1
|
Chen Y, Nguyen DT, Wheeler D, Herron GA. A novel mutation in mitochondrial cytochrome b conferring resistance to bifenazate in two-spotted spider mite Tetranychus urticae Koch (Acarina: Tetranychidae). PEST MANAGEMENT SCIENCE 2024; 80:3612-3619. [PMID: 38451019 DOI: 10.1002/ps.8065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The two-spotted spider mite Tetranychus urticae causes significant damage to ornamental, cotton, sugarcane and horticultural crops in Australia. It has a long history of developing resistance to many acaricides including bifenazate. A mutation in the conserved cd1- and ef-helices of the Qo pocket of cytochrome b is recognized as the primary mechanism of bifenazate resistance. To investigate the resistance mechanisms against bifenazate in Australian two-spotted spider mite, we sequenced the complete mitochondrion genome of five mite strains including a susceptible and bifenazate-resistant strain. RESULTS We identified a novel mutation D252N in the G126S background at cytochrome b being the cause of bifenazate resistance in a bifenazate-resistant strain, Bram. We validated the role of this mutation combination by reciprocal crosses between a bifenazate resistant and susceptible strain. By doing these crosses we confirmed the pattern of inheritance was maternal. Additionally, mitochondrial heteroplasmy was not observed by single mite genotyping of the mutations in cytb in a known bifenazate-resistant strain Bram. The phylogenetic analysis with the complete mitochondrion genome sequences revealed that Australian two-spotted spider mite strains are closely related to the green form of T. urticae found in China. CONCLUSIONS The novel mutation D252N found in the cytochrome b in the G126S background was revealed to be the main cause of bifenazate resistance in the Australian T. urticae strain Bram. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yizhou Chen
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| | - Duong T Nguyen
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| | - David Wheeler
- New South Wales Department of Primary Industries, Orange Agricultural Institute, Orange, New South Wales, Australia
| | - Grant A Herron
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| |
Collapse
|
2
|
Zhang Q, Lu YW, Liu XY, Li Y, Gao WN, Sun JT, Hong XY, Shao R, Xue XF. Phylogenomics resolves the higher-level phylogeny of herbivorous eriophyoid mites (Acariformes: Eriophyoidea). BMC Biol 2024; 22:70. [PMID: 38519936 PMCID: PMC10960459 DOI: 10.1186/s12915-024-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Eriophyoid mites (Eriophyoidea) are among the largest groups in the Acariformes; they are strictly phytophagous. The higher-level phylogeny of eriophyoid mites, however, remains unresolved due to the limited number of available morphological characters-some of them are homoplastic. Nevertheless, the eriophyoid mites sequenced to date showed highly variable mitochondrial (mt) gene orders, which could potentially be useful for resolving the higher-level phylogenetic relationships. RESULTS Here, we sequenced and compared the complete mt genomes of 153 eriophyoid mite species, which showed 54 patterns of rearranged mt gene orders relative to that of the hypothetical ancestor of arthropods. The shared derived mt gene clusters support the monophyly of eriophyoid mites (Eriophyoidea) as a whole and the monophylies of six clades within Eriophyoidea. These monophyletic groups and their relationships were largely supported in the phylogenetic trees inferred from mt genome sequences as well. Our molecular dating results showed that Eriophyoidea originated in the Triassic and diversified in the Cretaceous, coinciding with the diversification of angiosperms. CONCLUSIONS This study reveals multiple molecular synapomorphies (i.e. shared derived mt gene clusters) at different levels (i.e. family, subfamily or tribe level) from the complete mt genomes of 153 eriophyoid mite species. We demonstrated the use of derived mt gene clusters in unveiling the higher-level phylogeny of eriophyoid mites, and underlines the origin of these mites and their co-diversification with angiosperms.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yi-Wen Lu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xin-Yu Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ye Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wei-Nan Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
3
|
Abstract
Acari harbor numerous minute species of agricultural economic importance, mainly Tetranychidae and Phytoseiidae. Great efforts have been established by means of recovering morphological, molecular, and phylogenetic traits for species identification. Traditional identification still relies on external diagnostic characters, which are limited and usually exhibit large phenotypic plasticity within the species, rendering them useless for species delimitation and identification. We decided to increase the number of sequences of the Acari mitochondrial COI (Cytochrome C oxidase I) marker and ITS nuclear ribosomal DNA region for species identification in Tetranychidae and Phytoseiidae. The molecular data allow us to establish species boundaries and phylogenetic relationships among several clades of Acari, mainly Tetranychidae and Phytoseiidae. Sequence comparisons between complete COI and the Acari mitochondrial COI, ITS1-5,8S-ITS2, and ITS2 among all Acari sequences have demonstrated that the selected regions, even small, gave enough informative positions for both species’ identification and phylogenetic studies. Analyses of both DNA regions have unveiled their use as species identification characters, with special emphasis on Acari mitochondrial COI for Tetranychidae and Phytoseiidae species in comparison with the Folmer fragment, which has been universally used as a barcode marker. We demonstrated that the Acari mitochondrial COI region is also a suitable marker to establish a barcode dataset for Acari identification. Our phylogenetic analyses are congruent with other recent works, showing that Acari is a monophyletic group, of which Astigmata, Ixodida, Mesostigmata, Oribatida, and Prostigmata are also monophyletic.
