1
|
Tedore C, Tedore K, Westcott D, Suttner C, Nilsson DE. The role of detectability in the evolution of avian-dispersed fruit color. Vision Res 2022; 196:108046. [DOI: 10.1016/j.visres.2022.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
|
2
|
Lunn RB, Blackwell BF, DeVault TL, Fernández-Juricic E. Can we use antipredator behavior theory to predict wildlife responses to high-speed vehicles? PLoS One 2022; 17:e0267774. [PMID: 35551549 PMCID: PMC9098083 DOI: 10.1371/journal.pone.0267774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Animals seem to rely on antipredator behavior to avoid vehicle collisions. There is an extensive body of antipredator behavior theory that have been used to predict the distance/time animals should escape from predators. These models have also been used to guide empirical research on escape behavior from vehicles. However, little is known as to whether antipredator behavior models are appropriate to apply to an approaching high-speed vehicle scenario. We addressed this gap by (a) providing an overview of the main hypotheses and predictions of different antipredator behavior models via a literature review, (b) exploring whether these models can generate quantitative predictions on escape distance when parameterized with empirical data from the literature, and (c) evaluating their sensitivity to vehicle approach speed using a simulation approach wherein we assessed model performance based on changes in effect size with variations in the slope of the flight initiation distance (FID) vs. approach speed relationship. The slope of the FID vs. approach speed relationship was then related back to three different behavioral rules animals may rely on to avoid approaching threats: the spatial, temporal, or delayed margin of safety. We used literature on birds for goals (b) and (c). Our review considered the following eight models: the economic escape model, Blumstein's economic escape model, the optimal escape model, the perceptual limit hypothesis, the visual cue model, the flush early and avoid the rush (FEAR) hypothesis, the looming stimulus hypothesis, and the Bayesian model of escape behavior. We were able to generate quantitative predictions about escape distance with the last five models. However, we were only able to assess sensitivity to vehicle approach speed for the last three models. The FEAR hypothesis is most sensitive to high-speed vehicles when the species follows the spatial (FID remains constant as speed increases) and the temporal margin of safety (FID increases with an increase in speed) rules of escape. The looming stimulus effect hypothesis reached small to intermediate levels of sensitivity to high-speed vehicles when a species follows the delayed margin of safety (FID decreases with an increase in speed). The Bayesian optimal escape model reached intermediate levels of sensitivity to approach speed across all escape rules (spatial, temporal, delayed margins of safety) but only for larger (> 1 kg) species, but was not sensitive to speed for smaller species. Overall, no single antipredator behavior model could characterize all different types of escape responses relative to vehicle approach speed but some models showed some levels of sensitivity for certain rules of escape behavior. We derive some applied applications of our findings by suggesting the estimation of critical vehicle approach speeds for managing populations that are especially susceptible to road mortality. Overall, we recommend that new escape behavior models specifically tailored to high-speeds vehicles should be developed to better predict quantitatively the responses of animals to an increase in the frequency of cars, airplanes, drones, etc. they will face in the next decade.
Collapse
Affiliation(s)
- Ryan B. Lunn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Bradley F. Blackwell
- USDA, APHIS, Wildlife Services, National Wildlife Research Center, Sandusky, OH, United States of America
| | - Travis L. DeVault
- Savannah River Ecology Laboratory, University of Georgia, Jackson, SC, United States of America
| | | |
Collapse
|
3
|
Cezário RR, Gorb SN, Guillermo‐Ferreira R. Camouflage by counter‐brightness: the blue wings of Morpho dragonflies
Zenithoptera lanei
(Anisoptera: Libellulidae) match the water background. J Zool (1987) 2022. [DOI: 10.1111/jzo.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. R. Cezário
- Department of Biological Sciences Universidade Federal do Triângulo Mineiro Uberaba Brazil
- Graduate Program in Entomology University of São Paulo (USP) Ribeirão Preto Brazil
| | - S. N. Gorb
- Department of Functional Morphology and Biomechanics Zoological Institute Kiel University Kiel Germany
| | - R. Guillermo‐Ferreira
- Department of Biological Sciences Universidade Federal do Triângulo Mineiro Uberaba Brazil
- Graduate Program in Entomology University of São Paulo (USP) Ribeirão Preto Brazil
| |
Collapse
|
4
|
Arias M, Leroy L, Madec C, Matos L, Tedore C, Elias M, Gomez D. Partial wing transparency works better when disrupting wing edges: Evidence from a field experiment. J Evol Biol 2021; 34:1840-1846. [PMID: 34601773 DOI: 10.1111/jeb.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022]
Abstract
Lepidoptera-a group of insects in which wing transparency has arisen multiple times-exhibits much variation in the size and position of transparent wing zones. However, little is known as to how this variability affects detectability. Here, we test how the size and position of transparent elements affect the predation of artificial moths by wild birds in the field. Morphs with transparent elements touching wing borders showed a reduced predation risk, with the effect being the same regardless of the number of wing borders being touched. By contrast, transparent element size had little to no effect on predation risk. Overall, this experiment shows for the first time that transparency offers higher protection when it disrupts prey contour in terrestrial habitats.
