1
|
Fortuna A, Collalto D, Rampioni G, Leoni L. Assays for Studying Pseudomonas aeruginosa Secreted Proteases. Methods Mol Biol 2024; 2721:137-151. [PMID: 37819520 DOI: 10.1007/978-1-0716-3473-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Proteolytic activity plays an essential role in Pseudomonas aeruginosa adaptation and survival in challenging environments, including the infection site. Here, a short review of the eight known proteases secreted by P. aeruginosa and of the methods used to detect their activity is provided. In addition, three simple and handy methods routinely used in our laboratory to detect proteases are described in detail. In particular, the skim milk plate assay and the azocasein assay are useful for the detection of whole proteases activity in colony-growing and cell-free culture supernatants, respectively. Conversely, the Elastin Congo-red assay allows detecting the activity of the LasB elastase, the major protease secreted by P. aeruginosa, in cell-free culture supernatants.
Collapse
Affiliation(s)
| | | | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy.
| |
Collapse
|
2
|
Fortuna A, Bähre H, Visca P, Rampioni G, Leoni L. The two Pseudomonas aeruginosa DksA stringent response proteins are largely interchangeable at the whole transcriptome level and in the control of virulence-related traits. Environ Microbiol 2021; 23:5487-5504. [PMID: 34327807 DOI: 10.1111/1462-2920.15693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
The stringent response regulator DksA plays a key role in Gram negative bacteria adaptation to challenging environments. Intriguingly, the plant and human pathogen Pseudomonas aeruginosa is unique as it expresses two functional DksA paralogs: DksA1 and DksA2. However, the role of DksA2 in P. aeruginosa adaptive strategies has been poorly investigated so far. Here, RNA-Seq analysis and phenotypic assays showed that P. aeruginosa DksA1 and DksA2 proteins are largely interchangeable. Relative to wild type P. aeruginosa, transcription of 1779 genes was altered in a dksA1 dksA2 double mutant, and the wild type expression level of ≥90% of these genes was restored by in trans complementation with either dksA1 or dksA2. Interestingly, the expression of a small sub-set of genes seems to be preferentially or exclusively complemented by either dksA1 or dksA2. In addition, evidence has been provided that the DksA-dependent regulation of virulence genes expression is independent and hierarchically dominant over two major P. aeruginosa regulatory circuits, i.e., quorum sensing and cyclic-di-GMP signalling systems. Our findings support the prominent role of both DksA paralogs in P. aeruginosa environmental adaptation.
Collapse
Affiliation(s)
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
3
|
Wang Y, Gao L, Rao X, Wang J, Yu H, Jiang J, Zhou W, Wang J, Xiao Y, Li M, Zhang Y, Zhang K, Shen L, Hua Z. Characterization of lasR-deficient clinical isolates of Pseudomonas aeruginosa. Sci Rep 2018; 8:13344. [PMID: 30190495 PMCID: PMC6127196 DOI: 10.1038/s41598-018-30813-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is a prevalent opportunistic pathogen that causes fatal infections in immunocompromised individuals. Quorum sensing (QS) is a cell-to-cell communication process that controls virulence gene expression and biofilm formation in P. aeruginosa. Here, the QS systems and the relevant virulence traits in clinical P. aeruginosa isolates were characterized. Eleven out of the ninety-four P. aeruginosa isolates exhibited a biofilm-deficient phenotype. Two biofilm-deficient isolates, one from blood and the one from pleural effusion, appeared to carry a same mutation in lasR. These two isolates differed in the ability to produce QS-regulated virulence factors, but contained the same functionally deficient LasR with the truncated C-terminal domains and belonged to the same multilocus sequence type (ST227). Chromosomal lasR complementation in these lasR mutants verified that lasR inactivation was the sole cause of las deficiency. LasR was not absolutely required for rhl signal in these lasR mutants, suggesting the presence of lasR-independent QS systems. We provided evidence that the virulence gene expression are not regulated in the same manner in these isolates. These results support the hypothesis that conventional QS hierarchy can be smashed by naturally occurring lasR mutation in clinical P. aeruginosa isolates and that complex QS hierarchy may play a role in maintaining infection of this opportunistic pathogen.
Collapse
Affiliation(s)
- Yao Wang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 40014, China
| | - Leiqiong Gao
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 40014, China.,Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Xiancai Rao
- Department of Microbiology, Army Medical University, Chongqing, 400038, China
| | - Jing Wang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 40014, China
| | - Hua Yu
- Department of Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junru Jiang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 40014, China
| | - Wei Zhou
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 40014, China
| | - Jin Wang
- Phase I Clinical Centre, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China, 300013
| | - Mengwen Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 40014, China
| | - Yan Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 40014, China
| | - Kebin Zhang
- Department of Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 40014, China.
