Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yu Lin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyao Lin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Shannon Wing-Ngor Au
- Centra for Protein Science and Crystallography, School of Life Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510180, China.
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
6
|
Expression and Polymorphism of TSLP/TSLP Receptors as Potential Diagnostic Markers of Colorectal Cancer Progression. Genes (Basel) 2021; 12:genes12091386. [PMID: 34573368 PMCID: PMC8469613 DOI: 10.3390/genes12091386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and the fourth leading cause of cancer-related mortality worldwide. Inflammation is considered as a critical driver for CRC development and growth. We investigated the association between polymorphisms/expression levels of thymic stromal lymphopoietin (TSLP) /TSLP receptors and CRC risk in Saudi population. DNA samples were isolated from blood samples from 220 participants. Case subjects were 112 patients diagnosed with CRC, while control subjects were 108 healthy individuals, who were not diagnosed with any type of malignancy. We selected two single nucleotide polymorphisms (SNPs) located in the thymic stromal lymphopoietin gene (rs10043985 and rs2289276), three SNPs in TSLP receptor gene (TSLPR; rs36139698, rs36177645, and rs36133495), and two other SNPs in interleukin-7 receptor gene (IL-7R; rs12516866 and rs1053496), and designated these SNPs for a case-control genotyping study. The gene expression was analyzed using quantitative RT-PCR and immunohistochemistry assays array on 20 matching colorectal cancer/normal tissues. mRNA expressions and protein levels of TSLP, TSLPR-α subunit, and IL-7R-α subunit showed a 4-fold increase in colon cancer tissues when compared to normal colon tissues. Furthermore, two SNPs (rs10043985 of TSLP and rs1053496 of IL-7R) showed statistically significant correlations with CRC susceptibility. Interestingly, only rs10043985 showed a statistically significant association (p < 0.0001) in the genotypic and phenotypic levels with CRC for all clinical parameters (age, gender, and tumor location) tested. However, IL-7R rs1053496 genotyping results presented a significant correlation (p < 0.05) in male CRC patients and in individuals under 57 years of age. TSLP rs2289276, IL-7R rs12516866, and all TSLPR variants did not display any significant genotypic or phenotypic correlations in all tested clinical parameters. This study identified that TSLP rs10043985 and IL-7R rs1053496 SNPs, and the expression levels of TSLP and TSLPR-α subunit, can be used as markers for CRC development and treatment. However, additional investigations are required on larger group of patients from diverse ethnicities to confirm the genetic association of these variants to CRC.
Collapse
|
7
|
Li J, Xie H, Ying Y, Chen H, Yan H, He L, Xu M, Xu X, Liang Z, Liu B, Wang X, Zheng X, Xie L. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer 2020; 19:152. [PMID: 33121495 PMCID: PMC7599101 DOI: 10.1186/s12943-020-01267-6] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background N6-methyladenosine (m6A) is the most abundant modification in mRNA of humans. Emerging evidence has supported the fact that m6A is comprehensively involved in various diseases especially cancers. As a crucial reader, YTHDF2 usually mediates the degradation of m6A-modified mRNAs in m6A-dependent way. However, the function and mechanisms of m6A especially YTHDF2 in prostate cancer (PCa) still remain elusive. Methods To investigate the functions and mechanisms of YTHDF2 in PCa, in vitro, in vivo biofunctional assays and epigenetics experiments were performed. Endogenous expression silencing of YTHDF2 and METTL3 was established with lentivirus-based shRNA technique. Colony formation, flow cytometry and trans-well assays were performed for cell function identifications. Subcutaneous xenografts and metastatic mice models were combined with in vivo imaging system to investigate the phenotypes when knocking down YTHDF2 and METTL3. m6A RNA immunoprecipitation (MeRIP) sequencing, mRNA sequencing, RIP-RT-qPCR and bioinformatics analysis were mainly used to screen and validate the direct common targets of YTHDF2 and METTL3. In addition, TCGA database was also used to analyze the expression pattern of YTHDF2, METTL3 and the common target LHPP in PCa, and their correlation with clinical prognosis. Results The upregulated YTHDF2 and METTL3 in PCa predicted a worse overall survival rate. Knocking down YTHDF2 or METTL3 markedly inhibited the proliferation and migration of PCa in vivo and in vitro. LHPP and NKX3–1 were identified as the direct targets of both YTHDF2 and METTL3. YTHDF2 directly bound to the m6A modification sites of LHPP and NKX3–1 to mediate the mRNA degradation. Knock-down of YTHDF2 or METTL3 significantly induced the expression of LHPP and NKX3–1 at both mRNA and protein level with inhibited phosphorylated AKT. Overexpression of LHPP and NKX3–1 presented the consistent phenotypes and AKT phosphorylation inhibition with knock-down of YTHDF2 or METTL3. Phosphorylated AKT was consequently confirmed as the downstream of METTL3/YTHDF2/LHPP/NKX3–1 to induce tumor proliferation and migration. Conclusion We propose a novel regulatory mechanism in which YTHDF2 mediates the mRNA degradation of the tumor suppressors LHPP and NKX3–1 in m6A-dependent way to regulate AKT phosphorylation-induced tumor progression in prostate cancer. We hope our findings may provide new concepts of PCa biology.