Collapse
Affiliation(s)
- Mónica Arias
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France.,ISYEB, CNRS, MNHN, Sorbonne Univ, EPHE, Univ. Antilles, 45 rue Buffon CP50, Paris, France
| | - Lucie Leroy
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Clément Madec
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Louane Matos
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Cynthia Tedore
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France.,Faculty of Mathematics, Informatics and Natural Sciences, Institute of Zoology, Univ. Hamburg, Hamburg, Germany
| | - Marianne Elias
- ISYEB, CNRS, MNHN, Sorbonne Univ, EPHE, Univ. Antilles, 45 rue Buffon CP50, Paris, France
| | - Doris Gomez
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France.,INSP, CNRS, Sorbonne Univ., Paris, France
| |
Collapse
|
5
|
|
6
|
Cezário RR, Lopez VM, Gorb S, Guillermo-Ferreira R. Dynamic iridescent signals of male copperwing damselflies coupled with wing-clapping displays: the perspective of different receivers. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Dynamic signals are a widespread phenomenon in several taxa, usually associated with intraspecific communication. In contrast, dynamic iridescent signals are detectable only at specific angles of illumination; hence, the animal can hide the signal to avoid detection when necessary. This structural coloration is mostly dependent on the illumination, the contrast against the background and the vision of the receiver. Complex behavioural displays can be coupled with structural coloration to create dynamic visual signals that enhance these functions. Here, we address whether iridescence of the males of a damselfly that inhabits dark rainforests, Chalcopteryx scintillans, can be considered a dynamic visual signal. We analyse whether coloration is perceived by conspecifics, while reducing detectability to eavesdroppers against three types of backgrounds. Our results suggest that the visual background affects the detectability of male hindwings by different receivers, mostly predators and prey. We discuss whether these results and the angle dependence of colour could indicate a mechanism to avoid unwanted intraspecific interactions or even to lure both predators and prey. We conclude that the main functions of the dynamic iridescent signal are to communicate with conspecifics while hindering the signal for prey, adding evidence of the multifunctionality of structural coloration coupled with behavioural displays in animals.
Collapse
Affiliation(s)
- Rodrigo Roucourt Cezário
- Laboratory of Ecological Studies on Ethology and Evolution (LESTES Lab), Federal University of São Carlos, São Carlos, SP, Brazil
- Graduate program in Entomology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vinicius Marques Lopez
- Laboratory of Ecological Studies on Ethology and Evolution (LESTES Lab), Federal University of São Carlos, São Carlos, SP, Brazil
- Graduate program in Entomology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1–9, D-24098 Kiel, Germany
| | - Rhainer Guillermo-Ferreira
- Laboratory of Ecological Studies on Ethology and Evolution (LESTES Lab), Federal University of São Carlos, São Carlos, SP, Brazil
- Graduate program in Entomology, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Tedore C, Nilsson DE. Ultraviolet vision aids the detection of nutrient-dense non-signaling plant foods. Vision Res 2021; 183:16-29. [PMID: 33639304 DOI: 10.1016/j.visres.2021.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/10/2021] [Accepted: 01/24/2021] [Indexed: 11/29/2022]
Abstract
To expand our understanding of what tasks are particularly helped by UV vision and may justify the costs of focusing high-energy light onto the retina, we used an avian-vision multispectral camera to image diverse vegetated habitats in search of UV contrasts that differ markedly from visible-light contrasts. One UV contrast that stood out as very different from visible-light contrasts was that of nutrient-dense non-signaling plant foods (such as young leaves and immature fruits) against their natural backgrounds. From our images, we calculated color contrasts between 62+ species of such foods and mature foliage for the two predominant color vision systems of birds, UVS and VS. We also computationally generated images of what a generalized tetrachromat, unfiltered by oil droplets, would see, by developing a new methodology that uses constrained linear least squares to solve for optimal weighted combinations of avian camera filters to mimic new spectral sensitivities. In all visual systems, we found that nutrient-dense non-signaling plant foods presented a lower, often negative figure-ground contrast in the UV channels, and a higher, often positive figure-ground contrast in the visible channels. Although a zero contrast may sound unhelpful, it can actually enhance color contrast when compared in a color opponent system to other channels with nonzero contrasts. Here, low or negative UV contrasts markedly enhanced color contrasts. We propose that plants may struggle to evolve better UV crypsis since UV reflectance from vegetation is largely specular and thus highly dependent on object orientation, shape, and texture.