Collapse
|
4
|
Thia JA, Young ND, Korhnen PK, Yang Q, Gasser RB, Umina PA, Hoffmann AA. The mitogenome of Halotydeus destructor (Tucker) and its relationships with other trombidiform mites as inferred from nucleotide sequences and gene arrangements. Ecol Evol 2021; 11:14162-14174. [PMID: 34707848 PMCID: PMC8525180 DOI: 10.1002/ece3.8133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
The redlegged earth mite, Halotydeus destructor (Tucker, 1925: Trombidiformes, Eupodoidea, Penthaleidae), is an invasive mite species. In Australia, this mite has become a pest of winter pastures and grain crops. We report the complete mitogenome for H. destructor, the first to represent the family Penthaleidae, superfamily Eupodoidea. The mitogenome of H. destructor is 14,691 bp in size, and has a GC content of 27.87%, 13 protein-coding genes, two rRNA genes, and 22 tRNA genes. We explored evolutionary relationships of H. destructor with other members of the Trombidiformes using phylogenetic analyses of nucleotide sequences and the order of protein-coding and rRNA genes. We found strong, consistent support for the superfamily Tydeoidea being the sister taxon to the superfamily Eupodoidea based on nucleotide sequences and gene arrangements. Moreover, the gene arrangements of Eupodoidea and Tydeoidea are not only identical to each other but also identical to that of the hypothesized arthropod ancestor, showing a high level of conservatism in the mitogenomic structure of these mite superfamilies. Our study illustrates the utility of gene arrangements for providing complementary information to nucleotide sequences with respect to inferring the evolutionary relationships of species within the order Trombidiformes. The mitogenome of H. destructor provides a valuable resource for further population genetic studies of this important agricultural pest. Given the co-occurrence of closely related, morphologically similar Penthaleidae mites with H. destructor in the field, a complete mitogenome provides new opportunities to develop metabarcoding tools to study mite diversity in agro-ecosystems. Moreover, the H. destructor mitogenome fills an important taxonomic gap that will facilitate further study of trombidiform mite evolution.
Collapse
Affiliation(s)
- Joshua A. Thia
- Bio 21 Institute, School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary SchoolThe University of MelbourneMelbourneVictoriaAustralia
| | - Pasi K. Korhnen
- Department of Veterinary Biosciences, Melbourne Veterinary SchoolThe University of MelbourneMelbourneVictoriaAustralia
| | - Qiong Yang
- Bio 21 Institute, School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary SchoolThe University of MelbourneMelbourneVictoriaAustralia
| | - Paul A. Umina
- Bio 21 Institute, School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
- Cesar AustraliaBrunswickVictoriaAustralia
| | - Ary A. Hoffmann
- Bio 21 Institute, School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Cruz MA, Magalhães S, Sucena É, Zélé F. Wolbachia and host intrinsic reproductive barriers contribute additively to postmating isolation in spider mites. Evolution 2021; 75:2085-2101. [PMID: 34156702 DOI: 10.1111/evo.14286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022]
Abstract
Wolbachia are maternally-inherited bacteria that induce cytoplasmic incompatibility in many arthropod species. However, the ubiquity of this isolation mechanism for host speciation processes remains elusive, as only few studies have examined Wolbachia-induced incompatibilities when host populations are not genetically compatible. Here, we used three populations of two genetically differentiated colour forms of the haplodiploid spider mite Tetranychus urticae to dissect the interaction between Wolbachia-induced and host-associated incompatibilities, and their relative contribution to postmating isolation. We found that these two sources of incompatibility act through different mechanisms in an additive fashion. Host-associated incompatibility contributes 1.5 times more than Wolbachia-induced incompatibility in reducing hybrid production, the former through an overproduction of haploid sons at the expense of diploid daughters (ca. 75% decrease) and the latter by increasing the embryonic mortality of daughters (by ca. 49%). Furthermore, regardless of cross direction, we observed near-complete F1 hybrid sterility and complete F2 hybrid breakdown between populations of the two forms, but Wolbachia did not contribute to this outcome. We thus show mechanistic independence and an additive nature of host-intrinsic and Wolbachia-induced sources of isolation. Wolbachia may contribute to reproductive isolation in this system, thereby potentially affecting host differentiation and distribution in the field.