Collapse
Affiliation(s)
- Jiangfeng Li
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyun Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yufan Ying
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Chen
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaqing Yan
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liujia He
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingjie Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Xu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Liang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ben Liu
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiangyi Zheng
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Liping Xie
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Liu Z, Tan RJ, Liu Y. The Many Faces of Matrix Metalloproteinase-7 in Kidney Diseases. Biomolecules 2020; 10:biom10060960. [PMID: 32630493 PMCID: PMC7356035 DOI: 10.3390/biom10060960] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted zinc-dependent endopeptidase that is implicated in regulating kidney homeostasis and diseases. MMP-7 is produced as an inactive zymogen, and proteolytic cleavage is required for its activation. MMP-7 is barely expressed in normal adult kidney but upregulated in acute kidney injury (AKI) and chronic kidney disease (CKD). The expression of MMP-7 is transcriptionally regulated by Wnt/β-catenin and other cues. As a secreted protein, MMP-7 is present and increased in the urine of patients, and its levels serve as a noninvasive biomarker for predicting AKI prognosis and monitoring CKD progression. Apart from degrading components of the extracellular matrix, MMP-7 also cleaves a wide range of substrates, such as E-cadherin, Fas ligand, and nephrin. As such, it plays an essential role in regulating many cellular processes, such as cell proliferation, apoptosis, epithelial-mesenchymal transition, and podocyte injury. The function of MMP-7 in kidney diseases is complex and context-dependent. It protects against AKI by priming tubular cells for survival and regeneration but promotes kidney fibrosis and CKD progression. MMP-7 also impairs podocyte integrity and induces proteinuria. In this review, we summarized recent advances in our understanding of the regulation, role, and mechanisms of MMP-7 in the pathogenesis of kidney diseases. We also discussed the potential of MMP-7 as a biomarker and therapeutic target in a clinical setting.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Roderick J. Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Correspondence:
| |
Collapse
|
9
|
Singh D, Bharti A, Biswas D, Tewari M, Ansari MA, Singh S, Narayan G. Altered expression of NKX3.1 has significant prognostic value in gallbladder cancer. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Fonseca-Alves CE, Kobayashi PE, Leis-Filho AF, Lainetti PDF, Grieco V, Kuasne H, Rogatto SR, Laufer-Amorim R. E-Cadherin Downregulation is Mediated by Promoter Methylation in Canine Prostate Cancer. Front Genet 2019; 10:1242. [PMID: 31850082 PMCID: PMC6895247 DOI: 10.3389/fgene.2019.01242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
E-cadherin is a transmembrane glycoprotein responsible for cell-to-cell adhesion, and its loss has been associated with metastasis development. Although E-cadherin downregulation was previously reported in canine prostate cancer (PC), the mechanism involved in this process is unclear. It is well established that dogs, besides humans, spontaneously develop PC with high frequency; therefore, canine PC is an interesting model to study human PC. In human PC, CDH1 methylation has been associated with E-cadherin downregulation. However, no previous studies have described the methylation pattern of CDH1 promoter in canine PC. Herein, we evaluated the E-cadherin protein and gene expression in canine PC compared to normal tissues. DNA methylation pattern was investigated as a regulatory mechanism of CDH1 silencing. Our cohort is composed of 20 normal prostates, 20 proliferative inflammatory atrophy (PIA) lesions, 20 PC, and 11 metastases from 60 dogs. The E-cadherin protein expression was assessed by immunohistochemistry and western blotting and gene expression by qPCR. Bisulfite- pyrosequencing assay was performed to investigate the CDH1 promoter methylation pattern. Membranous E-cadherin expression was observed in all prostatic tissues. A higher number of E-cadherin negative cells was detected more frequently in PC compared to normal and PIA samples. High-grade PC showed a diffuse membranous positive immunostaining. Furthermore, PC patients with a higher number of E-cadherin negative cells presented shorter survival time and higher Gleason scores. Western blotting and qPCR assays confirmed the immunohistochemical results, showing lower E-cadherin protein and gene expression levels in PC compared to normal samples. We identified CDH1 promoter hypermethylation in PIA and PC samples. An in vitro assay with two canine prostate cancer cells (PC1 and PC2 cell lines) was performed to confirm the methylation as a regulatory mechanism of E-cadherin expression. PC1 cell line presented CDH1 hypermethylation and after 5-Aza-dC treatment, a decreased CDH1 methylation and increased gene expression levels were observed. Positive E-cadherin cells were massively found in metastases (mean of 90.6%). In conclusion, low levels of E-cadherin protein, gene downregulation and CDH1 hypermethylation was detected in canine PC. However, in metastatic foci occur E-cadherin re-expression confirming its relevance in these processes.
