1
|
Yang YZ, Liu XY, Gao S, Zhang SG, Tan BC. PPR21 is involved in the splicing of nad2 introns via interacting with PPR-SMR1 and SPR2 and is essential to maize seed development. J Genet Genomics 2025; 52:379-387. [PMID: 39241862 DOI: 10.1016/j.jgg.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are a large group of eukaryote-specific RNA-binding proteins that play pivotal roles in plant organelle gene expression. Here, we report the function of PPR21 in mitochondrial intron splicing and its role in maize kernel development. PPR21 is a typical P-type PPR protein targeted to mitochondria. The ppr21 mutants are arrested in embryogenesis and endosperm development, leading to embryo lethality. Null mutations of PPR21 reduce the splicing efficiency of nad2 intron 1, 2, and 4 and impair the assembly and activity of mitochondrial complex I. Previous studies show that the P-type PPR protein EMP12 is required for the splicing of identical introns. However, our protein interaction analyses reveal that PPR21 does not interact with EMP12. Instead, both PPR21 and EMP12 interact with the small MutS-related (SMR) domain-containing PPR protein 1 (PPR-SMR1) and the short P-type PPR protein 2 (SPR2). PPR-SMR1 interacts with SPR2, and both proteins are required for the splicing of many introns in mitochondria, including nad2 intron 1, 2, and 4. These results suggest that a PPR21-(PPR-SMR1/SPR2)-EMP12 complex is involved in the splicing of nad2 introns in maize mitochondria.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Xin-Yuan Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Song Gao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Shu-Guang Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Bao-Cai Tan
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Sayyed A, Chen B, Wang Y, Cao SK, Tan BC. PPR596 Is Required for nad2 Intron Splicing and Complex I Biogenesis in Arabidopsis. Int J Mol Sci 2024; 25:3542. [PMID: 38542518 PMCID: PMC10971677 DOI: 10.3390/ijms25063542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Mitochondria are essential organelles that generate energy via oxidative phosphorylation. Plant mitochondrial genome encodes some of the respiratory complex subunits, and these transcripts require accurate processing, including C-to-U RNA editing and intron splicing. Pentatricopeptide repeats (PPR) proteins are involved in various organellar RNA processing events. PPR596, a P-type PPR protein, was previously identified to function in the C-to-U editing of mitochondrial rps3 transcripts in Arabidopsis. Here, we demonstrate that PPR596 functions in the cis-splicing of nad2 intron 3 in mitochondria. Loss of the PPR596 function affects the editing at rps3eU1344SS, impairs nad2 intron 3 splicing and reduces the mitochondrial complex I's assembly and activity, while inducing alternative oxidase (AOX) gene expression. This defect in nad2 intron splicing provides a plausible explanation for the slow growth of the ppr595 mutants. Although a few P-type PPR proteins are involved in RNA C-to-U editing, our results suggest that the primary function of PPR596 is intron splicing.
Collapse
Affiliation(s)
| | | | | | | | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (A.S.); (B.C.); (Y.W.); (S.-K.C.)
| |
Collapse
|
3
|
Zang J, Zhang T, Zhang Z, Liu J, Chen H. DEFECTIVE KERNEL 56 functions in mitochondrial RNA editing and maize seed development. PLANT PHYSIOLOGY 2024; 194:1593-1610. [PMID: 37956067 DOI: 10.1093/plphys/kiad598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Proper seed development is essential for achieving grain production, successful seed germination, and seedling establishment in maize (Zea mays). In the past few decades, pentatricopeptide repeat (PPR) proteins have been proven to play an essential role in regulating the development of maize kernels through posttranscriptional RNA modification of mitochondrial genes. However, the underlying mechanisms remain largely unknown. Here, we characterized a mutant of DEFECTIVE KERNEL 56 (DEK56) with defective kernels that exhibited arrested development of both the embryo and endosperm. Accordingly, we isolated DEK56 through a map-based cloning strategy and found that it encoded an E subgroup PPR protein located in the mitochondria. Dysfunction of DEK56 resulted in altered cytidine (C)-to-uridine (U) editing efficiency at 48 editing sites across 21 mitochondrial transcripts. Notably, the editing efficiency of the maturase-related (matR)-1124 site was substantially reduced or abolished in the dek56 mutant. Furthermore, we found that the splicing efficiency of NADH dehydrogenase subunit 4 (nad4) Introns 1 and 3 was substantially reduced in dek56 kernels, which might be a consequence of the defective MatR function. Through a protein-protein interaction test, we hypothesized that DEK56 carries out its function by recruiting the PPR-DYW protein PPR motif, coiled-coil, and DYW domain-containing protein 1 (PCW1). This interaction is facilitated by Multiple Organellar RNA Editing Factors (ZmMORFs) and Glutamine-Rich Protein 23 (ZmGRP23). Based on these findings, we developed a working model of PPR-mediated mitochondrial processing that plays an essential role in the development of maize kernels. The present study will further broaden our understanding of PPR-mediated seed development and provide a theoretical basis for maize improvement.
Collapse
Affiliation(s)
- Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tengfei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Li X, Jiang Y. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria. Genes (Basel) 2024; 15:176. [PMID: 38397166 PMCID: PMC10887915 DOI: 10.3390/genes15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondria are important organelles that provide energy for the life of cells. Group II introns are usually found in the mitochondrial genes of land plants. Correct splicing of group II introns is critical to mitochondrial gene expression, mitochondrial biological function, and plant growth and development. Ancestral group II introns are self-splicing ribozymes that can catalyze their own removal from pre-RNAs, while group II introns in land plant mitochondria went through degenerations in RNA structures, and thus they lost the ability to self-splice. Instead, splicing of these introns in the mitochondria of land plants is promoted by nuclear- and mitochondrial-encoded proteins. Many proteins involved in mitochondrial group II intron splicing have been characterized in land plants to date. Here, we present a summary of research progress on mitochondrial group II intron splicing in land plants, with a major focus on protein splicing factors and their probable functions on the splicing of mitochondrial group II introns.
Collapse
Affiliation(s)
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
5
|
Bychkov IA, Pojidaeva ES, Doroshenko AS, Khripach VA, Kudryakova NV, Kusnetsov VV. Phytohormones as Regulators of Mitochondrial Gene Expression in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16924. [PMID: 38069246 PMCID: PMC10707152 DOI: 10.3390/ijms242316924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The coordination of activities between nuclei and organelles in plant cells involves information exchange, in which phytohormones may play essential roles. Therefore, the dissection of the mechanisms of hormone-related integration between phytohormones and mitochondria is an important and challenging task. Here, we found that inputs from multiple hormones may cause changes in the transcript accumulation of mitochondrial-encoded genes and nuclear genes encoding mitochondrial (mt) proteins. In particular, treatments with exogenous hormones induced changes in the GUS expression in the reporter line possessing a 5'-deletion fragment of the RPOTmp promoter. These changes corresponded in part to the up- or downregulation of RPOTmp in wild-type plants, which affects the transcription of mt-encoded genes, implying that the promoter fragment of the RPOTmp gene is functionally involved in the responses to IAA (indole-3-acetic acid), ACC (1-aminocyclopropane-1-carboxylic acid), and ABA (abscisic acid). Hormone-dependent modulations in the expression of mt-encoded genes can also be mediated through mitochondrial transcription termination factors 15, 17, and 18 of the mTERF family and genes for tetratricopeptide repeat proteins that are coexpressed with mTERF genes, in addition to SWIB5 encoding a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein. These genes specifically respond to hormone treatment, displaying both negative and positive regulation in a context-dependent manner. According to bioinformatic resources, their promoter region possesses putative cis-acting elements involved in responses to phytohormones. Alternatively, the hormone-related transcriptional activity of these genes may be modulated indirectly, which is especially relevant for brassinosteroids (BS). In general, the results of this study indicate that hormones are essential mediators that are able to cause alterations in the transcript accumulation of mt-related nuclear genes, which, in turn, trigger the expression of mt genes.
