1
|
Elango K, Kekäläinen J. Putting Nose into Reproduction: Influence of Nasal and Reproductive Odourant Signaling on Male Reproduction. Mol Reprod Dev 2025; 92:e70010. [PMID: 39834068 DOI: 10.1002/mrd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Odourant receptors (ORs) are not restricted only to the nose, but also occur in many other organs and tissues, including the reproductive system. In fact, ORs are the most heavily expressed in testis than in any other extra-nasal tissue. Accumulating evidence suggests that olfactory and reproductive systems are both structurally and functionally linked and that these interconnections can influence various aspects of reproduction. In this article, we first review our current understanding of these interconnections and then collate accumulated evidence on the presence of ORs in the male reproductive system and sperm cells. We then investigate the potential role of female reproductive tract odourants in sperm chemotaxis and selection. Finally, since the existing evidence especially for sperm odor sensing capability and its physiological function are controversial, we also review potential reasons for the controversy and propose some ways to resolve the debate. Collectively, we conclude that reproductive odourant signaling may play an important, although currently largely unclear role in many key processes directly related to male fertility. However, since we lack holistic understanding of the functional significance of ORs and odor sensing pathways of the male reproductive system, more empirical research is warranted.
Collapse
Affiliation(s)
- Kamaraj Elango
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
2
|
Dai P, Chen C, Yu J, Ma C, Zhang X. New insights into sperm physiology regulation: Enlightenment from G-protein-coupled receptors. Andrology 2024; 12:1253-1271. [PMID: 38225815 DOI: 10.1111/andr.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND G-protein-coupled receptors are critical in many physiological and pathological processes in various organs. Serving as the control panel for sensing extracellular stimuli, G-protein-coupled receptors recognise various ligands, including light, temperature, odours, pheromones, hormones, neurotransmitters, chemokines, etc. Most recently, G-protein-coupled receptors residing in spermatozoa have been found to be indispensable for sperm function. OBJECTIVE Here, we have summarised cutting-edge findings on the functional mechanisms of G-protein-coupled receptors that are known to be associated with sperm functions and the activation of their downstream effectors, providing new insights into the roles of G-protein-coupled receptors in sperm physiology. RESULTS Emerging studies hint that alterations in G-protein-coupled receptors could affect sperm function, implicating their role in fertility, but solid evidence needs to be continuing excavated with various means. Several members of the G-protein-coupled receptor superfamily, including olfactory receptors, opsins, orphan G-protein-coupled receptors, CXC chemokine receptor 4, CC chemokine receptor 5 and CC chemokine receptor 6 as well as their downstream effector β-arrestins, etc., were suggested to be essential for sperm motility, capacitation, thermotaxis, chemotaxis, Ca2+ influx through CatSper channel and fertilisation capacity. CONCLUSION The present review provides a comprehensive overview of studies describing G-protein-coupled receptors and their potential action in sperm function. We also present a critical discussion of these issues, and a possible framework for future investigations on the diverse ligands, biological functions and cell signalling of G-protein-coupled receptors in spermatozoa. Here, the G-protein-coupled receptors and their related G proteins that specifically were identified in spermatozoa were summarised, and provided references valuable for further illumination, despite the evidence that is not overwhelming in most cases.
Collapse
Affiliation(s)
- Pengyuan Dai
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Jingyan Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Chaoye Ma
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, PR China
| |
Collapse
|
3
|
Motility Assessment of Ram Spermatozoa. BIOLOGY 2022; 11:biology11121715. [PMID: 36552225 PMCID: PMC9774426 DOI: 10.3390/biology11121715] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
For successful fertilisation to occur, spermatozoa need to successfully migrate through the female reproductive tract and penetrate the oocyte. Predictably, poor sperm motility has been associated with low rates of fertilisation in many mammalian species, including the ram. As such, motility is one of the most important parameters used for in vitro evaluation of ram sperm quality and function. This review aims to outline the mechanical and energetic processes which underpin sperm motility, describe changes in motility which occur as a result of differences in sperm structure and the surrounding microenvironment, and assess the effectiveness of the various methods used to assess sperm motility in rams. Methods of subjective motility estimation are convenient, inexpensive methods widely used in the livestock industries, however, the subjective nature of these methods can make them unreliable. Computer-assisted sperm analysis (CASA) technology accurately and objectively measures sperm motility via two-dimensional tracing of sperm head motion, making it a popular method for sperm quality assurance in domesticated animal production laboratories. Newly developed methods of motility assessment including flagellar tracing, three-dimensional sperm tracing, in vivo motility assessment, and molecular assays which quantify motility-associated biomarkers, enable analysis of a new range of sperm motion parameters with the potential to reveal new mechanistic insights and improve ram semen assessment. Experimental application of these technologies is required to fully understand their potential to improve semen quality assessment and prediction of reproductive success in ovine artificial breeding programs.