Collapse
Affiliation(s)
- Carlos Eduardo Fonseca-Alves
- Institute of Health Sciences, Paulista University—UNIP, Bauru, Brazil
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Priscila Emiko Kobayashi
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Antonio Fernando Leis-Filho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Patricia de Faria Lainetti
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| | - Valeria Grieco
- Department of Veterinary Medicine, Università degli studi di Milano, Milan, Italy
| | - Hellen Kuasne
- International Center for Research (CIPE), AC Camargo Cancer Center, Sao Paulo, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Renee Laufer-Amorim
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, Sao Paulo State University—UNESP, Botucatu, Brazil
| |
Collapse
|
11
|
Debelec-Butuner B, Bostancı A, Ozcan F, Singin O, Karamil S, Aslan M, Roggenbuck D, Korkmaz KS. Oxidative DNA Damage-Mediated Genomic Heterogeneity Is Regulated by NKX3.1 in Prostate Cancer. Cancer Invest 2019; 37:113-126. [PMID: 30836777 DOI: 10.1080/07357907.2019.1576192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The 8-hydroxy-2'-deoxyguanosine (8-OHdG) damages are base damages induced by reactive oxygen species. We aimed to investigate the role of Androgen Receptor and NKX3.1 in 8-OHdG formation and repair activation by quantitating the DNA damage using Aklides.NUK system. The data demonstrated that the loss of NKX3.1 resulted in increased oxidative DNA damage and its overexpression contributes to the removal of menadione-induced 8-OHdG damage even under oxidative stress conditions. Moreover, 8-oxoguanine DNA glycosylase-1 (OGG1) expression level positively correlates to NKX3.1 expression. Also in this study, first time a reliable cell-based quantitation method for 8-OHdG damages is reported and used for data collection.
Collapse
Affiliation(s)
- Bilge Debelec-Butuner
- a Department of Pharmaceutical Biotechnology, Faculty of Pharmacy , Ege University , Izmir , Turkey
| | - Aykut Bostancı
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Filiz Ozcan
- c Mass Spectrometry Laboratory, Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Oznur Singin
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Selda Karamil
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| | - Mutay Aslan
- c Mass Spectrometry Laboratory, Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Dirk Roggenbuck
- d Medipan GmBH , Dahlewitz , Germany.,e Faculty Environment and Natural Sciences , Brandenburg University of Technology Cottbus-Senftenberg , Senftenberg , Germany
| | - Kemal Sami Korkmaz
- b Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering , Ege University , Izmir , Turkey
| |
Collapse
|
12
|
Debeleç-Bütüner B, Öztürk MB, Tağ Ö, Akgün İH, Yetik-Anacak G, Bedir E, Korkmaz KS. Cycloartane-type sapogenol derivatives inhibit NFκB activation as chemopreventive strategy for inflammation-induced prostate carcinogenesis. Steroids 2018; 135:9-20. [PMID: 29678446 DOI: 10.1016/j.steroids.2018.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/02/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is associated to 25% of cancer cases according to epidemiological data. Therefore, inhibition of inflammation-induced carcinogenesis can be an efficient therapeutic approach for cancer chemoprevention in drug development studies. It is also determined that anti-inflammatory drugs reduce cancer incidence. Cell culture-based in vitro screening methods are used as a fast and efficient method to investigate the biological activities of the biomolecules. In addition, saponins are molecules that are isolated from natural sources and are known to have potential for tumor inhibition. Studies on the preparation of analogues of cycloartane-type sapogenols (9,19-cyclolanostanes) have so far been limited. Therefore we have decided to direct our efforts toward the exploration of new anti-tumor agents prepared from cycloastragenol and its production artifact astragenol. The semi-synthetic derivatives were prepared mainly by oxidation, condensation, alkylation, acylation, and elimination reactions. After preliminary studies, five sapogenol analogues, two of which were new compounds (2 and 3), were selected and screened for their inhibitory activity on cell viability and NFκB signaling pathway activity in LNCaP prostate cancer cells. We found that the astragenol derivatives 1 and 2 as well as cycloastragenol derivatives 3, 4, and 5 exhibited strong inhibitory activity on NFκB signaling leading the repression of NFκB transcriptional activation and suppressed cell proliferation. The results suggested that these molecules might have significant potential for chemoprevention of prostate carcinogenesis induced by inflammatory NFκB signaling pathway.
Collapse
Affiliation(s)
- Bilge Debeleç-Bütüner
- Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Izmir, Turkey.
| | - Mert Burak Öztürk
- Ege University, Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Izmir, Turkey
| | - Özgür Tağ
- Ege University, Graduate School of Natural and Applied Sciences, Department of Chemistry, Izmir, Turkey
| | - İsmail Hakkı Akgün
- Ege University, Faculty of Engineering, Department of Bioengineering, Izmir, Turkey
| | - Günay Yetik-Anacak
- Ege University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey
| | - Erdal Bedir
- Ege University, Faculty of Engineering, Department of Bioengineering, Izmir, Turkey.