Collapse
Affiliation(s)
- Ivan A. Bychkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (I.A.B.); (E.S.P.); (A.S.D.)
| | - Elena S. Pojidaeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (I.A.B.); (E.S.P.); (A.S.D.)
| | - Anastasia S. Doroshenko
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (I.A.B.); (E.S.P.); (A.S.D.)
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Natalia V. Kudryakova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (I.A.B.); (E.S.P.); (A.S.D.)
| | - Victor V. Kusnetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (I.A.B.); (E.S.P.); (A.S.D.)
| |
Collapse
|
6
|
Yang YZ, Ding S, Liu XY, Xu C, Sun F, Tan BC. The DEAD-box RNA helicase ZmRH48 is required for the splicing of multiple mitochondrial introns, mitochondrial complex biosynthesis, and seed development in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2456-2468. [PMID: 37594235 DOI: 10.1111/jipb.13558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA-protein complexes in an adenosine triphosphate-dependent manner. Due to the large RNA helicase families in plants, the precise roles of many RNA helicases in plant physiology and development remain to be clarified. Here, we show that mutations in maize (Zea mays) DEAD-box RNA helicase 48 (ZmRH48) impair the splicing of mitochondrial introns, mitochondrial complex biosynthesis, and seed development. Loss of ZmRH48 function severely arrested embryogenesis and endosperm development, leading to defective kernel formation. ZmRH48 is targeted to mitochondria, where its deficiency dramatically reduced the splicing efficiency of five cis-introns (nad5 intron 1; nad7 introns 1, 2, and 3; and ccmFc intron 1) and one trans-intron (nad2 intron 2), leading to lower levels of mitochondrial complexes I and III. ZmRH48 interacts with two unique pentatricopeptide repeat (PPR) proteins, PPR-SMR1 and SPR2, which are required for the splicing of over half of all mitochondrial introns. PPR-SMR1 interacts with SPR2, and both proteins interact with P-type PPR proteins and Zm-mCSF1 to facilitate intron splicing. These results suggest that ZmRH48 is likely a component of a splicing complex and is critical for mitochondrial complex biosynthesis and seed development.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuo Ding
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xin-Yuan Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
7
|
Vincis Pereira Sanglard L, Small ID, Colas des Francs-Small C. Alteration of Mitochondrial Transcript Expression in Arabidopsis thaliana Using a Custom-Made Library of Pentatricopeptide Repeat Proteins. Int J Mol Sci 2023; 24:13233. [PMID: 37686040 PMCID: PMC10487680 DOI: 10.3390/ijms241713233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are considered a potential tool for manipulating organelle gene expression in plants because they can recognise a wide range of different RNA sequences, and the molecular basis for this sequence recognition is partially known and understood. A library of redesigned PPR proteins related to restorer-of-fertility proteins was created and transformed into plants in order to target mitochondrial transcripts. Ninety different variants tested in vivo showed a wide range of phenotypes. One of these lines, which displayed slow growth and downward curled leaves, showed a clear reduction in complex V. The phenotype was due to a specific cleavage of atp1 transcripts induced by a modified PPR protein from the library, validating the use of this library as a source of mitochondrial 'mutants'. This study is a step towards developing specific RNA targeting tools using PPR proteins that can be aimed at desired targets.
Collapse
Affiliation(s)
| | | | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
8
|
Ghifari AS, Saha S, Murcha MW. The biogenesis and regulation of the plant oxidative phosphorylation system. PLANT PHYSIOLOGY 2023; 192:728-747. [PMID: 36806687 DOI: 10.1093/plphys/kiad108] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 06/01/2023]
Abstract
Mitochondria are central organelles for respiration in plants. At the heart of this process is oxidative phosphorylation (OXPHOS) system, which generates ATP required for cellular energetic needs. OXPHOS complexes comprise of multiple subunits that originated from both mitochondrial and nuclear genome, which requires careful orchestration of expression, translation, import, and assembly. Constant exposure to reactive oxygen species due to redox activity also renders OXPHOS subunits to be more prone to oxidative damage, which requires coordination of disassembly and degradation. In this review, we highlight the composition, assembly, and activity of OXPHOS complexes in plants based on recent biochemical and structural studies. We also discuss how plants regulate the biogenesis and turnover of OXPHOS subunits and the importance of OXPHOS in overall plant respiration. Further studies in determining the regulation of biogenesis and activity of OXPHOS will advances the field, especially in understanding plant respiration and its role to plant growth and development.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Saurabh Saha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Li L, Li X, Yang C, Li L. Peanut AhmTERF1 Regulates Root Growth by Modulating Mitochondrial Abundance. Genes (Basel) 2023; 14:genes14010209. [PMID: 36672950 PMCID: PMC9859088 DOI: 10.3390/genes14010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Mitochondria are responsible for energy generation, as well as key metabolic and signaling pathways, and thus affect the entire developmental process of plants as well as their responses to stress. In metazoans, mitochondrial transcription termination factors (mTERFs) are known to regulate mitochondrial transcription. mTERFs have also been discovered in plants, but only a few of these proteins have been explored for their biological functions. Here, we report a role in root growth for mitochondria-associated protein AhmTERF1 in peanut (Arachis hypogaea L.). Overexpressing AhmTERF1 significantly stimulated the growth of peanut hairy roots and transgenic Arabidopsis. Surprisingly, AhmTERF1 is predominantly expressed in the root meristem where it increases mitochondrial abundance. AhmTERF1 binding to mtDNA was enriched in the RRN18 and RRN26 regions, suggesting it is related to the accumulation of mitochondrial ribosomes. Peanut is one of the main oil crops and the important source of edible oil and AhmTERF1 likely affects agronomic traits related to root growth in different peanut cultivars. We propose that peanut AhmTERF1 is an important protein for root growth due to its role in regulating mitochondrial abundance.
Collapse
Affiliation(s)
- Limei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
- School of Life Sciences, Zhaoqing University, Zhaoqing 526061, China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
- Correspondence:
| |
Collapse
|
10
|
Patil AB, Vajja SS, Raghavendra S, Satish BN, Kushalappa CG, Vijay N. Jack of all trades: Genome assembly of Wild Jack and comparative genomics of Artocarpus. FRONTIERS IN PLANT SCIENCE 2022; 13:1029540. [PMID: 36578332 PMCID: PMC9791056 DOI: 10.3389/fpls.2022.1029540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Artocarpus (Moraceae), known as breadfruits for their diverse nutritious fruits, is prized for its high-quality timber, medicinal value, and economic importance. Breadfruits are native to Southeast Asia but have been introduced to other continents. The most commonly cultivated species are Artocarpus heterophyllus (Jackfruit) and Artocarpus altilis (Breadfruit). With numerous smaller but nutritionally comparable fruits on a larger tree, Artocarpus hirsutus, also called "Wild Jack" or "Ayani", is an elusive forest species endemic to Indian Western Ghats. In this study, we sequenced and assembled the whole genome of Artocarpus hirsutus sampled from the sacred groves of Coorg, India. To decipher demographic and evolutionary history, we compared our Wild Jack genome with previously published Jackfruit and Breadfruit genomes. Demographic history reconstruction indicates a stronger effect of habitat rather than phylogeny on the population histories of these plants. Repetitive genomic regions, especially LTR Copia, strongly affected the demographic trajectory of A. heterophyllus. Upon further investigation, we found a recent lineage-specific accumulation of LTR Copia in A. heterophyllus, which had a major contribution to its larger genome size. Several genes from starch, sucrose metabolism, and plant hormone signal transduction pathways, in Artocarpus species had signatures of selection and gene family evolution. Our comparative genomic framework provides important insights by incorporating endemic species such as the Wild Jack.