Collapse
Affiliation(s)
- Miguel A Cruz
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Élio Sucena
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.,ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
6
|
Warren JM, Sloan DB. Hopeful monsters: unintended sequencing of famously malformed mite mitochondrial tRNAs reveals widespread expression and processing of sense-antisense pairs. NAR Genom Bioinform 2021; 3:lqaa111. [PMID: 33575653 PMCID: PMC7803006 DOI: 10.1093/nargab/lqaa111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Although tRNA structure is one of the most conserved and recognizable shapes in molecular biology, aberrant tRNAs are frequently found in the mitochondrial genomes of metazoans. The extremely degenerate structures of several mitochondrial tRNAs (mt-tRNAs) have led to doubts about their expression and function. Mites from the arachnid superorder Acariformes are predicted to have some of the shortest mt-tRNAs, with a complete loss of cloverleaf-like shape. While performing mitochondrial isolations and recently developed tRNA-seq methods in plant tissue, we inadvertently sequenced the mt-tRNAs from a common plant pest, the acariform mite Tetranychus urticae, to a high enough coverage to detect all previously annotated T. urticae tRNA regions. The results not only confirm expression, CCA-tailing and post-transcriptional base modification of these highly divergent tRNAs, but also revealed paired sense and antisense expression of multiple T. urticae mt-tRNAs. Mirrored expression of mt-tRNA genes has been hypothesized but not previously demonstrated to be common in any system. We discuss the functional roles that these divergent tRNAs could have as both decoding molecules in translation and processing signals in transcript maturation pathways, as well as how sense–antisense pairs add another dimension to the bizarre tRNA biology of mitochondrial genomes.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, 80521 USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80521 USA
| |
Collapse
|
7
|
Garin S, Levi O, Cohen B, Golani-Armon A, Arava YS. Localization and RNA Binding of Mitochondrial Aminoacyl tRNA Synthetases. Genes (Basel) 2020; 11:genes11101185. [PMID: 33053729 PMCID: PMC7600831 DOI: 10.3390/genes11101185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria contain a complete translation machinery that is used to translate its internally transcribed mRNAs. This machinery uses a distinct set of tRNAs that are charged with cognate amino acids inside the organelle. Interestingly, charging is executed by aminoacyl tRNA synthetases (aaRS) that are encoded by the nuclear genome, translated in the cytosol, and need to be imported into the mitochondria. Here, we review import mechanisms of these enzymes with emphasis on those that are localized to both mitochondria and cytosol. Furthermore, we describe RNA recognition features of these enzymes and their interaction with tRNA and non-tRNA molecules. The dual localization of mitochondria-destined aaRSs and their association with various RNA types impose diverse impacts on cellular physiology. Yet, the breadth and significance of these functions are not fully resolved. We highlight here possibilities for future explorations.
Collapse
|
8
|
Zhang YK, Yu ZJ, Zhang XY, Bronislava V, Branislav P, Liu JZ. The mitochondrial genome of the ornate sheep tick, Dermacentor marginatus. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:421-432. [PMID: 31784855 DOI: 10.1007/s10493-019-00440-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The ornate sheep tick, Dermacentor marginatus, is widespread in Europe. Its vector role of various zoonotic pathogens received much attention in these regions. However, the genomic resources of the ticks are limited. In this study, the complete mitochondrial genome of a single female D. marginatus collected in Slovakia was sequenced through the Illumina HiSeq sequencing platform. The mitochondrial genome is 15,067 bp long and contains 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. The overall G+C content is 21.6%. The gene order is identical to that of Metastriata ticks. The codon usage pattern is similar with that of other tick species. As in other ticks, two truncated tRNA genes were observed. Two control regions were found between tRNA-Leu and tRNA-Cys, tRNA-Ile and rrnS, respectively. The mitochondrial genome contains three noncoding regions, which is similar to that in D. nitens. The noncoding region located between rrnS and tRNA-Val is shorter than that of other Dermacentor species. Phylogenetic analyses indicate that D. marginatus is clustered with other Dermacentor species. These findings are helpful for exploring the systematics and evolution of ticks in the future.