| | - Kemal Sami Korkmaz
- Ege University, Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Izmir, Turkey
| |
Collapse
|
13
|
Bhattacharya R, Panda CK, Nandi S, Mukhopadhyay A. An insight into metastasis: Random or evolving paradigms? Pathol Res Pract 2018; 214:1064-1073. [PMID: 30078401 DOI: 10.1016/j.prp.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
Mechanical or fostered molecular events define metastatic cascade. Three distinct sets of molecular events characterize metastasis, viz invasion of extracellular matrix; angiogenesis, vascular dissemination and anoikis resistance; tumor homing and relocation of tumor cells to selective organ. Invasion of extracellular matrix requires epithelial to mesenchymal transition through disrupted lamellopodia formation and contraction of actin cytoskeleton; aberration of Focal adhesion complex formation involving integrins and the extracellular matrix; degradation of extracellular matrix by matrix metalloproteases; faulty immune surveillance in tumor microenvironment and an upregulated proton efflux pump NHE1 in tumors. Vascular dissemination and anoikis resistance depend upon upregulation of integrins, phosphorylation of CDCP1, attenuated apoptotic pathways and upregulation of angiogenesis. Tumor homing depends on recruitment of mesenchymal stem cells, expression on chemokines and growth factors, upregulated stem cell renewal pathways. Despite of many potential challenges in curbing metastasis, future targeted therapies involving immunotherapy, stem cell engineered and oncolytic virus based therapy, pharmacological activation of circadian clock are held promising. To sum up, metastasis is a complex cascade of events and warrants detailed molecular understanding for development of therapeutic strategies.
Collapse
Affiliation(s)
- Rittwika Bhattacharya
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 S.P Mukherjee Road, Kolkata, 700026, India.
| | - Sourav Nandi
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| | - Ashis Mukhopadhyay
- Department of Haemato-Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, 16A Park Lane, Kolkata, 700016, India.
| |
Collapse
|
14
|
Aydemir AT, Alper M, Kockar F. SP1-mediated downregulation of ADAMTS3 gene expression in osteosarcoma models. Gene 2018; 659:1-10. [PMID: 29518549 DOI: 10.1016/j.gene.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 02/06/2018] [Accepted: 03/03/2018] [Indexed: 11/19/2022]
Abstract
ADAMTS3 is a member of procollagen N-proteinase subfamily of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family. It has an important function in the procollagen maturation process. The removal of N-peptidases is required for the accurate processing of fibrillar collagens. Otherwise, several disorders can occur that is related with the collagenous tissues. ADAMTS3 mainly maturates type II collagen molecule which is the main component of the bone and cartilage. There are several expression studies about ADAMTS3 gene however its transcriptional regulation has not been lightened up, yet. Here we first time cloned and functionally analyzed the promoter region of ADAMTS3 gene, approximately 1380 bp upstream of the transcription start site. Transient transfection experiments showed that all truncated promoter constructs are active and 171 bp fragment is sufficient to activate gene expression in both Saos-2 and MG63 cells. In silico analysis showed that ADAMTS3 has a TATA-less promoter and contains several SP1/GC box binding motifs and a CpG island. Therefore we mainly investigated the SP1 dependent regulation of ADAMTS3 promoter. SP1 downregulated ADAMTS3 transcriptional activity. As consistent with the transcriptional activity, mRNA, and protein expression levels were also decreased by SP1. On the other hand, functional binding of the SP1 on multiple regions of ADAMTS3 promoter was confirmed by EMSA studies. As ADAMTS3 is responsible for the collagen maturation and biosynthesis, further we investigated the effect of SP1 on type I-II and III collagen gene expressions. We point out that SP1 increased type II and III collagen expression and in contrast decreased type I collagen expression levels in Saos-2 cells. mRNA expression level was decreased for all collagen types in MG63 model. Decrease in the type II collagen expression was also demonstrated at the protein level by SP1. Collectively these results provide first findings for the SP1-related transcriptional regulation of ADAMTS3 and collagen genes in osteosarcoma cell lines.
Collapse
Affiliation(s)
- A Tuğşen Aydemir
- Balıkesir University, Faculty of Science and Literature, Department of Biology, 10145 Balikesir, Turkey
| | - Meltem Alper
- Aksaray University, Aksaray Vocational School of Technical Sciences, 68100 Aksaray, Turkey
| | - Feray Kockar
- Balıkesir University, Faculty of Science and Literature, Department of Molecular Biology, 10145 Balikesir, Turkey.