Collapse
Affiliation(s)
- Cynthia Tedore
- Lund Vision Group, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
| | - Dan-Eric Nilsson
- Lund Vision Group, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| |
Collapse
|
8
|
Ronald KL, Fernández-Juricic E, Lucas JR. Mate choice in the eye and ear of the beholder? Female multimodal sensory configuration influences her preferences. Proc Biol Sci 2019; 285:rspb.2018.0713. [PMID: 29769366 DOI: 10.1098/rspb.2018.0713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 01/27/2023] Open
Abstract
A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird (Molothrus ater) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive.
Collapse
Affiliation(s)
- Kelly L Ronald
- Department of Biology, Indiana University, Jordan Hall, 1001 E 3rd Street, Bloomington, IN 47405, USA .,Department of Biological Sciences, Purdue University, Lilly Hall, 915 West State Street, West Lafayette, IN 47907, USA
| | - Esteban Fernández-Juricic
- Department of Biology, Indiana University, Jordan Hall, 1001 E 3rd Street, Bloomington, IN 47405, USA
| | - Jeffrey R Lucas
- Department of Biology, Indiana University, Jordan Hall, 1001 E 3rd Street, Bloomington, IN 47405, USA
| |
Collapse
|
9
|
Tedore C, Nilsson DE. Avian UV vision enhances leaf surface contrasts in forest environments. Nat Commun 2019; 10:238. [PMID: 30670700 PMCID: PMC6342963 DOI: 10.1038/s41467-018-08142-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022] Open
Abstract
UV vision is prevalent, but we know little about its utility in common general tasks, as in resolving habitat structure. Here we visualize vegetated habitats using a multispectral camera with channels mimicking bird photoreceptor sensitivities across the UV-visible spectrum. We find that the contrast between upper and lower leaf surfaces is higher in a UV channel than in any visible channel, and that this makes leaf position and orientation stand out clearly. This was unexpected since both leaf surfaces reflect similarly small proportions (1–2%) of incident UV light. The strong UV-contrast can be explained by downwelling light being brighter than upwelling, and leaves transmitting < 0.06% of incident UV light. We also find that mirror-like specular reflections of the sky and overlying canopy, from the waxy leaf cuticle, often dwarf diffuse reflections. Specular reflections shift leaf color, such that maximum leaf-contrast is seen at short UV wavelengths under open canopies, and at long UV wavelengths under closed canopies. The utility of UV vision for visualizing habitat structure is poorly known. Here, the authors use optical models and multispectral imaging to show that UV vision reveals sharp visual contrasts between leaf surfaces, potentially an advantage in navigating forest environments.
Collapse
Affiliation(s)
- Cynthia Tedore
- Lund Vision Group, Lund University, Sölvegatan 35, Lund, 223 62, Sweden. .,Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, Hamburg, 20146, Germany.
| | - Dan-Eric Nilsson
- Lund Vision Group, Lund University, Sölvegatan 35, Lund, 223 62, Sweden
| |
Collapse
|
10
|
Jeon JY, Lee ES, Park EB, Jeon CJ. The organization of tyrosine hydroxylase-immunopositive cells in the sparrow retina. Neurosci Res 2018; 145:10-21. [PMID: 30243906 DOI: 10.1016/j.neures.2018.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to identify tyrosine hydroxylase-immunopositive (TH+) cells in the sparrow retina using immunocytochemistry and quantitative analysis. All TH+ cells were conventional amacrine cells. Based on dendritic morphology, at least two types were observed. The first type had a single thick primary process that descended from the cell body and many densely beaded processes in substrata (s) 1, less beaded processes in s3, and spiny processes in s4/5 of the inner plexiform layer. The dendrites of the second type appeared similar in each layer, but it displayed several primary processes that spread laterally away from the soma before descending to the inner plexiform layer. The average density of TH+ cells was 37.48 ± 1.97 cells/mm2 (mean ± standard deviation; n = 4), and the estimated total number of TH+ cells was 3,061.25 ± 192.79. The highest and lowest densities of TH+ cells were located in the central dorsotemporal retina and periphery of the ventronasal retina, respectively. TH+ cells did not express calbindin-D28 K, calretinin, or parvalbumin. These results suggest that all TH+ cells in specific amacrine cell subpopulations are involved in retinal information processing in both the ON and OFF sublaminae in sparrow retina.
