1
|
Puccetti M, Pariano M, Stincardini C, Wojtylo P, Schoubben A, Nunzi E, Ricci M, Romani L, Giovagnoli S. Pulmonary drug delivery technology enables anakinra repurposing in cystic fibrosis. J Control Release 2023; 353:1023-1036. [PMID: 36442616 DOI: 10.1016/j.jconrel.2022.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Inflammation is a key pathological driver in cystic fibrosis (CF). Current therapies are ineffective in treating and preventing the escalation of inflammatory events often exacerbated by superimposed infection. In this work, we propose a novel treatment based on the pulmonary administration of anakinra, a non-glycosylated recombinant form of IL-1Ra. An inhalable dry powder of anakinra was successfully developed to meet the specific needs of lung drug delivery. The new formulation was investigated in vitro for aerodynamic performances and activity and in vivo for its pharmacological profile, including the pharmacokinetics, treatment schedule, antimicrobial and anti-inflammatory activity and systemic toxicity. The protein was structurally preserved inside the formulation and retained its pharmacological activity in vitro immediately after preparation and over time when stored at ambient conditions. Anakinra when delivered to the lungs showed an improved and extended therapeutic efficacy in CF models in vivo as well as higher potency compared to systemic delivery. Peripheral side effects were significantly reduced and correlated with lower serum levels compared to systemic treatment. These findings provide proof-of-concept demonstration for anakinra repurposing in CF through the pulmonary route.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy.
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Paulina Wojtylo
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Aurelie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy.
| |
Collapse
|
2
|
Flores SS, Clop PD, Barra JL, Argaraña CE, Perillo MA, Nolan V, Sánchez JM. His-tag β-galactosidase supramolecular performance. Biophys Chem 2021; 281:106739. [PMID: 34923392 DOI: 10.1016/j.bpc.2021.106739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 11/02/2022]
Abstract
β-Galactosidase is an important biotechnological enzyme used in the dairy industry, pharmacology and in molecular biology. In our laboratory we have overexpressed a recombinant β-galactosidase in Escherichia coli (E. coli). This enzyme differs from its native version (β-GalWT) in that 6 histidine residues have been added to the carboxyl terminus in the primary sequence (β-GalHis), which allows its purification by immobilized metal affinity chromatography (IMAC). In this work we compared the functionality and structure of both proteins and evaluated their catalytic behavior on the kinetics of lactose hydrolysis. We observed a significant reduction in the enzymatic activity of β-GalHis with respect to β-GalWT. Although, both enzymes showed a similar catalytic profile as a function of temperature, β-GalHis presented a higher resistance to the thermal inactivation compared to β-GalWT. At room temperature, β-GalHis showed a fluorescence spectrum compatible with a partially unstructured protein, however, it exhibited a lower tendency to the thermal-induced unfolding with respect to β-GalWT. The distinctively supramolecular arranges of the proteins would explain the effect of the presence of His-tag on the enzymatic activity and thermal stability.
Collapse
Affiliation(s)
- Sandra S Flores
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Pedro D Clop
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - José L Barra
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Av. Haya de la Torre s/N° Ciudad Universitaria CP, X5000HUA Córdoba, Argentina; CONICET, Centro de Investigaciones en Química Biológicas de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Carlos E Argaraña
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Av. Haya de la Torre s/N° Ciudad Universitaria CP, X5000HUA Córdoba, Argentina; CONICET, Centro de Investigaciones en Química Biológicas de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - María A Perillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Verónica Nolan
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina.
| | - Julieta M Sánchez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina.