| |
Collapse
|
15
|
Kobayashi PE, Fonseca-Alves CE, Rivera-Calderón LG, Carvalho M, Kuasne H, Rogatto SR, Laufer-Amorim R. Deregulation of E-cadherin, β-catenin, APC and Caveolin-1 expression occurs in canine prostate cancer and metastatic processes. Res Vet Sci 2018; 118:254-261. [PMID: 29529534 DOI: 10.1016/j.rvsc.2018.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/12/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023]
Abstract
Prostate cancer is a heterogeneous disease with high levels of clinical and gene heterogeneity, consequently offering several targets for therapy. Dogs with naturally occurring prostate cancer are useful models for molecular investigations and studying new treatment efficacy. Three genes and proteins associated with the WNT pathway (β-catenin, APC and E-cadherin) and Caveolin-1 (CAV-1) were evaluated in canine pre-neoplastic proliferative inflammatory atrophy (PIA), prostate cancer and metastatic disease. The APC gene methylation status was also investigated. As in human prostate cancer, cytoplasmic and nuclear β-catenin, which are fundamental for activating the canonical WNT pathway, were found in canine prostate cancer and metastasis. Membranous E-cadherin was also lost in these lesions, allowing cellular migration to the stroma and nuclear localization of β-catenin. In contrast to human prostate tumours, no APC downregulation or hypermethylation was found in canine prostate cancer. The CAV-1 gene and protein overexpression were found in canine prostate cancer, and as in humans, the highest levels were found in Gleason scores ≥8. In conclusion, as with human prostate cancer, β-catenin and E-cadherin in the WNT pathway, as well as Caveolin-1, are molecular drivers in canine prostate cancer. These findings provide additional evidence that dogs are useful models for studying new therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Priscila E Kobayashi
- São Paulo State University (UNESP), Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Botucatu, SP, Brazil
| | - Carlos E Fonseca-Alves
- São Paulo State University (UNESP), Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Botucatu, SP, Brazil
| | - Luis G Rivera-Calderón
- São Paulo State University (UNESP), Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Márcio Carvalho
- São Paulo State University (UNESP), Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Botucatu, SP, Brazil
| | - Hellen Kuasne
- International Center for Research (CIPE), AC Camargo Hospital, Liberdade, São Paulo, Brazil
| | - Silvia R Rogatto
- Department of Clinical Genetics, Vejle Hospital and Institute of Regional Health, University of Southern Denmark, Denmark
| | - Renée Laufer-Amorim
- São Paulo State University (UNESP), Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Botucatu, SP, Brazil.
| |
Collapse
|
16
|
Debeleç Bütüner B, Öztürk MB. Use of Non-steroidal Anti-inflammatory Drugs for Chemoprevention of Inflammation-induced Prostate Cancer. Turk J Pharm Sci 2017; 14:274-279. [PMID: 32454624 DOI: 10.4274/tjps.41636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/26/2017] [Indexed: 12/01/2022]
Abstract
Objectives Chronic inflammation has been known as one of the major causes of cancer progression and 25% of cancer cases initiate due to chronic inflammation according to epidemiologic data. It has been determined that chronic inflammation induces carcinogenesis through the abrogation of cell proliferation, apoptosis, and angiogenesis mechanisms. Therefore, it is believed that inhibition of inflammation-induced carcinogenic mechanisms is an efficient therapeutic strategy in drug development studies of cancer chemoprevention. It has also been observed that use of anti-inflammatory drugs reduces the incidence of cancer, and the risk of developing prostate cancer decreases 15-20% with regular use of aspirin and non-steroidal anti-inflammatory drugs (NSAID). Materials and Methods In this study, we investigated the effects of some clinically used NSAIDs on cellular mechanisms that play a role in inflammation-induced prostate carcinogenesis. Inhibition activities on the nuclear factor kappa-B signaling pathway, which activates tumorigenic mechanisms, as well as alterations on androgen receptor signaling, which regulates the proliferation of prostate cells, were investigated. In addition, protein kinase B (Akt) activation, which is stimulated a the inflammatory microenvironment, was examined. Results The results showed that anti-inflammatory agents alter the protein levels of androgen receptors as well as tumor suppressor NKX3.1, and might trigger an unexpected increase in Akt(S473) level, which induces tumorigenesis. Conclusion It is suggested that inflammatory pathways and prostate carcinogenesis-specific mechanisms should be taken into account for the use of anti-inflammatory drugs for chemoprevention of inflammation-induced prostate cancer.
Collapse
Affiliation(s)
- Bilge Debeleç Bütüner
- Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, İzmir, Turkey
| | - Mert Burak Öztürk
- Ege University, Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, İzmir, Turkey
| |
Collapse
|
17
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, et alEgea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Show More Authors] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
18
|
Jiang J, Liu Z, Ge C, Chen C, Zhao F, Li H, Chen T, Yao M, Li J. NK3 homeobox 1 (NKX3.1) up-regulates forkhead box O1 expression in hepatocellular carcinoma and thereby suppresses tumor proliferation and invasion. J Biol Chem 2017; 292:19146-19159. [PMID: 28972178 DOI: 10.1074/jbc.m117.793760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/22/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality in China, and the molecular mechanism of uncontrolled HCC progression remains to be explored. NK3 homeobox 1 (NKX3.1), an androgen-regulated prostate-specific transcription factor, suppresses tumors in prostate cancer, but its role in HCC is unknown, especially in hepatocellular carcinoma. In the present study, the differential expression analyses in HCC tissues and matched adjacent noncancerous liver tissues revealed that NKX3.1 is frequently down-regulated in human primary HCC tissues compared with matched adjacent noncancerous liver tissues. We also noted that NKX3.1 significantly inhibits proliferation and mobility of HCC cells both in vitro and in vivo Furthermore, NKX3.1 overexpression resulted in cell cycle arrest at the G1/S phase via direct binding to the promoter of forkhead box O1 (FOXO1) and up-regulation of expression. Of note, FOXO1 silencing in NKX3.1-overexpressing cells reversed the inhibitory effects of NKX3.1 on HCC cell proliferation and invasion. Consistently, both FOXO1 and NKX3.1 were down-regulated in human HCC tissues, and their expression was significantly and positively correlated with each other. These results suggest that NKX3.1 functions as a tumor suppressor in HCC cells through directly up-regulating FOXO1 expression.