Collapse
Affiliation(s)
- Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| | - Sai Samhitha Vajja
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| | - S. Raghavendra
- College of Agriculture Hassan, University of Agricultural Sciences (UAS), Bangalore, Karnataka, India
| | - B. N. Satish
- College of Forestry, Ponnampet, Karnataka, India
| | | | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| |
Collapse
|
11
|
Cao SK, Liu R, Wang M, Sun F, Sayyed A, Shi H, Wang X, Tan BC. The small PPR protein SPR2 interacts with PPR-SMR1 to facilitate the splicing of introns in maize mitochondria. PLANT PHYSIOLOGY 2022; 190:1763-1776. [PMID: 35976145 PMCID: PMC9614438 DOI: 10.1093/plphys/kiac379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 05/31/2023]
Abstract
Splicing of plant mitochondrial introns is facilitated by numerous nucleus-encoded protein factors. Although some splicing factors have been identified in plants, the mechanism underlying mitochondrial intron splicing remains largely unclear. In this study, we identified a small P-type pentatricopeptide repeat (PPR) protein containing merely four PPR repeats, small PPR protein 2 (SPR2), which is required for the splicing of more than half of the introns in maize (Zea mays) mitochondria. Null mutations of Spr2 severely impair the splicing of 15 out of the 22 mitochondrial Group II introns, resulting in substantially decreased mature transcripts, which abolished the assembly and activity of mitochondrial complex I. Consequently, embryogenesis and endosperm development were arrested in the spr2 mutants. Yeast two-hybrid, luciferase complementation imaging, bimolecular fluorescence complementation, and semi-in vivo pull-down analyses indicated that SPR2 interacts with small MutS-related domain protein PPR-SMR1, both of which are required for the splicing of 13 introns. In addition, SPR2 and/or PPR-SMR1 interact with other splicing factors, including PPR proteins EMPTY PERICARP16, PPR14, and chloroplast RNA splicing and ribosome maturation (CRM) protein Zm-mCSF1, which participate in the splicing of specific intron(s) of the 13 introns. These results prompt us to propose that SPR2/PPR-SMR1 serves as the core component of a splicing complex and possibly exerts the splicing function through a dynamic interaction with specific substrate recognizing PPR proteins in mitochondria.
Collapse
Affiliation(s)
- Shi-Kai Cao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Rui Liu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Miaodi Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hong Shi
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
12
|
Wang C, Blondel L, Quadrado M, Dargel-Graffin C, Mireau H. Pentatricopeptide repeat protein MITOCHONDRIAL STABILITY FACTOR 3 ensures mitochondrial RNA stability and embryogenesis. PLANT PHYSIOLOGY 2022; 190:669-681. [PMID: 35751603 PMCID: PMC9434245 DOI: 10.1093/plphys/kiac309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 05/29/2023]
Abstract
Gene expression in plant mitochondria is predominantly governed at the post-transcriptional level and relies mostly on nuclear-encoded proteins. However, the protein factors involved and the underlying molecular mechanisms are still not well understood. Here, we report on the function of the MITOCHONDRIAL STABILITY FACTOR 3 (MTSF3) protein, previously named EMBRYO DEFECTIVE 2794 (EMB2794), and show that it is essential for accumulation of the mitochondrial NADH dehydrogenase subunit 2 (nad2) transcript in Arabidopsis (Arabidopsis thaliana) but not for splicing of nad2 intron 2 as previously proposed. The MTSF3 gene encodes a pentatricopeptide repeat protein that localizes in the mitochondrion. An MTSF3 null mutation induces embryonic lethality, but viable mtsf3 mutant plants can be generated through partial complementation with the developmentally regulated ABSCISIC ACID INSENSITIVE3 promoter. Genetic analyses revealed growth retardation in rescued mtsf3 plants owing to the specific destabilization of mature nad2 mRNA and a nad2 precursor transcript bearing exons 3 to 5. Biochemical data demonstrate that MTSF3 protein specifically binds to the 3' terminus of nad2. Destabilization of nad2 mRNA induces a substantial decrease in complex I assembly and activity and overexpression of the alternative respiratory pathway. Our results support a role for MTSF3 protein in protecting two nad2 transcripts from degradation by mitochondrial exoribonucleases by binding to their 3' extremities.
Collapse
Affiliation(s)
- Chuande Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Lisa Blondel
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Martine Quadrado
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Céline Dargel-Graffin
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | | |
Collapse
|
13
|
Mizrahi R, Shevtsov-Tal S, Ostersetzer-Biran O. Group II Intron-Encoded Proteins (IEPs/Maturases) as Key Regulators of Nad1 Expression and Complex I Biogenesis in Land Plant Mitochondria. Genes (Basel) 2022; 13:genes13071137. [PMID: 35885919 PMCID: PMC9321910 DOI: 10.3390/genes13071137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are semi-autonomous organelles that produce much of the energy required for cellular metabolism. As descendants of a bacterial symbiont, most mitochondria harbor their own genetic system (mtDNA/mitogenome), with intrinsic machineries for transcription and protein translation. A notable feature of plant mitochondria involves the presence of introns (mostly group II-type) that reside in many organellar genes. The splicing of the mtRNAs relies on the activities of various protein cofactors, which may also link organellar functions with cellular or environmental signals. The splicing of canonical group II introns is aided by an ancient class of RT-like enzymes (IEPs/maturases, MATs) that are encoded by the introns themselves and act specifically on their host introns. The plant organellar introns are degenerated in structure and are generally also missing their cognate intron-encoded proteins. The factors required for plant mtRNA processing are mostly nuclearly-encoded, with the exception of a few degenerated MATs. These are in particular pivotal for the maturation of NADH-dehydrogenase transcripts. In the following review we provide an update on the non-canonical MAT factors in angiosperm mitochondria and summarize the current knowledge of their essential roles in regulating Nad1 expression and complex I (CI) biogenesis during embryogenesis and early plant life.
Collapse
|
14
|
MISF2 Encodes an Essential Mitochondrial Splicing Cofactor Required for nad2 mRNA Processing and Embryo Development in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23052670. [PMID: 35269810 PMCID: PMC8910670 DOI: 10.3390/ijms23052670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria play key roles in cellular energy metabolism in eukaryotes. Mitochondria of most organisms contain their own genome and specific transcription and translation machineries. The expression of angiosperm mtDNA involves extensive RNA-processing steps, such as RNA trimming, editing, and the splicing of numerous group II-type introns. Pentatricopeptide repeat (PPR) proteins are key players in plant organelle gene expression and RNA metabolism. In the present analysis, we reveal the function of the MITOCHONDRIAL SPLICING FACTOR 2 gene (MISF2, AT3G22670) and show that it encodes a mitochondria-localized PPR protein that is crucial for early embryo development in Arabidopsis. Molecular characterization of embryo-rescued misf2 plantlets indicates that the splicing of nad2 intron 1, and thus respiratory complex I biogenesis, are strongly compromised. Moreover, the molecular function seems conserved between MISF2 protein in Arabidopsis and its orthologous gene (EMP10) in maize, suggesting that the ancestor of MISF2/EMP10 was recruited to function in nad2 processing before the monocot-dicot divergence ~200 million years ago. These data provide new insights into the function of nuclear-encoded factors in mitochondrial gene expression and respiratory chain biogenesis during plant embryo development.
Collapse
|
15
|
Lin WC, Chen YH, Gu SY, Shen HL, Huang KC, Lin WD, Chang MC, Chang IF, Hong CY, Cheng WH. CFM6 is an Essential CRM Protein Required for the Splicing of nad5 Transcript in Arabidopsis Mitochondria. PLANT & CELL PHYSIOLOGY 2022; 63:217-233. [PMID: 34752612 DOI: 10.1093/pcp/pcab161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 05/21/2023]
Abstract
Plant chloroplast RNA splicing and ribosome maturation (CRM)-domain-containing proteins are capable of binding RNA to facilitate the splicing of group I or II introns in chloroplasts, but their functions in mitochondria are less clear. In the present study, Arabidopsis thaliana CFM6, a protein with a single CRM domain, was expressed in most plant tissues, particularly in flower tissues, and restricted to mitochondria. Mutation of CFM6 causes severe growth defects, including stunted growth, curled leaves, delayed embryogenesis and pollen development. CFM6 functions specifically in the splicing of group II intron 4 of nad5, which encodes a subunit of mitochondrial complex I, as evidenced by the loss of nad5 intron 4 splicing and high accumulation of its pretranscripts in cfm6 mutants. The phenotypic and splicing defects of cfm6 were rescued in transgenic plants overexpressing 35S::CFM6-YFP. Splicing failure in cfm6 also led to the loss of complex I activity and to its improper assembly. Moreover, dysfunction of complex I induced the expression of proteins or genes involved in alternative respiratory pathways in cfm6. Collectively, CFM6, a previously uncharacterized CRM domain-containing protein, is specifically involved in the cis-splicing of nad5 intron 4 and plays a pivotal role in mitochondrial complex I biogenesis and normal plant growth.