Collapse
Affiliation(s)
- Joo-Yeong Jeon
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| | - Eun-Shil Lee
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| | - Eun-Bee Park
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
11
|
Ronald KL, Ensminger AL, Shawkey MD, Lucas JR, Fernández-Juricic E. Testing a key assumption in animal communication: between-individual variation in female visual systems alters perception of male signals. Biol Open 2017; 6:1771-1783. [PMID: 29247048 PMCID: PMC5769651 DOI: 10.1242/bio.028282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Variation in male signal production has been extensively studied because of its relevance to animal communication and sexual selection. Although we now know much about the mechanisms that can lead to variation between males in the properties of their signals, there is still a general assumption that there is little variation in terms of how females process these male signals. Variation between females in signal processing may lead to variation between females in how they rank individual males, meaning that one single signal may not be universally attractive to all females. We tested this assumption in a group of female wild-caught brown-headed cowbirds (Molothrus ater), a species that uses a male visual signal (e.g. a wingspread display) to make its mate-choice decisions. We found that females varied in two key parameters of their visual sensory systems related to chromatic and achromatic vision: cone densities (both total and proportions) and cone oil droplet absorbance. Using visual chromatic and achromatic contrast modeling, we then found that this between-individual variation in visual physiology leads to significant between-individual differences in how females perceive chromatic and achromatic male signals. These differences may lead to variation in female preferences for male visual signals, which would provide a potential mechanism for explaining individual differences in mate-choice behavior. Summary: Animal communication studies often assume receiver perception is equal across individuals; we found females vary in their visual physiology and perception of male signals which could influence their mating decisions.
Collapse
Affiliation(s)
- Kelly L Ronald
- Indiana University, Department of Biology, Jordan Hall, 1001 E 3rd Street, Bloomington, IN 47405, USA .,Purdue University, Department of Biological Sciences, Lilly Hall, 915 West State Street, West Lafayette, IN 47907, USA
| | - Amanda L Ensminger
- Morningside College, Biology Department, 1501 Morningside Avenue, Sioux City, IA 51106, USA
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructure Group, Department of Biology, University of Ghent, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Jeffrey R Lucas
- Purdue University, Department of Biological Sciences, Lilly Hall, 915 West State Street, West Lafayette, IN 47907, USA
| | - Esteban Fernández-Juricic
- Purdue University, Department of Biological Sciences, Lilly Hall, 915 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Bitton PP, Janisse K, Doucet SM. Assessing Sexual Dicromatism: The Importance of Proper Parameterization in Tetrachromatic Visual Models. PLoS One 2017; 12:e0169810. [PMID: 28076391 PMCID: PMC5226829 DOI: 10.1371/journal.pone.0169810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/21/2016] [Indexed: 11/19/2022] Open
Abstract
Perceptual models of animal vision have greatly contributed to our understanding of animal-animal and plant-animal communication. The receptor-noise model of color contrasts has been central to this research as it quantifies the difference between two colors for any visual system of interest. However, if the properties of the visual system are unknown, assumptions regarding parameter values must be made, generally with unknown consequences. In this study, we conduct a sensitivity analysis of the receptor-noise model using avian visual system parameters to systematically investigate the influence of variation in light environment, photoreceptor sensitivities, photoreceptor densities, and light transmission properties of the ocular media and the oil droplets. We calculated the chromatic contrast of 15 plumage patches to quantify a dichromatism score for 70 species of Galliformes, a group of birds that display a wide range of sexual dimorphism. We found that the photoreceptor densities and the wavelength of maximum sensitivity of the short-wavelength-sensitive photoreceptor 1 (SWS1) can change dichromatism scores by 50% to 100%. In contrast, the light environment, transmission properties of the oil droplets, transmission properties of the ocular media, and the peak sensitivities of the cone photoreceptors had a smaller impact on the scores. By investigating the effect of varying two or more parameters simultaneously, we further demonstrate that improper parameterization could lead to differences between calculated and actual contrasts of more than 650%. Our findings demonstrate that improper parameterization of tetrachromatic visual models can have very large effects on measures of dichromatism scores, potentially leading to erroneous inferences. We urge more complete characterization of avian retinal properties and recommend that researchers either determine whether their species of interest possess an ultraviolet or near-ultraviolet sensitive SWS1 photoreceptor, or present models for both.
Collapse
Affiliation(s)
- Pierre-Paul Bitton
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
- * E-mail:
| | - Kevyn Janisse
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Stéphanie M. Doucet
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|