Collapse
Affiliation(s)
- Jingyi Jiang
- From the Shanghai Medical College, Fudan University, Shanghai 200032.,the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Zheng Liu
- From the Shanghai Medical College, Fudan University, Shanghai 200032.,the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Chao Ge
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Cong Chen
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Fangyu Zhao
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Hong Li
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Taoyang Chen
- the Qi Dong Liver Cancer Institute, Qi Dong 226200, China
| | - Ming Yao
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| | - Jinjun Li
- the State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, and
| |
Collapse
|
19
|
Odenthal J, Takes R, Friedl P. Plasticity of tumor cell invasion: governance by growth factors and cytokines. Carcinogenesis 2016; 37:1117-1128. [PMID: 27664164 DOI: 10.1093/carcin/bgw098] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released within the reactive tumor microenvironment and their intracellular effector signals strongly impact mechanocoupling functions in tumor cells and thereby control the mode and extent of tumor invasion, including collective and single-cell migration and their interconversions. Besides their role in controlling tumor cell growth and survival, cytokines and growth factors thus provide complex orchestration of the metastatic cascade and tumor cell adaptation to environmental challenge. We here review the mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment, and the consequences for the efficacy and plasticity of invasion programs and metastasis.
Collapse
Affiliation(s)
- Julia Odenthal
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Robert Takes
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands, .,Department of Genitourinary Medical Oncology - Research, Houston, TX 77030, USA and.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
20
|
Abstract
Benzo[a]pyrene (B[a]P) is a carcinogen in cigarette smoke. We found that B[a]P induced SIRT1 in human bronchial epithelial BEAS-2B cell. SIRT1 was overexpressed in the lung of B[a]P-exposed mice and in human lung cancer biopsies. SIRT1 up-regulated TNF-α and β-catenin and down-regulated the membrane fraction of E-cadherin. In addition, SIRT1 promoted invasion, migration and tumorigenesis of BEAS-2B cells in nude mice upon B[a]P exposure. Thus, SIRT1 is involved in B[a]P-induced transformation associated with activation of the TNF-α/β-catenin axis and is as a potential therapeutic target for lung cancer.
Collapse
|
21
|
Zhang Q, Liu S, Parajuli KR, Zhang W, Zhang K, Mo Z, Liu J, Chen Z, Yang S, Wang AR, Myers L, You Z. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene 2016; 36:687-699. [PMID: 27375020 PMCID: PMC5213194 DOI: 10.1038/onc.2016.240] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/29/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
Abstract
Chronic inflammation has been associated with a variety of human cancers including prostate cancer. Interleukin-17 (IL-17) is a critical pro-inflammatory cytokine, which has been demonstrated to promote development of prostate cancer, colon cancer, skin cancer, breast cancer, lung cancer, and pancreas cancer. IL-17 promotes prostate adenocarcinoma with a concurrent increase of matrix metalloproteinase 7 (MMP7) expression in mouse prostate. Whether MMP7 mediates IL-17’s action and the underlying mechanisms remain unknown. We generated Mmp7 and Pten double knockout (Mmp7−/− in abbreviation) mouse model and demonstrated that MMP7 promotes prostate adenocarcinoma through induction of epithelial-to-mesenchymal transition (EMT) in Pten-null mice. MMP7 disrupted E-cadherin/β-catenin complex to up-regulate EMT transcription factors in mouse prostate tumors. IL-17 receptor C and Pten double knockout mice recapitulated the weak EMT characteristics observed in Mmp7−/− mice. IL-17 induced MMP7 and EMT in human prostate cancer LNCaP, C4-2B, and PC-3 cell lines, while siRNA knockdown of MMP7 inhibited IL-17-induced EMT. Compound III, a selective MMP7 inhibitor, decreased development of invasive prostate cancer in Pten single knockout mice. In human normal prostates and prostate tumors, IL-17 mRNA levels were positively correlated with MMP7 mRNA levels. These findings demonstrate that MMP7 mediates IL-17’s function in promoting prostate carcinogenesis through induction of EMT, indicating IL-17-MMP7-EMT axis as potential targets for developing new strategies in the prevention and treatment of prostate cancer.