Collapse
Affiliation(s)
- Wei-Chih Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ya-Huei Chen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| | - Shin-Yuan Gu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hwei-Ling Shen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kai-Chau Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| |
Collapse
|
16
|
Kim M, Schulz V, Brings L, Schoeller T, Kühn K, Vierling E. mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 232:2026-2042. [PMID: 34482561 DOI: 10.1111/nph.17717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
Mitochondria play critical roles in generating ATP through oxidative phosphorylation (OXPHOS) and produce both damaging and signaling reactive oxygen species (ROS). They have reduced genomes that encode essential subunits of the OXPHOS machinery. Mitochondrial Transcription tERmination Factor-related (mTERF) proteins are involved in organelle gene expression, interacting with organellar DNA or RNA. We previously found that mutations in Arabidopsis thaliana mTERF18/SHOT1 enable plants to better tolerate heat and oxidative stresses, presumably due to low ROS production and reduced oxidative damage. Here we discover that shot1 mutants have greatly reduced OXPHOS complexes I and IV and reveal that suppressor of hot1-4 1 (SHOT1) binds DNA and localizes to mitochondrial nucleoids, which are disrupted in shot1. Furthermore, three homologues of animal ATPase family AAA domain-containing protein 3 (ATAD3), which is involved in mitochondrial nucleoid organization, were identified as SHOT1-interacting proteins. Importantly, disrupting ATAD3 function disrupts nucleoids, reduces accumulation of complex I, and enhances heat tolerance, as is seen in shot1 mutants. Our data link nucleoid organization to OXPHOS biogenesis and suggest that the common defects in shot1 mutants and ATAD3-disrupted plants lead to critical changes in mitochondrial metabolism and signaling that result in plant heat tolerance.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vincent Schulz
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Lea Brings
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Theresa Schoeller
- Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Kristina Kühn
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
- Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
17
|
Qian J, Li M, Zheng M, Hsu YF. Arabidopsis SSB1, a Mitochondrial Single-Stranded DNA-Binding Protein, is Involved in ABA Response and Mitochondrial RNA Splicing. PLANT & CELL PHYSIOLOGY 2021; 62:1321-1334. [PMID: 34185867 DOI: 10.1093/pcp/pcab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
A mitochondrion is a semiautonomous organelle that provides energy for life activities and balances plant growth and stress responses. Abscisic acid (ABA) regulates multiple physiological processes, including seed maturation, seed dormancy, stomatal closure and various abiotic stress responses. However, the relationship between mitochondrial activity and the ABA response is unclear. In this study, an Arabidopsis mutant, ssb1-1, was isolated because of its hypersensitivity toward ABA. Assessment results showed that ABA negatively regulates the expression of Arabidopsis SSB1. Mutations in ABA-insensitive 4 (ABI4) and ABI5, genes of key transcription factors involved in ABA-dependent seed dormancy, attenuated the ABA sensitivity of ssb1-1 during germination, suggesting that Arabidopsis SSB1 may act as a regulator in ABA response. Inhibition of endogenous ABA biosynthesis reversed the NaCl-sensitive phenotype of the ssb1-1 mutant, indicating that enhanced ABA biosynthesis is critical for the salinity stress response of ssb1-1. Moreover, compared to that of the wild type, ssb1-1 accumulated more reactive oxygen species (ROS) and exhibited increased sensitivity to the application of exogenous H2O2 during seed germination. SSB1 is also required for mitochondrial RNA splicing, as indicated by the result showing that SSB1 loss of function led to a decreased splicing efficiency of nad1 intron1 and nad2 intron1. Taken together, our data reported here provide insights into a novel role of Arabidopsis SSB1 in ABA signaling and mitochondrial RNA splicing.
Collapse
Affiliation(s)
- Jie Qian
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Meng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Min Zheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yi-Feng Hsu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| |
Collapse
|
18
|
Fan K, Ren Z, Zhang X, Liu Y, Fu J, Qi C, Tatar W, Rasmusson AG, Wang G, Liu Y. The pentatricopeptide repeat protein EMP603 is required for the splicing of mitochondrial Nad1 intron 2 and seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6933-6948. [PMID: 34279607 DOI: 10.1093/jxb/erab339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Intron splicing is an essential event in post-transcriptional RNA processing in plant mitochondria, which requires the participation of diverse nuclear-encoded splicing factors. However, it is presently unclear how these proteins cooperatively take part in the splicing of specific introns. In this study, we characterized a nuclear-encoded mitochondrial P-type pentatricopeptide repeat (PPR) protein named EMP603. This protein is essential for splicing of intron 2 in the Nad1 gene and interacts with the mitochondria-localized DEAD-box RNA helicase PMH2-5140, the RAD52-like proteins ODB1-0814 and ODB1-5061, and the CRM domain-containing protein Zm-mCSF1. Further study revealed that the N-terminal region of EMP603 interacts with the DEAD-box of PMH2-5140, the CRM domain of Zm-mCSF1, and OBD1-5061, but not with OBD1-0814, whereas the PPR domain of EMP603 can interact with ODB1-0814, ODB1-5061, and PMH2-5140, but not with Zm-mCSF1. Defects in EMP603 severely disrupt the assembly and activity of mitochondrial complex I, leading to impaired mitochondrial function, and delayed seed development. The interactions revealed between EMP603 and PMH2-5140, ODB1-0814, ODB1-5061, and Zm-mCSF1 indicate a possible involvement of a dynamic 'spliceosome-like' complex in intron splicing, and may accelerate the elucidation of the intron splicing mechanism in plant mitochondria.
Collapse
Affiliation(s)
- Kaijian Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenjing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlai Qi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wurinile Tatar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Wang M, Zhou F, Wang HM, Xue DX, Liu YG, Zhang QY. A rice mTERF protein V14 sustains photosynthesis establishment and temperature acclimation in early seedling leaves. BMC PLANT BIOLOGY 2021; 21:406. [PMID: 34488627 PMCID: PMC8420055 DOI: 10.1186/s12870-021-03192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant mitochondrial transcription termination factor (mTERF) family members play important roles in development and stress tolerance through regulation of organellar gene expression. However, their molecular functions have yet to be clearly defined. RESULTS Here an mTERF gene V14 was identified by fine mapping using a conditional albino mutant v14 that displayed albinism only in the first two true leaves, which was confirmed by transgenic complementation tests. Subcellular localization and real-time PCR analyses indicated that V14 encodes a chloroplastic protein ubiquitously expressed in leaves while spiking in the second true leaf. Chloroplastic gene expression profiling in the pale leaves of v14 through real-time PCR and Northern blotting analyses showed abnormal accumulation of the unprocessed transcripts covering the rpoB-rpoC1 and/or rpoC1-rpoC2 intercistronic regions accompanied by reduced abundance of the mature rpoC1 and rpoC2 transcripts, which encode two core subunits of the plastid-encoded plastid RNA polymerase (PEP). Subsequent immunoblotting analyses confirmed the reduced accumulation of RpoC1 and RpoC2. A light-inducible photosynthetic gene psbD was also found down-regulated at both the mRNA and protein levels. Interestingly, such stage-specific aberrant posttranscriptional regulation and psbD expression can be reversed by high temperatures (30 ~ 35 °C), although V14 expression lacks thermo-sensitivity. Meanwhile, three V14 homologous genes were found heat-inducible with similar temporal expression patterns, implicating their possible functional redundancy to V14. CONCLUSIONS These data revealed a critical role of V14 in chloroplast development, which impacts, in a stage-specific and thermo-sensitive way, the appropriate processing of rpoB-rpoC1-rpoC2 precursors and the expression of certain photosynthetic proteins. Our findings thus expand the knowledge of the molecular functions of rice mTERFs and suggest the contributions of plant mTERFs to photosynthesis establishment and temperature acclimation.