Collapse
|
4
|
Use of commercial extenders, with and without the addition of egg yolk, for cooling llama semen. Anim Reprod Sci 2022; 247:107073. [PMID: 36162159 DOI: 10.1016/j.anireprosci.2022.107073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022]
Abstract
The objective of this study was to evaluate the effect of two commercial extenders, AndroMed® (AM) and Androstar® Plus (AS) both with and without the addition of egg-yolk (EY), for cooling llama semen. A total of sixteen ejaculates were collected from four males. Each ejaculate was divided into four aliquots and diluted with: AM, AM with 20 % EY (AM-EY), AS and AS with 20 % EY (AS-EY) and then cooled to 5 °C in an Equitainer®. Evaluations were carried out in raw semen, after dilution (0 h) and after 24 and 48 h of cooling. Data were analysed using either Friedman or ANOVA. Although total motility decreased in all cooled samples compared to the corresponding 0 h (P < 0.05), the highest percentages were observed in AM-EY being significantly higher than all other cooled samples after 24 h and higher than AS and AS-EY after 48 h. No significant differences were observed in the percentages of live acrosome-intact sperm between extenders at all times tested. A significant decrease in the percentage of sperm membrane osmotic function was observed in samples cooled with AS and AS-EY after 24 and 48 h vs. raw semen and in AM 48 h vs. raw semen. Finally, a significant increase in the percentage of sperm with abnormal tails was observed in the samples cooled with AS and AS-EY. Of all the extenders used, AndroMed® could be considered an option for cooling llama semen and the addition of EY to this extender improves its effectiveness. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
|
5
|
Tvrdá E, Ďuračka M, Benko F, Lukáč N. Bacteriospermia - A formidable player in male subfertility. Open Life Sci 2022; 17:1001-1029. [PMID: 36060647 PMCID: PMC9386612 DOI: 10.1515/biol-2022-0097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial colonization of male reproductive tissues, cells, and fluids, and the subsequent impact of bacteria on the sperm architecture, activity, and fertilizing potential, has recently gained increased attention from the medical and scientific community. Current evidence strongly emphasizes the fact that the presence of bacteria in semen may have dire consequences on the resulting male fertility. Nevertheless, the molecular basis underlying bacteriospermia-associated suboptimal semen quality is sophisticated, multifactorial, and still needs further understanding. Bacterial adhesion and subsequent sperm agglutination and immobilization represent the most direct pathway of sperm-bacterial interactions. Furthermore, the release of bacterial toxins and leukocytic infiltration, associated with a massive outburst of reactive oxygen species, have been repeatedly associated with sperm dysfunction in bacteria-infested semen. This review serves as a summary of the present knowledge on bacteriospermia-associated male subfertility. Furthermore, we strived to outline the currently available methods for assessing bacterial profiles in semen and to outline the most promising strategies for the prevention and/or management of bacteriospermia in practice.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Michal Ďuračka
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Filip Benko
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| | - Norbert Lukáč
- Department of Animal Physiology, Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, Nitra-Chrenová, 949 76, Slovakia
| |
Collapse
|
6
|
Chakraborty S, Saha S. Understanding sperm motility mechanisms and the implication of sperm surface molecules in promoting motility. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00094-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Abstract
Background
It is estimated that approximately 8–12% of couples globally face problems associated with infertility. A large number of men exhibit suboptimal sperm parameters. Sperm motility is one of the factors that is measured when analysing sperm parameters. The indication of several crucial sperm surface molecules, having the ability to modulate motility, has opened new avenues in understanding the complex processes involved in motility.