| |
Collapse
|
4
|
Genetic diversity and phenotypic plasticity of AHL-mediated Quorum sensing in environmental strains of Vibrio mediterranei. ISME JOURNAL 2018; 13:159-169. [PMID: 30116040 DOI: 10.1038/s41396-018-0260-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 01/28/2023]
Abstract
N-Acyl homoserine lactone (AHL)-mediated Quorum sensing (QS) is one of the most studied social behavior among Proteobacteria. However, despite the current knowledge on QS-associated phenotypes such as bioluminescence, biofilm formation, or pathogenesis, the characterization of environmental factors driving QS in realistic ecological settings remains scarce. We investigated the dynamics of AHL and AHL-producing Vibrio among 840 isolates collected fortnightly from the Salses-Leucate Mediterranean lagoon in spring and summer 2015 and 2016. Vibrio isolates were characterized by gyrB gene sequencing, Enterobacterial repetitive intergenic consensus polymerase chain reaction, and genome sequencing, and AHL production was investigated by a biosensors-based UHPLC-HRMS/MS approach. Our results revealed, for the first time, a succession of V. mediterranei isolates with different AHL production phenotypes over time and this dynamics was observed in a single genotype (average genomic nucleotide identity >99.9). A multivariate DistLM analysis revealed that 83.4% of the temporal variation of V. mediterranei QS phenotypes was explained by environmental variables. Overall, our results suggest that isolates of a single genotype are able to change their QS phenotypes in response to environmental conditions, highlighting the phenotypic plasticity of bacterial communication in the environment.
Collapse
|
5
|
Two rsaM Homologues Encode Central Regulatory Elements Modulating Quorum Sensing in Burkholderia thailandensis. J Bacteriol 2018; 200:JB.00727-17. [PMID: 29507087 DOI: 10.1128/jb.00727-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/20/2018] [Indexed: 01/05/2023] Open
Abstract
The bacterium Burkholderia thailandensis possesses three N-acyl-l-homoserine lactone (AHL) quorum sensing (QS) systems designated BtaI1/BtaR1 (QS-1), BtaI2/BtaR2 (QS-2), and BtaI3/BtaR3 (QS-3). These QS systems are associated with the biosynthesis of N-octanoyl-homoserine lactone (C8-HSL), N-3-hydroxy-decanoyl-homoserine lactone (3OHC10-HSL), and N-3-hydroxy-octanoyl-homoserine lactone (3OHC8-HSL), which are produced by the LuxI-type synthases BtaI1, BtaI2, and BtaI3 and modulated by the LuxR-type transcriptional regulators BtaR1, BtaR2, and BtaR3. The btaR1-btaI1 and btaR2-btaI2 gene clusters each carry an additional gene encoding a homologue of the QS repressor RsaM originally identified in the phytopathogen Pseudomonas fuscovaginae and thus here named rsaM1 and rsaM2, respectively. We have characterized the functions of these two conserved rsaM homologues and demonstrated their involvement in the regulation of AHL biosynthesis in B. thailandensis strain E264. We quantified the production of C8-HSL, 3OHC10-HSL, and 3OHC8-HSL by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the wild-type strain and in the rsaM1 and rsaM2 mutants, and we monitored btaI1, btaI2, and btaI3 expression using chromosomal mini-CTX-lux transcriptional reporters. The transcription of btaR1, btaR2, and btaR3 was also measured by quantitative reverse transcription-PCR (qRT-PCR). We observed that RsaM1 mainly represses the QS-1 system, whereas RsaM2 principally represses the QS-2 system. We also found that both rsaM1 and rsaM2 are QS controlled and negatively autoregulated. We conclude that RsaM1 and RsaM2 are an integral part of the QS circuitry of B. thailandensis and play a major role in the hierarchical and homeostatic organization of the QS-1, QS-2, and QS-3 systems.IMPORTANCE Quorum sensing (QS) is commonly involved in the coordination of gene transcription associated with the establishment of host-pathogen interactions and acclimatization to the environment. We present the functional characterization of two rsaM homologues in the regulation of the multiple QS systems coexisting in the nonpathogenic bacterium Burkholderia thailandensis, which is widely used as a model system for the study of the human pathogen Burkholderia pseudomallei We found that inactivation of these rsaM homologues, which are clustered with the other QS genes, profoundly affects the QS circuitry of B. thailandensis We conclude that they constitute essential regulatory components of the QS modulatory network and provide additional layers of regulation to modulate the transcription of QS-controlled genes, particularly those linked to environmental adaptation.
Collapse
|
6
|
Sun S, Chen B, Jin ZJ, Zhou L, Fang YL, Thawai C, Rampioni G, He YW. Characterization of the multiple molecular mechanisms underlying RsaL control of phenazine-1-carboxylic acid biosynthesis in the rhizosphere bacteriumPseudomonas aeruginosaPA1201. Mol Microbiol 2017; 104:931-947. [DOI: 10.1111/mmi.13671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Shuang Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Yun-Ling Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Chitti Thawai
- Department of Biology, Faculty of Science; King Mongkut's Institute of Technology Ladkrabang; Bangkok Thailand
| | | | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| |
Collapse
|
7
|
Bondí R, Longo F, Messina M, D'Angelo F, Visca P, Leoni L, Rampioni G. The multi-output incoherent feedforward loop constituted by the transcriptional regulators LasR and RsaL confers robustness to a subset of quorum sensing genes in Pseudomonas aeruginosa. MOLECULAR BIOSYSTEMS 2017; 13:1080-1089. [DOI: 10.1039/c7mb00040e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thelasmulti-output IFFL-1 splits the QS regulon into two distinct sub-regulons with different robustness with respect to LasR fluctuations.
Collapse
Affiliation(s)
- Roslen Bondí
- Department of Science
- University Roma Tre
- Rome
- Italy
| | | | | | | | - Paolo Visca
- Department of Science
- University Roma Tre
- Rome
- Italy
| | - Livia Leoni
- Department of Science
- University Roma Tre
- Rome
- Italy
| | | |
Collapse
|