Collapse
Affiliation(s)
- Man Wang
- Present Address: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
| | - Feng Zhou
- Present Address: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
| | - Hong Mei Wang
- Present Address: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
| | - De Xing Xue
- Present Address: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Yao-Guang Liu
- Present Address: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- SCAU Main Campus Teaching & Research Base, Guangzhou, China
| | - Qun Yu Zhang
- Present Address: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- SCAU Main Campus Teaching & Research Base, Guangzhou, China
| |
Collapse
|
20
|
Bentolila S, Gipson AB, Kehl AJ, Hamm LN, Hayes ML, Mulligan RM, Hanson MR. A RanBP2-type zinc finger protein functions in intron splicing in Arabidopsis mitochondria and is involved in the biogenesis of respiratory complex I. Nucleic Acids Res 2021; 49:3490-3506. [PMID: 33660772 PMCID: PMC8034646 DOI: 10.1093/nar/gkab066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
The RanBP2 zinc finger (Znf) domain is a prevalent domain that mediates protein interaction and RNA binding. In Arabidopsis, a clade of four RanBP2 Znf-containing proteins, named the Organelle Zinc (OZ) finger family, are known or predicted to be targeted to either the mitochondria or the plastids. Previously we reported that OZ1 is absolutely required for the editing of 14 sites in chloroplasts. We now have investigated the function of OZ2, whose null mutation is embryo lethal. We rescued the null mutant by expressing wild-type OZ2 under the control of the seed-specific ABSCISIC ACID-INSENSITIVE3 (ABI3) promoter. Rescued mutant plants exhibit severely delayed development and a distinctive morphological phenotype. Genetic and biochemical analyses demonstrated that OZ2 promotes the splicing of transcripts of several mitochondrial nad genes and rps3. The splicing defect of nad transcripts results in the destabilization of complex I, which in turn affects the respiratory ability of oz2 mutants, turning on the alternative respiratory pathway, and impacting the plant development. Protein-protein interaction assays demonstrated binding of OZ2 to several known mitochondrial splicing factors targeting the same splicing events. These findings extend the known functional repertoire of the RanBP2 zinc finger domain in nuclear splicing to include plant organelle splicing.
Collapse
Affiliation(s)
- Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew B Gipson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Alexander J Kehl
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Lauren N Hamm
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael L Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - R Michael Mulligan
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 90032, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Wang L, Zhang W, Liu S, Tian Y, Liu X, Yan H, Cai Y, Teng X, Dong H, Chen R, Jiang X, Wang Y, Wan J. Rice FLOURY SHRUNKEN ENDOSPERM 5 Encodes a Putative Plant Organelle RNA Recognition Protein that Is Required for cis-Splicing of Mitochondrial nad4 Intron 1. RICE (NEW YORK, N.Y.) 2021; 14:29. [PMID: 33689034 PMCID: PMC7947098 DOI: 10.1186/s12284-021-00463-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The sequences of several important mitochondrion-encoded genes involved in respiration in higher plants are interrupted by introns. Many nuclear-encoded factors are involved in splicing these introns, but the mechanisms underlying this splicing remain unknown. RESULTS We isolated and characterized a rice mutant named floury shrunken endosperm 5 (fse5). In addition to having floury shrunken endosperm, the fse5 seeds either failed to germinate or produced seedlings which grew slowly and died ultimately. Fse5 encodes a putative plant organelle RNA recognition (PORR) protein targeted to mitochondria. Mutation of Fse5 hindered the splicing of the first intron of nad4, which encodes an essential subunit of mitochondrial NADH dehydrogenase complex I. The assembly and NADH dehydrogenase activity of complex I were subsequently disrupted by this mutation, and the structure of the mitochondria was abnormal in the fse5 mutant. The FSE5 protein was shown to interact with mitochondrial intron splicing factor 68 (MISF68), which is also a splicing factor for nad4 intron 1 identified previously via yeast two-hybrid (Y2H) assays. CONCLUSION Fse5 which encodes a PORR domain-containing protein, is essential for the splicing of nad4 intron 1, and loss of Fse5 function affects seed development and seedling growth.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongbo Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaokang Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
22
|
Wobbe L. The Molecular Function of Plant mTERFs as Key Regulators of Organellar Gene Expression. PLANT & CELL PHYSIOLOGY 2021; 61:2004-2017. [PMID: 33067620 DOI: 10.1093/pcp/pcaa132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 05/27/2023]
Abstract
The protein family of mTERFs (mitochondrial transcription termination factors) was initially studied in mammalian and insect mitochondria before the first Arabidopsis mTERF mutant was characterized. More than 10 years of research on the function of plant mTERFs in the flowering plants Arabidopsis thaliana, Zea mays and the green microalga Chlamydomonas reinhardtii has since highlighted that mTERFs are key regulators of organellar gene expression (OGE) in mitochondria and in chloroplasts. Additional functions to be fulfilled by plant mTERFs (e.g. splicing) and the fact that the expression of two organellar genomes had to be facilitated have led to a massive expansion of the plant mTERF portfolio compared to that found in mammals. Plant mTERFs are implicated in all steps of OGE ranging from the modulation of transcription to the maturation of tRNAs and hence translation. Furthermore, being regulators of OGE, mTERFs are required for a successful long-term acclimation to abiotic stress, retrograde signaling and interorganellar communication. Here, I review the recent progress in the elucidation of molecular mTERF functions.
Collapse
Affiliation(s)
- Lutz Wobbe
- Algae Biotechnology & Bioenergy Group, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universit�tsstrasse 27, Bielefeld 33615, Germany
| |
Collapse
|
23
|
Méteignier LV, Ghandour R, Zimmerman A, Kuhn L, Meurer J, Zoschke R, Hammani K. Arabidopsis mTERF9 protein promotes chloroplast ribosomal assembly and translation by establishing ribonucleoprotein interactions in vivo. Nucleic Acids Res 2021; 49:1114-1132. [PMID: 33398331 PMCID: PMC7826268 DOI: 10.1093/nar/gkaa1244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial transcription termination factor proteins are nuclear-encoded nucleic acid binders defined by degenerate tandem helical-repeats of ∼30 amino acids. They are found in metazoans and plants where they localize in organelles. In higher plants, the mTERF family comprises ∼30 members and several of these have been linked to plant development and response to abiotic stress. However, knowledge of the molecular basis underlying these physiological effects is scarce. We show that the Arabidopsis mTERF9 protein promotes the accumulation of the 16S and 23S rRNAs in chloroplasts, and interacts predominantly with the 16S rRNA in vivo and in vitro. Furthermore, mTERF9 is found in large complexes containing ribosomes and polysomes in chloroplasts. The comprehensive analysis of mTERF9 in vivo protein interactome identified many subunits of the 70S ribosome whose assembly is compromised in the null mterf9 mutant, putative ribosome biogenesis factors and CPN60 chaperonins. Protein interaction assays in yeast revealed that mTERF9 directly interact with these proteins. Our data demonstrate that mTERF9 integrates protein-protein and protein-RNA interactions to promote chloroplast ribosomal assembly and translation. Besides extending our knowledge of mTERF functional repertoire in plants, these findings provide an important insight into the chloroplast ribosome biogenesis.