Main body of the abstract
There are various mechanisms that regulate and enhance sperm motility. Several surface molecules on sperm cells can also regulate motility, thus showing their possible application as a treatment for infertility caused by impaired motility. Sperm motility is regulated by intracellular and extracellular pH, along with calcium ions (Ca2+) and carbonate ion (HCO3−) concentrations. Moreover, sperm cells have an array of surface proteins which play a critical role in their function and motility. The indication of surface molecules presented new opportunities for understanding sperm motility and the possibility of treating infertility caused by impaired sperm function. Infertility and problems associated with conception can cause underlying stress and mental trauma. Although there are several methods for treating infertility, most are complex, invasive, and expensive.
Conclusion
It is important to understand how surface molecules and proteins on the sperm cell regulate motility. This will enable us to treat anomalies associated with proper sperm function. This review highlights the general mechanisms that regulate sperm motility, and it stresses the importance and relevance of sperm surface molecules in regulating sperm motility.
Collapse
|
7
|
Bertuzzi ML, Torres EY, Huanca T, Neild D, Carretero MI. Comparison of Extenders With the Addition of Egg Yolk for Cooling Alpaca Sperm Obtained From Deferent Ducts. Front Vet Sci 2020; 7:597954. [PMID: 33330721 PMCID: PMC7733988 DOI: 10.3389/fvets.2020.597954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/02/2020] [Indexed: 11/27/2022] Open
Abstract
The use of non-commercial and commercial extenders for cooling alpaca sperm has already been reported, the latter showing certain advantages over the first. The Andromed® (AM) extender was created for use in ruminants and has also been tested in ejaculated and epididymal alpaca sperm. According to the manufacturer, this extender does not need the addition of egg yolk (EY); however, it is known that the addition of EY to some extenders improves the preservation of cooled sperm. The objective of this study therefore was to compare a non-commercial extender (Tris) with the addition of EY vs. the commercial extender AM with and without the addition of EY, for cooling alpaca sperm obtained from diverted deferent ducts. Fifteen pools of deferent duct sperm were formed using samples from two or three different males for each. Each sperm pool was evaluated and then divided into three aliquots that were diluted to a final concentration of 30 × 106 sperm ml-1 (0 h) with either: (1) Tris with 20% EY (T-EY), (2) AM, or (3) AM with 20% EY (AM-EY). Samples were cooled to 5°C and the following sperm parameters were evaluated after 24 and 48 h of storage: motility, viability, membrane function, acrosome integrity, morphology, and chromatin condensation. Motility was also evaluated after 72 h of storage. The samples that best preserved progressive and total sperm motility at the 24 and 48 h evaluation periods were the ones diluted with AM-EY, observing that with this extender these motility patterns decreased significantly after 72 h of storage compared to time 0 h (p < 0.05). A significant decrease (p < 0.05) in total and progressive motility was observed at 48 h for the T-EY and AM extender compared to 0 h. AM was the only extender in which the percentages of viable sperm decreased significantly (p < 0.05) after 48 h of conservation. For the rest of sperm parameters evaluated, no significant differences were observed between any of the extenders at any evaluation time. The Andromed® extender with the addition of 20% EY could be an alternative option for cooling alpaca sperm obtained from deferent ducts.
Collapse
Affiliation(s)
- Mariana Lucía Bertuzzi
- Facultad de Ciencias Veterinarias, INITRA, Cátedra de Teriogenología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Edita Yola Torres
- Laboratorio de Reproducción Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional del Altiplano Puno, Puno, Peru
| | - Teodosio Huanca
- Instituto Nacional de Innovación Agraria (INIA), Centro de Investigación y Producción Quinsachata, Puno, Peru
| | - Deborah Neild
- Facultad de Ciencias Veterinarias, INITRA, Cátedra de Teriogenología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - María Ignacia Carretero
- Facultad de Ciencias Veterinarias, INITRA, Cátedra de Teriogenología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Fernández S, Morado S, Cetica P, Córdoba M. Hyaluronic acid capacitation induces intracellular signals modulated by membrane-associated adenylate cyclase and tyrosine kinase involved in bovine in vitro fertilization. Theriogenology 2020; 148:174-179. [PMID: 32182525 DOI: 10.1016/j.theriogenology.2020.02.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Heparin is the most commonly used in vitro capacitation inducer in the bovine. However, hyaluronic acid (HA) has been recently used for capacitation induction as well as for other reproductive biotechnologies, such as sperm selection and in vitro fertilization (IVF). Our aim was to induce sperm capacitation with heparin or HA in order to study mAC and TK intracellular signals and their relation with cleavage and blastocyst rates after IVF as well as with the oxidative status of the potential bovine embryos. 