Collapse
Affiliation(s)
- Q Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - S Liu
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - K R Parajuli
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - W Zhang
- Department of Computer Science and Biostatistics Facility of RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - K Zhang
- Department of Computer Science and Biostatistics Facility of RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - Z Mo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Obstetrics and Gynecology, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - J Liu
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Obstetrics and Gynecology, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Z Chen
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Thoracic Surgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - S Yang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - A R Wang
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, LA, USA
| | - L Myers
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, USA
| | - Z You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Orthopaedic Surgery, Tulane University, New Orleans, LA, USA.,Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, LA, USA.,Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA.,Tulane Center for Aging, Tulane University, New Orleans, LA, USA
| |
Collapse
|
22
|
Zhang L, Geng WR, Hu J, Chen XM, Shen YL, Wang LL, Jiang JP, Chen YY. Lipopolysaccharide pretreatment promotes cardiac stem cell migration through heat shock protein 90-dependent β-catenin activation. Life Sci 2016; 153:132-40. [DOI: 10.1016/j.lfs.2016.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022]
|
23
|
Semlali A, Reddy Parine N, Arafah M, Mansour L, Azzi A, Al Shahrani O, Al Amri A, Shaik JP, Aljebreen AM, Alharbi O, Almadi MA, Azzam NA, Kohailan M, Rouabhia M, Alanazi MS. Expression and Polymorphism of Toll-Like Receptor 4 and Effect on NF-κB Mediated Inflammation in Colon Cancer Patients. PLoS One 2016; 11:e0146333. [PMID: 26771524 PMCID: PMC4714746 DOI: 10.1371/journal.pone.0146333] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022] Open
Abstract
Our aim was to evaluate the association between the expression and the polymorphism of TLR4/NF-κB pathways and colon cancer. TLR4 (rs4986790, rs10759932, rs10759931 and rs2770150) were genotyped in blood samples from Colorectal patients and healthy controls. TLR4 and cytokines inflammatory expression were evaluated by real time PCR on 40 matching normal and colon tissues and the protein level by Immunohistochemistry. The high level of TLR4 expression in colon cancer tissues is mainly due to infections by bacteria in the human colon and leads to induction of an acute secretion of inflammatory cytokines mediated by NF-κB. Also, we report here a clear evidence for an association between TLR4 rs10759931 polymorphism (OR = 0.086, CI: 0.04–0.18, P = <0.00001). This polymorphism affects the entire population without being specific to either gender or to any age group. In contrast, the rs2770150 is associated with colon cancer in women aged over 50 years and is closely linked with the decreased levels of female sex hormones during the post-menopausal period (OR = 0.188, CI: 0.074–0.48, P = <0.00084). rs10759932 and rs4986790 appear to have any association with colon cancer. Our data suggest that TLR4 SNPs could possibly serve as biomarkers for decision making in colon cancer treatment.
Collapse
Affiliation(s)
- Abdelhabib Semlali
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
- * E-mail: ;
| | - Narasimha Reddy Parine
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maha Arafah
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Arezki Azzi
- College of Medicine, Al Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh, Kingdom of Saudi Arabia
| | - Omair Al Shahrani
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Al Amri
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jilani P. Shaik
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulrahman M. Aljebreen
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Othman Alharbi
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Majid A. Almadi
- Division of Gastroenterology, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology, The McGill University Health Center, Montreal General Hospital, McGill University, Montreal, Québec, Canada
| | - Nahla Ali Azzam
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Kohailan
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Département de stomatologie, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
| | - Mohammad Saud Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Feng ZC, Popell A, Li J, Silverstein J, Oakie A, Yee SP, Wang R. c-Kit Receptor Signaling Regulates Islet Vasculature, β-Cell Survival, and Function In Vivo. Diabetes 2015; 64:3852-66. [PMID: 26253609 DOI: 10.2337/db15-0054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/25/2015] [Indexed: 11/13/2022]
Abstract
The receptor tyrosine kinase c-Kit plays an integral role in maintaining β-cell mass and function. Although c-Kit receptor signaling promotes angiogenesis in multiple cell types, its role in islet vasculature is unknown. This study examines the effects of c-Kit-mediated vascular endothelial growth factor isoform A (VEGF-A) and islet vascularization on β-cell function and survival using in vitro cell culture and in vivo mouse models. In cultured INS-1 cells and primary islets, c-Kit regulates VEGF-A expression via the Akt/mammalian target of rapamycin (mTOR) signaling pathway. Juvenile mice with mutated c-Kit (c-Kit(Wv/+)) showed impaired islet vasculature and β-cell dysfunction, while restoring c-Kit expression in β-cells of c-Kit(Wv/+) mice rescued islet vascular defects through modulation of the Akt/mTOR/VEGF-A pathway, indicating that c-Kit signaling in β-cells is a required regulator for maintaining normal islet vasculature. Furthermore, β-cell-specific c-Kit overexpression (c-KitβTg) in aged mice showed significantly increased islet vasculature and β-cell function, but, when exposed to a long-term high-fat diet, c-Kit signaling in c-KitβTg mice induced substantial vascular remodeling, which resulted in increased islet inflammatory responses and β-cell apoptosis. These results suggest that c-Kit-mediated VEGF-A action in β-cells plays a pivotal role in maintaining islet vascularization and function.