Collapse
Affiliation(s)
- Louis-Valentin Méteignier
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Aude Zimmerman
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Jörg Meurer
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
24
|
Arabidopsis Mitochondrial Transcription Termination Factor mTERF2 Promotes Splicing of Group IIB Introns. Cells 2021; 10:cells10020315. [PMID: 33546419 PMCID: PMC7913559 DOI: 10.3390/cells10020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022] Open
Abstract
Plastid gene expression (PGE) is essential for chloroplast biogenesis and function and, hence, for plant development. However, many aspects of PGE remain obscure due to the complexity of the process. A hallmark of nuclear-organellar coordination of gene expression is the emergence of nucleus-encoded protein families, including nucleic-acid binding proteins, during the evolution of the green plant lineage. One of these is the mitochondrial transcription termination factor (mTERF) family, the members of which regulate various steps in gene expression in chloroplasts and/or mitochondria. Here, we describe the molecular function of the chloroplast-localized mTERF2 in Arabidopsis thaliana. The complete loss of mTERF2 function results in embryo lethality, whereas directed, microRNA (amiR)-mediated knockdown of MTERF2 is associated with perturbed plant development and reduced chlorophyll content. Moreover, photosynthesis is impaired in amiR-mterf2 plants, as indicated by reduced levels of photosystem subunits, although the levels of the corresponding messenger RNAs are not affected. RNA immunoprecipitation followed by RNA sequencing (RIP-Seq) experiments, combined with whole-genome RNA-Seq, RNA gel-blot, and quantitative RT-PCR analyses, revealed that mTERF2 is required for the splicing of the group IIB introns of ycf3 (intron 1) and rps12.
Collapse
|
25
|
Jiang D, Chen J, Zhang Z, Hou X. Mitochondrial Transcription Termination Factor 27 Is Required for Salt Tolerance in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22031466. [PMID: 33540552 PMCID: PMC7867191 DOI: 10.3390/ijms22031466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/15/2023] Open
Abstract
In plants, mTERF proteins are primarily found in mitochondria and chloroplasts. Studies have identified several mTERF proteins that affect plant development, respond to abiotic stresses, and regulate organellar gene expression, but the functions and underlying mechanisms of plant mTERF proteins remain largely unknown. Here, we investigated the function of Arabidopsis mTERF27 using molecular genetic, cytological, and biochemical approaches. Arabidopsis mTERF27 had four mTERF motifs and was evolutionarily conserved from moss to higher plants. The phenotype of the mTERF27-knockout mutant mterf27 did not differ obviously from that of the wild-type under normal growth conditions but was hypersensitive to salt stress. mTERF27 was localized to the mitochondria, and the transcript levels of some mitochondrion-encoded genes were reduced in the mterf27 mutant. Importantly, loss of mTERF27 function led to developmental defects in the mitochondria under salt stress. Furthermore, mTERF27 formed homomers and directly interacted with multiple organellar RNA editing factor 8 (MORF8). Thus, our results indicated that mTERF27 is likely crucial for mitochondrial development under salt stress, and that this protein may be a member of the protein interaction network regulating mitochondrial gene expression.
Collapse
|
26
|
Kück U, Schmitt O. The Chloroplast Trans-Splicing RNA-Protein Supercomplex from the Green Alga Chlamydomonas reinhardtii. Cells 2021; 10:cells10020290. [PMID: 33535503 PMCID: PMC7912774 DOI: 10.3390/cells10020290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
In eukaryotes, RNA trans-splicing is a significant RNA modification process for the end-to-end ligation of exons from separately transcribed primary transcripts to generate mature mRNA. So far, three different categories of RNA trans-splicing have been found in organisms within a diverse range. Here, we review trans-splicing of discontinuous group II introns, which occurs in chloroplasts and mitochondria of lower eukaryotes and plants. We discuss the origin of intronic sequences and the evolutionary relationship between chloroplast ribonucleoprotein complexes and the nuclear spliceosome. Finally, we focus on the ribonucleoprotein supercomplex involved in trans-splicing of chloroplast group II introns from the green alga Chlamydomonas reinhardtii. This complex has been well characterized genetically and biochemically, resulting in a detailed picture of the chloroplast ribonucleoprotein supercomplex. This information contributes substantially to our understanding of the function of RNA-processing machineries and might provide a blueprint for other splicing complexes involved in trans- as well as cis-splicing of organellar intron RNAs.
Collapse
|
27
|
Chen W, Cui Y, Wang Z, Chen R, He C, Liu Y, Du X, Liu Y, Fu J, Wang G, Wang J, Gu R. Nuclear-Encoded Maturase Protein 3 Is Required for the Splicing of Various Group II Introns in Mitochondria during Maize (Zea mays L.) Seed Development. ACTA ACUST UNITED AC 2021; 62:293-305. [DOI: 10.1093/pcp/pcaa161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/05/2020] [Indexed: 11/12/2022]
Abstract
Abstract
Splicing of plant organellar group II introns from precursor-RNA transcripts requires the assistance of nuclear-encoded splicing factors. Maturase (nMAT) is one such factor, as its three homologs (nMAT1, 2 and 4) have been identified as being required for the splicing of various mitochondrial introns in Arabidopsis. However, the function of nMAT in maize (Zea mays L.) is unknown. In this study, we identified a seed development mutant, empty pericarp 2441 (emp2441) from maize, which showed severely arrested embryogenesis and endosperm development. Positional cloning and transgenic complementation assays revealed that Emp2441 encodes a maturase-related protein, ZmnMAT3. ZmnMAT3 is highly expressed during seed development and its protein locates to the mitochondria. The loss of function of ZmnMAT3 resulted in the reduced splicing efficiency of various mitochondrial group II introns, particularly of the trans-splicing of nad1 introns 1, 3 and 4, which consequently abolished the transcript of nad1 and severely impaired the assembly and activity of mitochondrial complex I. Moreover, the Zmnmat3 mutant showed defective mitochondrial structure and exhibited expression and activity of alternative oxidases. These results indicate that ZmnMAT3 is essential for mitochondrial complex I assembly during kernel development in maize.
Collapse
Affiliation(s)
- Weiwei Chen
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheyuan Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rongrong Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuemei Du
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianhua Wang
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Riliang Gu
- Center of Seed Science and Technology, Beijing Innovation Center for Seed Technology (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Research Progress in the Molecular Functions of Plant mTERF Proteins. Cells 2021; 10:cells10020205. [PMID: 33494215 PMCID: PMC7909791 DOI: 10.3390/cells10020205] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Present-day chloroplast and mitochondrial genomes contain only a few dozen genes involved in ATP synthesis, photosynthesis, and gene expression. The proteins encoded by these genes are only a small fraction of the many hundreds of proteins that act in chloroplasts and mitochondria. Hence, the vast majority, including components of organellar gene expression (OGE) machineries, are encoded by nuclear genes, translated into the cytosol and imported to these organelles. Consequently, the expression of nuclear and organellar genomes has to be very precisely coordinated. Furthermore, OGE regulation is crucial to chloroplast and mitochondria biogenesis, and hence, to plant growth and development. Notwithstanding, the molecular mechanisms governing OGE are still poorly understood. Recent results have revealed the increasing importance of nuclear-encoded modular proteins capable of binding nucleic acids and regulating OGE. Mitochondrial transcription termination factor (mTERF) proteins are a good example of this category of OGE regulators. Plant mTERFs are located in chloroplasts and/or mitochondria, and have been characterized mainly from the isolation and analyses of Arabidopsis and maize mutants. These studies have revealed their fundamental roles in different plant development aspects and responses to abiotic stress. Fourteen mTERFs have been hitherto characterized in land plants, albeit to a different extent. These numbers are limited if we consider that 31 and 35 mTERFs have been, respectively, identified in maize and Arabidopsis. Notwithstanding, remarkable progress has been made in recent years to elucidate the molecular mechanisms by which mTERFs regulate OGE. Consequently, it has been experimentally demonstrated that plant mTERFs are required for the transcription termination of chloroplast genes (mTERF6 and mTERF8), transcriptional pausing and the stabilization of chloroplast transcripts (MDA1/mTERF5), intron splicing in chloroplasts (BSM/RUG2/mTERF4 and Zm-mTERF4) and mitochondria (mTERF15 and ZmSMK3) and very recently, also in the assembly of chloroplast ribosomes and translation (mTERF9). This review aims to provide a detailed update of current knowledge about the molecular functions of plant mTERF proteins. It principally focuses on new research that has made an outstanding contribution to unravel the molecular mechanisms by which plant mTERFs regulate the expression of chloroplast and mitochondrial genomes.