2,5-dideoxyadenosine and genistein were used as mAC and TK inhibitors, respectively. Sperm capacitation was analyzed using CTC technique, sperm plasma membrane and acrosome integrity were determined using trypan blue stain and differential interference contrast, and mitochondrial activity was evaluated using fluorochrome JC-1. Cleavage rate was analyzed 48h and blastocyst production 7-8 days after IVF, while cytosolic oxidative activity was determined using RedoxSensor Red CC-1 fluorochrome 7h after IVF. When mAC and TK inhibitors were added to sperm samples, only capacitation decreased significantly both in HA and heparin treated samples (P < 0.05), but plasma membrane and acrosome integrity percentages were not affected in any of these groups (P > 0.05). Sperm mitochondrial membrane potential only decreased in heparin treated samples in the presence of both inhibitors (P < 0.05). Oocytes activated with HA sperm treated samples with the addition of 2,5-dideoxyadenosine and genistein presented a lower cytosolic oxidative status than those activated with sperm treated with HA alone (P < 0.05). On the other hand, oocytes activated with heparin treated sperm samples presented a lower cytosolic oxidative status only in the presence of 2,5-dideoxyadenosine (P < 0.05). Therefore, mAC and TK present a differential participation in heparin and HA sperm induced capacitation and mitochondrial function as well as in IVF.
Collapse
Affiliation(s)
- S Fernández
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Química Biológica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - S Morado
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Química Biológica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - P Cetica
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Química Biológica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - M Córdoba
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Química Biológica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Dey S, Eisa A, Kline D, Wagner FF, Abeysirigunawardena S, Vijayaraghavan S. Roles of glycogen synthase kinase 3 alpha and calcineurin in regulating the ability of sperm to fertilize eggs. FASEB J 2019; 34:1247-1269. [PMID: 31914663 DOI: 10.1096/fj.201902163r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/11/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022]
Abstract
Glycogen synthase kinase 3 (GSK3) was identified as an enzyme regulating sperm protein phosphatase. The GSK3α paralog, but not GSK3β, is essential for sperm function. Sperm lacking GSK3α display altered motility and are unable to undergo hyperactivation, which is essential for fertilization. Male mice lacking sperm-specific calcineurin (PP2B), a calcium regulated phosphatase, in testis and sperm, are also infertile. Loss of PP2B results in impaired epididymal sperm maturation and motility. The phenotypes of GSK3α and PP2B knockout mice are similar, prompting us to examine the interrelationship between these two enzymes in sperm. High calcium levels must exist to permit catalytically active calcineurin to function during epididymal sperm maturation. Total and free calcium levels are high in immotile compared to motile epididymal sperm. Inhibition of calcineurin by FK506 results in an increase in the net phosphorylation and a consequent decrease in catalytic activity of sperm GSK3. The inhibitor FK506 and an isoform-selective inhibitor of GSK3α, BRD0705, also inhibited fertilization of eggs in vitro. Interrelated functions of GSK3α and sperm PP2B are essential during epididymal sperm maturation and during fertilization. Our results should enable the development of male contraceptives targeting one or both enzymes.
Collapse
Affiliation(s)
- Souvik Dey
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Alaa Eisa
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Florence F Wagner
- Center for the Development of Therapeutics, Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | |
Collapse
|
10
|
Nguyen TMD. Main signaling pathways involved in the control of fowl sperm motility. Poult Sci 2019; 98:1528-1538. [DOI: 10.3382/ps/pey465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/28/2022] Open
|
11
|
Ortega-Ferrusola C, Gil MC, Rodríguez-Martínez H, Anel L, Peña FJ, Martín-Muñoz P. Flow cytometry in Spermatology: A bright future ahead. Reprod Domest Anim 2017; 52:921-931. [DOI: 10.1111/rda.13043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Affiliation(s)
- C Ortega-Ferrusola
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| | - MC Gil
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - H Rodríguez-Martínez
- Department of Clinical and Experimental Medicine; Faculty of Health Sciences Linköping University; Linköping Sweden
| | - L Anel
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| | - FJ Peña
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - P Martín-Muñoz
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| |
Collapse
|
12
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
13
|
Nait Mouloud M, Ouennoughi F, Yaiche L, Kaidi R, Iguer-ouada M. Effects of female bovine plasma collected at different days of the estrous cycle on epididymal spermatozoa motility. Theriogenology 2017; 91:44-54. [DOI: 10.1016/j.theriogenology.2016.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 12/03/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
14
|
Abstract
The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies.