| |
Collapse
|
3
|
Guleria S, Jain R, Singh D, Kumar S. A thermostable Fe/Mn SOD of Geobacillus sp. PCH100 isolated from glacial soil of Indian trans-Himalaya exhibits activity in the presence of common inhibitors. Int J Biol Macromol 2021; 179:576-585. [PMID: 33676984 DOI: 10.1016/j.ijbiomac.2021.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/05/2023]
Abstract
Superoxide dismutases are the enzymes involved in dismutation of superoxide radicals into oxygen and hydrogen peroxide. The present work reports a thermostable Fe/Mn SOD of Geobacillus sp. strain PCH100 (GsSOD) isolated from glacial soil. Purified recombinant GsSOD is a dimeric protein of ~57 kDa that exhibited highest activity at a temperature of 10 °C and pH of 7.8. Maximum enzyme velocity and Michaelis constant of the GsSOD were 1098.90 units/mg and 0.62 μM, respectively. At 80 °C, thermal inactivation rate constant and half-life of GsSOD were 3.33 × 10-3 min-1 and 208 min, respectively. Interestingly, GsSOD tolerated a temperature of 100 °C and 130 °C up to 15 min and 5 min, respectively. Circular dichroism and differential scanning calorimetry confirmed thermostable nature of GsSOD. Apoenzyme of GsSOD regained enzymatic activity in the presence of Fe2+ and Mn2+ as metal ion cofactors. GsSOD was stable under varying concentrations of chemicals, namely ethylenediaminetetraacetic acid, potassium cyanide, hydrogen peroxide, chloroform-ethanol, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate, Tween-20, Triton X-100, urea, and guanidine hydrochloride. The enzyme exhibited >70% activity in presence of 10 mM metal ions. Owing to its thermostable nature and resistance to chemical inhibitors, GsSOD is a potential enzyme for industrial applications.
Collapse
Affiliation(s)
- Shweta Guleria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Rahul Jain
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India.
| |
Collapse
|
4
|
Zhou X, Liu Y, Huang J, Liu Q, Sun J, Cai X, Tang P, Liu W, Miao W. High temperatures affect the hypersensitive reaction, disease resistance and gene expression induced by a novel harpin HpaG-Xcm. Sci Rep 2019; 9:990. [PMID: 30700772 PMCID: PMC6353989 DOI: 10.1038/s41598-018-37886-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022] Open
Abstract
Harpin proteins are produced by plant-pathogenic Gram-negative bacteria and regulate bacterial pathogenicity by inducing plant growth and defence responses in non-hosts. HpaG-Xcm, a novel harpin protein, was identified from Xanthomonas citri pv. mangiferaeindicae, which causes bacterial black spot of mango. Here, we describe the predicted structure and functions of HpaG-Xcm and investigate the mechanism of heat resistance. The HpaG-Xcm amino acid sequence contains seven motifs and two α-helices, in the N- and C-terminals, respectively. The N-terminal α-helical region contains two heptads, which form the coiled-coil (CC) structure. The CC region, which is on the surface of HpaG-Xcm, forms oligomeric aggregates by forming hydrophobic interactions between hydrophobic amino acids. Like other harpins, HpaG-Xcm was heat stable, promoted root growth and induced a hypersensitive response (HR) and systemic acquired resistance in non-host plants. Subjecting HpaG-Xcm to high temperatures altered the gene expression induced by HpaG-Xcm in tobacco leaves, probably due to changes in the spatial structure of HpaG-Xcm. Phenotypic tests revealed that the high-temperature treatments reduced the HR and disease resistance induced by HpaG-Xcm but had little effect on growth promotion. These findings indicate that the stability of interactions between CC and plants may be associated with thermal stability of HpaG-Xcm.
Collapse
Affiliation(s)
- Xiaoyun Zhou
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Yue Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Jiamin Huang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Qinghuan Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Jianzhang Sun
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Xinfeng Cai
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Peng Tang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Wenbo Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China
| | - Weiguo Miao
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China.
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, Hainan Province, China.
| |
Collapse
|
5
|
Linde M, Heyn K, Merkl R, Sterner R, Babinger P. Hexamerization of Geranylgeranylglyceryl Phosphate Synthase Ensures Structural Integrity and Catalytic Activity at High Temperatures. Biochemistry 2018; 57:2335-2348. [DOI: 10.1021/acs.biochem.7b01284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mona Linde
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Kristina Heyn
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
6
|
|