Collapse
|
29
|
Cao SK, Liu R, Sayyed A, Sun F, Song R, Wang X, Xiu Z, Li X, Tan BC. Regulator of Chromosome Condensation 1-Domain Protein DEK47 Functions on the Intron Splicing of Mitochondrial Nad2 and Seed Development in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:695249. [PMID: 34408760 PMCID: PMC8365749 DOI: 10.3389/fpls.2021.695249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
In flowering plants, mitochondrial genes contain approximately 20-26 introns. Splicing of these introns is essential for mitochondrial gene expression and function. Recent studies have revealed that both nucleus- and mitochondrion-encoded factors are required for intron splicing, but the mechanism of splicing remains largely unknown. Elucidation of the mechanism necessitates a complete understanding of the splicing factors. Here, we report the identification of a regulator of chromosome condensation 1 (RCC1)-domain protein DEK47 that is required for mitochondrial intron splicing and seed development in maize. Loss of function in Dek47 severely arrests embryo and endosperm development, resulting in a defective kernel (dek) phenotype. DEK47 harbors seven RCC1 domains and is targeted to mitochondria. Null mutation of DEK47 causes a deficiency in the splicing of all four nad2 introns, abolishing the production of mature nad2 transcript and resulting in the disassembly and severely reduced activity of mitochondrial complex I. In response, the expression of the alternative oxidase AOX2 is sharply increased in dek47. These results indicate that Dek47 is required for the splicing of all the nad2 introns in mitochondria, and essential for complex I assembly, and kernel development in maize.
Collapse
Affiliation(s)
- Shi-Kai Cao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Rui Liu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Ruolin Song
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhihui Xiu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaojie Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Bao-Cai Tan,
| |
Collapse
|
30
|
Li T, Pan W, Yuan Y, Liu Y, Li Y, Wu X, Wang F, Cui L. Identification, Characterization, and Expression Profile Analysis of the mTERF Gene Family and Its Role in the Response to Abiotic Stress in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2021; 12:684619. [PMID: 34335653 PMCID: PMC8319850 DOI: 10.3389/fpls.2021.684619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2021] [Indexed: 05/17/2023]
Abstract
Plant mitochondrial transcription termination factor (mTERF) family regulates organellar gene expression (OGE) and is functionally characterized in diverse species. However, limited data are available about its functions in the agriculturally important cereal barley (Hordeum vulgare L.). In this study, we identified 60 mTERFs in the barley genome (HvmTERFs) through a comprehensive search against the most updated barley reference genome, Morex V2. Then, phylogenetic analysis categorized these genes into nine subfamilies, with approximately half of the HvmTERFs belonging to subfamily IX. Members within the same subfamily generally possessed conserved motif composition and exon-intron structure. Both segmental and tandem duplication contributed to the expansion of HvmTERFs, and the duplicated gene pairs were subjected to strong purifying selection. Expression analysis suggested that many HvmTERFs may play important roles in barley development (e.g., seedlings, leaves, and developing inflorescences) and abiotic stresses (e.g., cold, salt, and metal ion), and HvmTERF21 and HvmTERF23 were significant induced by various abiotic stresses and/or phytohormone treatment. Finally, the nucleotide diversity was decreased by only 4.5% for HvmTERFs during the process of barley domestication. Collectively, this is the first report to characterize HvmTERFs, which will not only provide important insights into further evolutionary studies but also contribute to a better understanding of the potential functions of HvmTERFs and ultimately will be useful in future gene functional studies.
Collapse
Affiliation(s)
- Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Yiyuan Yuan
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ying Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoyu Wu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Fei Wang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Licao Cui
| |
Collapse
|
31
|
Sun Y, Xie M, Xu Z, Chan KC, Zhong JY, Fan K, Wong-Bajracharya J, Lam HM, Lim BL. Differential RNA Editing and Intron Splicing in Soybean Mitochondria during Nodulation. Int J Mol Sci 2020; 21:E9378. [PMID: 33317061 PMCID: PMC7764374 DOI: 10.3390/ijms21249378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Nitrogen fixation in soybean consumes a tremendous amount of energy, leading to substantial differences in energy metabolism and mitochondrial activities between nodules and uninoculated roots. While C-to-U RNA editing and intron splicing of mitochondrial transcripts are common in plant species, their roles in relation to nodule functions are still elusive. In this study, we performed RNA-seq to compare transcript profiles and RNA editing of mitochondrial genes in soybean nodules and roots. A total of 631 RNA editing sites were identified on mitochondrial transcripts, with 12% or 74 sites differentially edited among the transcripts isolated from nodules, stripped roots, and uninoculated roots. Eight out of these 74 differentially edited sites are located on the matR transcript, of which the degrees of RNA editing were the highest in the nodule sample. The degree of mitochondrial intron splicing was also examined. The splicing efficiencies of several introns in nodules and stripped roots were higher than in uninoculated roots. These include nad1 introns 2/3/4, nad4 intron 3, nad5 introns 2/3, cox2 intron 1, and ccmFc intron 1. A greater splicing efficiency of nad4 intron 1, a higher NAD4 protein abundance, and a reduction in supercomplex I + III2 were also observed in nodules, although the causal relationship between these observations requires further investigation.
Collapse
Affiliation(s)
- Yuzhe Sun
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Y.S.); (Z.X.); (K.C.C.); (J.Y.Z.)
| | - Min Xie
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (M.X.); (K.F.); (J.W.-B.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhou Xu
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Y.S.); (Z.X.); (K.C.C.); (J.Y.Z.)
| | - Koon Chuen Chan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Y.S.); (Z.X.); (K.C.C.); (J.Y.Z.)
| | - Jia Yi Zhong
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Y.S.); (Z.X.); (K.C.C.); (J.Y.Z.)
| | - Kejing Fan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (M.X.); (K.F.); (J.W.-B.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Johanna Wong-Bajracharya
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (M.X.); (K.F.); (J.W.-B.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (M.X.); (K.F.); (J.W.-B.)
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Y.S.); (Z.X.); (K.C.C.); (J.Y.Z.)
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (M.X.); (K.F.); (J.W.-B.)
| |
Collapse
|
32
|
Yang YZ, Ding S, Liu XY, Tang JJ, Wang Y, Sun F, Xu C, Tan BC. EMP32 is required for the cis-splicing of nad7 intron 2 and seed development in maize. RNA Biol 2020; 18:499-509. [PMID: 32936708 DOI: 10.1080/15476286.2020.1817267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins play an important role in post-transcriptional regulation of mitochondrial gene expression. Functions of many PPR proteins and their roles in plant growth and development remain unknown. Through characterization of an empty pericarp32 (emp32) mutant, we identified the function of Emp32 in mitochondrial intron splicing and seed development in maize. The loss-of-function mutant emp32 shows embryo lethality with severely arrested embryo and endosperm development, and over-expression of Emp32 rescues the embryo-lethality. EMP32 is a P-type PPR protein targeted to mitochondria. Loss of function in Emp32 dramatically decreases the splicing efficiency of nad7 intron 2, while complementation of Emp32 restores the splicing efficiency. Although nad7 intron 2 is partially spliced in the wild type, over-expression of Emp32 does not increase the splicing efficiency. The splicing deficiency of nad7 intron 2 blocks the assembly of mitochondrial complex I and dramatically reduces its activity, which may explain the embryo-lethality in emp32. In addition to the one copy of nad7 in the maize mitochondrial genome, we identified one to six copies of nad7 in the nuclear genomes in different maize inbred lines. These copies appear not to be expressed. Together, our results revealed that the P-type PPR protein EMP32 is required for the cis-splicing of nad7 intron 2 and seed development in maize.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shuo Ding
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xin-Yuan Liu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jiao-Jiao Tang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chunhui Xu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
33
|
Méteignier L, Ghandour R, Meierhoff K, Zimmerman A, Chicher J, Baumberger N, Alioua A, Meurer J, Zoschke R, Hammani K. The Arabidopsis mTERF-repeat MDA1 protein plays a dual function in transcription and stabilization of specific chloroplast transcripts within the psbE and ndhH operons. THE NEW PHYTOLOGIST 2020; 227:1376-1391. [PMID: 32343843 PMCID: PMC7496394 DOI: 10.1111/nph.16625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 05/28/2023]
Abstract
The mTERF gene family encodes for nucleic acid binding proteins that are predicted to regulate organellar gene expression in eukaryotes. Despite the implication of this gene family in plant development and response to abiotic stresses, a precise molecular function was assigned to only a handful number of its c. 30 members in plants. Using a reverse genetics approach in Arabidopsis thaliana and combining molecular and biochemical techniques, we revealed new functions for the chloroplast mTERF protein, MDA1. We demonstrated that MDA1 associates in vivo with components of the plastid-encoded RNA polymerase and transcriptional active chromosome complexes. MDA1 protein binds in vivo and in vitro with specificity to 27-bp DNA sequences near the 5'-end of psbE and ndhA chloroplast genes to stimulate their transcription, and additionally promotes the stabilization of the 5'-ends of processed psbE and ndhA messenger (m)RNAs. Finally, we provided evidence that MDA1 function in gene transcription likely coordinates RNA folding and the action of chloroplast RNA-binding proteins on mRNA stabilization. Our results provide examples for the unexpected implication of DNA binding proteins and gene transcription in the regulation of mRNA stability in chloroplasts, blurring the boundaries between DNA and RNA metabolism in this organelle.