Collapse
Affiliation(s)
- Yan-Kai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zhi-Jun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Xiao-Yu Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Víchová Bronislava
- Institute of Parasitology, Slovak Academy of Sciences, 04001, Košice, Slovak Republic
| | - Peťko Branislav
- Institute of Parasitology, Slovak Academy of Sciences, 04001, Košice, Slovak Republic
- University of Veterinary Medicine and Farmacy in Košice, 04185, Košice, Slovak Republic
| | - Jing-Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
9
|
Pons J, Bover P, Bidegaray-Batista L, Arnedo MA. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics 2019; 20:665. [PMID: 31438844 PMCID: PMC6706885 DOI: 10.1186/s12864-019-6026-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In recent years, Next Generation Sequencing (NGS) has accelerated the generation of full mitogenomes, providing abundant material for studying different aspects of molecular evolution. Some mitogenomes have been observed to harbor atypical sequences with bizarre secondary structures, which origins and significance could only be fully understood in an evolutionary framework. RESULTS Here we report and analyze the mitochondrial sequences and gene arrangements of six closely related spiders in the sister genera Parachtes and Harpactocrates, which belong to the nocturnal, ground dwelling family Dysderidae. Species of both genera have compacted mitogenomes with many overlapping genes and strikingly reduced tRNAs that are among the shortest described within metazoans. Thanks to the conservation of the gene order and the nucleotide identity across close relatives, we were able to predict the secondary structures even on arm-less tRNAs, which would be otherwise unattainable for a single species. They exhibit aberrant secondary structures with the lack of either DHU or TΨC arms and many miss-pairings in the acceptor arm but this degeneracy trend goes even further since at least four tRNAs are arm-less in the six spider species studied. CONCLUSIONS The conservation of at least four arm-less tRNA genes in two sister spider genera for about 30 myr suggest that these genes are still encoding fully functional tRNAs though they may be post-transcriptionally edited to be fully functional as previously described in other species. We suggest that the presence of overlapping and truncated tRNA genes may be related and explains why spider mitogenomes are smaller than those of other invertebrates.
Collapse
Affiliation(s)
- Joan Pons
- Departamento de Biodiversidad y Conservación, Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marquès, 21, 07190 Esporles, Illes Balears Spain
| | - Pere Bover
- ARAID Foundation – IUCA Grupo-Aragosaurus, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12 -, 50009 Zaragoza, Spain
| | - Leticia Bidegaray-Batista
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, CP Uruguay
| | - Miquel A. Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, E-8028 Barcelona, Catalonia Spain
| |
Collapse
|
10
|
Li WN, Xue XF. Mitochondrial genome reorganization provides insights into the relationship between oribatid mites and astigmatid mites (Acari: Sarcoptiformes: Oribatida). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Oribatida s.l. represents one of the most species-rich mite lineages, including two recognized groups: oribatid mites (Oribatida s.s., non-astigmatan oribatids) and astigmatid mites (Astigmata). However, the relationship between these two groups has been debated. Here, we sequenced the complete mitochondrial (mt) genome of one oribatid mite and one astigmatid mite, retrieved complete mt genomes of three oribatid mites, and compared them with two other oribatid mites and 12 astigmatid mites sequenced previously. We find that gene orders in the mt genomes of both oribatid mites and astigmatid mites are rearranged relative to the hypothetical ancestral arrangement of the arthropods. Based on the shared derived gene clusters in each mt genome group, rearranged mt genomes are roughly divided into two groups corresponding to each mite group (oribatid mites or astigmatid mites). Phylogenetic results show that Astigmata nested in Oribatida. The monophyly of Astigmata is recovered, while paraphyly of Oribatida s.s. is observed. Our results show that rearranged gene orders in the mt genomes characterize various lineages of oribatid mites and astigmatid mites, and have potential phylogenetic information for resolving the high-level (cohort or supercohort) phylogeny of Oribatida.