Collapse
Affiliation(s)
- Zhi-Chao Feng
- Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Alex Popell
- Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Jinming Li
- Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Jenna Silverstein
- Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Amanda Oakie
- Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Pathology, University of Western Ontario, London, Ontario, Canada
| | - Siu-Pok Yee
- Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT
| | - Rennian Wang
- Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
25
|
Alper M, Aydemir AT, Köçkar F. Induction of human ADAMTS-2 gene expression by IL-1α is mediated by a multiple crosstalk of MEK/JNK and PI3K pathways in osteoblast like cells. Gene 2015; 573:321-7. [PMID: 26232334 DOI: 10.1016/j.gene.2015.07.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/02/2015] [Accepted: 07/19/2015] [Indexed: 12/25/2022]
Abstract
Up-regulation of ADAMTS genes with proinflammatory cytokines is important for some pathological conditions such as osteoarthritis (OA) that is a disease based on ECM degradation in cartilage. IL-1α is a proinflammatory cytokine and important both to normal and pathophysiologic conditions in cartilage and bone. Effects of some proinflammatory cytokines such as TNF-α and IL-1β on the some members of ADAMTS family have been investigated in some chondrocyte tissues or cell lines. However the effect of the IL-1α on the expression of ADAMTS-2 and ADAMTS-3 gene expression in osteoblast like cell lines, remains unclear. Therefore, the aim of this study is to investigate the effect of IL-1α on ADAMTS-2 and ADAMTS-3 gene expression in osteoblast like cells, Saos-2 and MG-63. The present study, for the first time, demonstrated that IL-1α increases ADAMTS-2 and ADAMTS-3 gene expressions in both Saos-2 and MG-63 cells. Having correlation to mRNA induction, the upregulation of ADAMTS-2,-3 protein levels by IL-1α stimulation is also observed. The inhibition studies showed that this upregulation occurred at the level of transcription, and there was no effect of IL-1α on ADAMTS-2 mRNA half-life in Saos-2 cells. Transactivation potential of IL-1α on ADAMTS-2 promoter was investigated by transient transfection assay. Specifically, IL-1α strongly increased -658/+112 and -530/+112 ADAMTS-2 promoter constructs. Further, we analyzed signaling pathways involved in ADAMTS-2 induction. Pathway inhibition studies revealed that this upregulation depends on the activation of MEK, JNK and PI3K pathways. These findings suggested that IL-1α is a strong positive regulator of ADAMTS-2 and ADAMTS-3 expression. These findings would provide novel insight into the pathophysiology of OA.
Collapse
Affiliation(s)
- Meltem Alper
- Aksaray University, Aksaray Vocational School of Technical Sciences,68100 Aksaray, Turkey
| | - A Tuğşen Aydemir
- Balikesir University, Faculty of Science and Literature, Department of Biology, Balikesir, Turkey
| | - Feray Köçkar
- Balikesir University, Faculty of Science and Literature, Department of Biology, Balikesir, Turkey.
| |
Collapse
|
26
|
Manda G, Isvoranu G, Comanescu MV, Manea A, Debelec Butuner B, Korkmaz KS. The redox biology network in cancer pathophysiology and therapeutics. Redox Biol 2015; 5:347-357. [PMID: 26122399 PMCID: PMC4501561 DOI: 10.1016/j.redox.2015.06.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1) and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic), greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular heterogeneity and the hypoxia map in the tumor niche, along with the adjoining and systemic effects of oxidative stress-based therapies. Critical point mutations and distorted redox-sensitive signaling pathways underlie the tumorigenic phenotype. Inter-cellular crosstalk under stress conditions in the tumor niche drives the behavior of tumor cells. ROS may act as either as supporter or enemy of tumor cells, depending on the context. Oxidative stress-injured cells deliver danger signals to neighboring and distant cells, hence dictating the outcome of therapy in cancer.
Collapse
Affiliation(s)
- Gina Manda
- Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania.
| | - Gheorghita Isvoranu
- Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Maria Victoria Comanescu
- Cellular and Molecular Medicine Department, Radiobiology Laboratory, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Adrian Manea
- Cellular and Molecular Pharmacology Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Bilge Debelec Butuner
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ege University, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Ege University, İzmir, Turkey
| |
Collapse
|
27
|
Noncanonical activation of β-catenin by Porphyromonas gingivalis. Infect Immun 2015; 83:3195-203. [PMID: 26034209 DOI: 10.1128/iai.00302-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023] Open
Abstract
Porphyromonas gingivalis is an established pathogen in periodontal disease and an emerging pathogen in serious systemic conditions, including some forms of cancer. We investigated the effect of P. gingivalis on β-catenin signaling, a major pathway in the control of cell proliferation and tumorigenesis. Infection of gingival epithelial cells with P. gingivalis did not influence the phosphorylation status of β-catenin but resulted in proteolytic processing. The use of mutants deficient in gingipain production, along with gingipain-specific inhibitors, revealed that gingipain proteolytic activity was required for β-catenin processing. The β-catenin destruction complex components Axin1, adenomatous polyposis coli (APC), and GSK3β were also proteolytically processed by P. gingivalis gingipains. Cell fractionation and Western blotting demonstrated that β-catenin fragments were translocated to the nucleus. The accumulation of β-catenin in the nucleus following P. gingivalis infection was confirmed by immunofluorescence microscopy. A luciferase reporter assay showed that P. gingivalis increased the activity of the β-catenin-dependent TCF/LEF promoter. P. gingivalis did not increase Wnt3a mRNA levels, a finding consistent with P. gingivalis-induced proteolytic processing causing the increase in TCF/LEF promoter activity. Thus, our data indicate that P. gingivalis can induce the noncanonical activation of β-catenin and disassociation of the β-catenin destruction complex by gingipain-dependent proteolytic processing. β-Catenin activation in epithelial cells by P. gingivalis may contribute to a proliferative phenotype.
Collapse
|