Collapse
Affiliation(s)
- Rute Pereira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| | - Rosália Sá
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, Av. do Bessa, 240, 1° Dto. Frente, 4100-012 Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal and Institute of Health Research an Innovation (I3S), University of Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| |
Collapse
|
15
|
Li Z, Zhang D, He Y, Ding Z, Mao F, Luo T, Zhang X. Lipopolysaccharide Compromises Human Sperm Function by Reducing Intracellular cAMP. TOHOKU J EXP MED 2016; 238:105-12. [PMID: 26782775 DOI: 10.1620/tjem.238.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A worldwide decline in the quality of human semen is currently occurring. In mammals, sperm are produced from diploid stem-cell spermatogonia by spermatogenesis in testes and become mature in epididymis. Nevertheless, these biological processes can be affected by Gram-negative bacterial infection mediated by lipopolysaccharide (LPS), the major endotoxin of Gram-negative bacteria. It is well known that LPS can disturb spermatogenesis and affect sperm maturation and quality in vivo. However, the effect of LPS on the ejaculated mature sperm in vitro remains unclear. Thus, this study aimed to assess the in vitro toxicity of LPS on human sperm function and to elucidate the underlying mechanism. Human sperm were incubated with LPS (0.1-100 μg/ml) for 1-12 h in vitro and, subsequently, sperm viability, motility and capacitation, and the acrosome reaction were examined. LPS dose-dependently inhibited total and progressive motility and the ability to move through a viscous medium of the sperm but did not affect sperm viability, capacitation, and the acrosome reaction. To explore the underlying mechanism of LPS's actions, we examined the effects of LPS on the intracellular concentrations of cyclic adenosine monophosphate (cAMP) and calcium ([Ca(2+)]i) and protein-tyrosine phosphorylation of human sperm, which are key regulators of human sperm function. LPS decreased intracellular cAMP dose-dependently but had no effect on [Ca(2+)]i and protein-tyrosine phosphorylation of human sperm. These findings suggest that LPS inhibits human sperm motility by decreasing intracellular cAMP.
Collapse
Affiliation(s)
- Zhongyuan Li
- Department of Urology, Xiangyang Hospital, Hubei University of Medicine
| | | | | | | | | | | | | |
Collapse
|
16
|
Dey S, Roy D, Majumder GC, Mukherjee B, Bhattacharyya D. Role of forward-motility-stimulating factor as an extracellular activator of soluble adenylyl cyclase. Mol Reprod Dev 2015; 82:1001-14. [PMID: 26390310 DOI: 10.1002/mrd.22586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/16/2015] [Indexed: 11/09/2022]
Abstract
Forward-motility-stimulating factor (FMSF) is a protein, originally purified from bubaline serum, that promotes progressive motility of mature spermatozoa. FMSF binds to sperm surface receptors and activates transmembrane adenylyl cyclase (tmAC), causing a rise in intracellular cyclic AMP level ([cAMP]i) and subsequent activation of a protein kinase A/tyrosine kinase-mediated pathway that enhances forward motility. This article further evaluates how FMSF works in the caprine system, particularly identifying the stimulatory effect of this glycoprotein on soluble adenylyl cyclase (sAC). Elevated [cAMP]i, initially resulting from FMSF-dependent activation of tmAC, was associated with the release of Ca(2+) from an intracellular calcium store in the sperm head, likely via an inositol triphosphate-sensitive calcium ion channel. This peak Ca(2+) concentration of ∼125-175 nM was capable of stimulating sAC in vitro in a calmodulin-independent manner, thereby triggering more cAMP production. Our model proposes that a positive-feedback loop mediated by cAMP and Ca(2+) is established in FMSF-stimulated sperm, with cAMP playing the role of a chemical messenger at multiple steps, resulting in the observed progressive motility. Thus, FSMF stimulates a novel signaling cascade that synergistically activate both tmAC and sAC to achieve forward sperm motility.
Collapse
Affiliation(s)
- Souvik Dey
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata, West Bengal, India
| | - Debarun Roy
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata, West Bengal, India
| | - Gopal C Majumder
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata, West Bengal, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Debdas Bhattacharyya
- Division of Cryobiology, Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|