Collapse
Affiliation(s)
- Wei-Ning Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | |
Collapse
|
11
|
Sun JT, Jin PY, Hoffmann AA, Duan XZ, Dai J, Hu G, Xue XF, Hong XY. Evolutionary divergence of mitochondrial genomes in two Tetranychus species distributed across different climates. INSECT MOLECULAR BIOLOGY 2018; 27:698-709. [PMID: 29797479 DOI: 10.1111/imb.12501] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is increasing evidence that mitochondrial genomes (mitogenomes) can be under selection, whereas the selective regimes shaping mitogenome evolution remain largely unclear. To test for mitogenome evolution in relation to the climate adaptation, we explored mtDNA variation in two spider mite (Tetranychus) species that distribute across different climates. We sequenced 26 complete mitogenomes of Tetranychus truncates, which occurs in both warm and cold regions, and nine complete mitogenomes of Tetranychus pueraricola, which is restricted to warm regions. Patterns of evolution in the two species' mitogenomes were compared through a series of dN /dS methods and physicochemical profiles of amino acid replacements. We found that: (1) the mitogenomes of both species were under widespread purifying selection; (2) elevated directional adaptive selection was observed in the T. truncatus mitogenome, perhaps linked to the cold climates adaptation of T. truncatus; and (3) the strength of selection varied across genes, and diversifying positive selection detected on ND4 and ATP6 pointed to their crucial roles during adaptation to different climatic conditions. This study gained insight into the mitogenome evolution in relation to the climate adaptation.
Collapse
Affiliation(s)
- J-T Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - P-Y Jin
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - A A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - X-Z Duan
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J Dai
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - G Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-F Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
The mitochondrial genome of the oribatid mite Paraleius leontonychus: new insights into tRNA evolution and phylogenetic relationships in acariform mites. Sci Rep 2018; 8:7558. [PMID: 29765106 PMCID: PMC5954100 DOI: 10.1038/s41598-018-25981-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
Bilaterian mitochondrial (mt) genomes are circular molecules that typically contain 37 genes. To date, only a single complete mitogenome sequence is available for the species-rich sarcoptiform mite order Oribatida. We sequenced the mitogenome of Paraleius leontonychus, another species of this suborder. It is 14,186 bp long and contains 35 genes, including only 20 tRNAs, lacking tRNAGly and tRNATyr. Re-annotation of the mitogenome of Steganacarus magnus increased the number of mt tRNAs for this species to 12. As typical for acariform mites, many tRNAs are highly truncated in both oribatid species. The total number of tRNAs and the number of tRNAs with a complete cloverleaf-like structure in P. leontonychus, however, clearly exceeds the numbers previously reported for Sarcoptiformes. This indicates, contrary to what has been previously assumed, that reduction of tRNAs is not a general characteristic for sarcoptiform mites. Compared to other Sarcoptiformes, the two oribatid species have the least rearranged mt genome with respect to the pattern observed in Limulus polyphemus, a basal arachnid species. Phylogenetic analysis of the newly sequenced mt genome and previously published data on other acariform mites confirms paraphyly of the Oribatida and an origin of the Astigmata within the Oribatida.
Collapse
|
13
|
Xue XF, Dong Y, Deng W, Hong XY, Shao R. The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene. Mol Phylogenet Evol 2017; 109:271-282. [PMID: 28119107 DOI: 10.1016/j.ympev.2017.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 12/11/2022]
Abstract
Eriophyoid mites (superfamily Eriophyoidea) comprise >4400 species worldwide. Despite over a century of study, the phylogenetic position of these mites within Acariformes is still poorly resolved. Currently, Eriophyoidea is placed in the order Trombidiformes. We inferred the high-level phylogeny of Acari with the mitochondrial (mt) genome sequences of 110 species including four eriophyoid species, and the nuclear small subunit (18S) rRNA gene sequences of 226 species including 25 eriophyoid species. Maximum likelihood (ML), Bayesian inference (BI) and Maximum parsimony (MP) methods were used to analyze the sequence data. Divergence times were estimated for major lineages of Acari using Bayesian approaches. Our analyses consistently recovered the monophyly of Eriophyoidea but rejected the monophyly of Trombidiformes. The eriophyoid mites were grouped with the sarcoptiform mites, or were the sister group of sarcoptiform mites+non-eriophyoid trombidiform mites, depending on data partition strategies. Eriophyoid mites diverged from other mites in the Devonian (384Mya, 95% HPD, 352-410Mya). The origin of eriophyoid mites was dated to the Permian (262Mya, 95% HPD 230-307Mya), mostly prior to the radiation of gymnosperms (Triassic-Jurassic) and angiosperms (early Cretaceous). We propose that the placement of Eriophyoidea in the order Trombidiformes under the current classification system should be reviewed.
Collapse
Affiliation(s)
- Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yan Dong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Deng
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia.
| |
Collapse
|
14
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
15
|
Mitochondrial genome evolution and tRNA truncation in Acariformes mites: new evidence from eriophyoid mites. Sci Rep 2016; 6:18920. [PMID: 26732998 PMCID: PMC4702108 DOI: 10.1038/srep18920] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/30/2015] [Indexed: 11/08/2022] Open
Abstract
The subclass Acari (mites and ticks) comprises two super-orders: Acariformes and Parasitiformes. Most species of the Parasitiformes known retained the ancestral pattern of mitochondrial (mt) gene arrangement of arthropods, and their mt tRNAs have the typical cloverleaf structure. All of the species of the Acariformes known, however, have rearranged mt genomes and truncated mt tRNAs. We sequenced the mt genomes of two species of Eriophyoidea: Phyllocoptes taishanensis and Epitrimerus sabinae. The mt genomes of P. taishanensis and E. sabinae are 13,475 bp and 13,531 bp, respectively, are circular and contain the 37 genes typical of animals; most mt tRNAs are highly truncated in both mites. On the other hand, these two eriophyoid mites have the least rearranged mt genomes seen in the Acariformes. Comparison between eriophyoid mites and other Aacariformes mites showed that: 1) the most recent common ancestor of Acariformes mites retained the ancestral pattern of mt gene arrangement of arthropods with slight modifications; 2) truncation of tRNAs for cysteine, phenylalanine and histidine occurred once in the most recent common ancestor of Acariformes mites whereas truncation of other tRNAs occurred multiple times; and 3) the placement of eriophyoid mites in the order Trombidiformes needs to be reviewed.
Collapse
|
16
|
Li D, Fan QH, Waite DW, Gunawardana D, George S, Kumarasinghe L. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Two-Spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae). PLoS One 2015; 10:e0131887. [PMID: 26147599 PMCID: PMC4492583 DOI: 10.1371/journal.pone.0131887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022] Open
Abstract
Spider mites of the genus Tetranychus are difficult to identify due to their limited diagnostic characters. Many of them are morphologically similar and males are needed for species-level identification. Tetranychus urticae is a common interception and non-regulated pest at New Zealand's borders, however, most of the intercepted specimens are females and the identification was left at Tetranychus sp. Consequently, the shipments need to be fumigated. DNA sequencing and PCR-restriction fragment length polymorphism (PCR-RFLP) protocols could be used to facilitate the accurate identification. However, in the context of border security practiced in New Zealand, insect identifications are required to be provided within four hours of receiving the samples; thus, those molecular methods are not sufficient to meet this requirement. Therefore, a real-time PCR TaqMan assay was developed for identification of T. urticae by amplification of a 142 bp Internal Transcribed Spacer (ITS) 1 sequence. The developed assay is rapid, detects all life stages of T. urticae within three hours, and does not react with closely related species. Plasmid DNA containing ITS1 sequence of T. uritcae was serially diluted and used as standards in the real-time PCR assay. The quantification cycle (Cq) value of the assay depicted a strong linear relationship with T. urticae DNA content, with a regression coefficient of 0.99 and efficiency of 98%. The detection limit was estimated to be ten copies of the T. urticae target region. The assay was validated against a range of T. urticae specimens from various countries and hosts in a blind panel test. Therefore the application of the assay at New Zealand will reduce the unnecessary fumigation and be beneficial to both the importers and exporters. It is expected that the implementation of this real-time PCR assay would have wide applications in diagnostic and research agencies worldwide.
Collapse
Affiliation(s)
- Dongmei Li
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Qing-Hai Fan
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - David W. Waite
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Disna Gunawardana
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Sherly George
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Lalith Kumarasinghe
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| |
Collapse
|
17
|
Mans BJ, de Klerk D, Pienaar R, de Castro MH, Latif AA. Next-generation sequencing as means to retrieve tick systematic markers, with the focus on Nuttalliella namaqua (Ixodoidea: Nuttalliellidae). Ticks Tick Borne Dis 2015; 6:450-62. [DOI: 10.1016/j.ttbdis.2015.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 10/23/2022]
|
18
|
Salinas-Giegé T, Giegé R, Giegé P. tRNA biology in mitochondria. Int J Mol Sci 2015; 16:4518-59. [PMID: 25734984 PMCID: PMC4394434 DOI: 10.3390/ijms16034518] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/23/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | - Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| |
Collapse
|