Collapse
Affiliation(s)
- Louis‐Valentin Méteignier
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Karin Meierhoff
- Institute of Developmental and Molecular Biology of PlantsHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Aude Zimmerman
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRSUniversité de Strasbourg15 rue René Descartes67084StrasbourgFrance
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Abdelmalek Alioua
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Jörg Meurer
- Plant SciencesFaculty of BiologyLudwig‐Maximilians‐University MunichGroßhaderner Street 2‐482152Planegg‐MartinsriedGermany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| |
Collapse
|
34
|
Xu C, Song S, Yang YZ, Lu F, Zhang MD, Sun F, Jia R, Song R, Tan BC. DEK46 performs C-to-U editing of a specific site in mitochondrial nad7 introns that is critical for intron splicing and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1767-1782. [PMID: 32559332 DOI: 10.1111/tpj.14862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 05/02/2023]
Abstract
The self-splicing of group II introns during RNA processing depends on their catalytic structure and is influenced by numerous factors that promote the formation of that structure through direct binding. Here we report that C-to-U editing at a specific position in two nad7 introns is essential to splicing, which also implies that the catalytic activity of non-functional group II introns could be restored by editing. We characterized a maize (Zea mays) mutant, dek46, with a defective kernel phenotype; Dek46 encodes a pentatricopeptide repeat DYW protein exclusively localized in mitochondria. Analyses of the coding regions of mitochondrial transcripts did not uncover differences in RNA editing between dek46 mutant and wild-type maize, but showed that splicing of nad7 introns 3 and 4 is severely reduced in the mutant. Furthermore, editing at nucleotide 22 of domain 5 (D5-C22) of both introns is abolished in dek46. We constructed chimeric introns by swapping D5 of P.li.LSUI2 with D5 of nad7 intron 3. In vitro splicing assays indicated that the chimeric intron containing D5-U22 can be self-spliced, but the one containing D5-C22 cannot. These results indicate that DEK46 functions in the C-to-U editing of D5-C22 of both introns, and the U base at this position is critical to intron splicing.
Collapse
Affiliation(s)
- Chunhui Xu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shu Song
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan-Zhuo Yang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Fan Lu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Meng-Di Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ruxue Jia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ruolin Song
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
35
|
Liu R, Cao SK, Sayyed A, Xu C, Sun F, Wang X, Tan BC. The Mitochondrial Pentatricopeptide Repeat Protein PPR18 Is Required for the cis-Splicing of nad4 Intron 1 and Essential to Seed Development in Maize. Int J Mol Sci 2020; 21:ijms21114047. [PMID: 32516991 PMCID: PMC7312232 DOI: 10.3390/ijms21114047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
Pentatricopeptide repeat (PPR) protein comprises a large family, participating in various aspects of organellar RNA metabolism in land plants. There are approximately 600 PPR proteins in maize, but the functions of many PPR proteins remain unknown. In this study, we defined the function of PPR18 in the cis-splicing of nad4 intron 1 in mitochondria and seed development in maize. Loss function of PPR18 seriously impairs embryo and endosperm development, resulting in the empty pericarp (emp) phenotype in maize. PPR18 encodes a mitochondrion-targeted P-type PPR protein with 18 PPR motifs. Transcripts analysis indicated that the splicing of nad4 intron 1 is impaired in the ppr18 mutant, resulting in the absence of nad4 transcript, leading to severely reduced assembly and activity of mitochondrial complex I and dramatically reduced respiration rate. These results demonstrate that PPR18 is required for the cis-splicing of nad4 intron 1 in mitochondria, and critical to complex I assembly and seed development in maize.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (S.-K.C.); (A.S.); (C.X.); (F.S.)
| | - Shi-Kai Cao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (S.-K.C.); (A.S.); (C.X.); (F.S.)
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (S.-K.C.); (A.S.); (C.X.); (F.S.)
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (S.-K.C.); (A.S.); (C.X.); (F.S.)
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (S.-K.C.); (A.S.); (C.X.); (F.S.)
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (S.-K.C.); (A.S.); (C.X.); (F.S.)
- Correspondence:
| |
Collapse
|
36
|
Marchetti F, Cainzos M, Shevtsov S, Córdoba JP, Sultan LD, Brennicke A, Takenaka M, Pagnussat G, Ostersetzer-Biran O, Zabaleta E. Mitochondrial Pentatricopeptide Repeat Protein, EMB2794, Plays a Pivotal Role in NADH Dehydrogenase Subunit nad2 mRNA Maturation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2020; 61:1080-1094. [PMID: 32163154 PMCID: PMC7295397 DOI: 10.1093/pcp/pcaa028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/08/2020] [Indexed: 05/14/2023]
Abstract
The Arabidopsis genome encodes >450 proteins containing the pentatricopeptide repeat (PPR) motif. The PPR proteins are classified into two groups, termed as P and P Long-Short (PLS) classes. Typically, the PLS subclass proteins are mainly involved in the RNA editing of mitochondrial and chloroplast transcripts, whereas most of the analyzed P subclass proteins have been mainly implicated in RNA metabolism, such as 5' or 3' transcript stabilization and processing, splicing and translation. Mutations of PPR genes often result in embryogenesis and altered seedling developmental defect phenotypes, but only a limited number of ppr mutants have been characterized in detail. In this report, we show that null mutations in the EMB2794 gene result in embryo arrest, due to altered splicing of nad2 transcripts in the Arabidopsis mitochondria. In angiosperms, nad2 has five exons that are transcribed individually from two mitochondrial DNA regions. Biochemical and in vivo analyses further indicate that recombinant or transgenic EMB2794 proteins bind to the nad2 pre-mRNAs in vitro as well as in vivo, suggesting a role for this protein in trans-splicing of nad2 intron 2 and possibly in the stability of the second pre-mRNA of nad2. Homozygous emb2794 lines, showing embryo-defective phenotypes, can be partially rescued by the addition of sucrose to the growth medium. Mitochondria of rescued homozygous mutant plants contain only traces of respiratory complex I, which lack the NADH-dehydrogenase activity.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Sofía Shevtsov
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 919040 Jerusalem, Israel
| | - Juan Pablo Córdoba
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Laure Dora Sultan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 919040 Jerusalem, Israel
| | - Axel Brennicke
- Institut für, Molekulare Botanik, Universität Ulm, Ulm 89069, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 919040 Jerusalem, Israel
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
- Corresponding author: E-mail, ; Fax, +54 223 475 30 30
| |
Collapse
|
37
|
Núñez-Delegido E, Robles P, Ferrández-Ayela A, Quesada V. Functional analysis of mTERF5 and mTERF9 contribution to salt tolerance, plastid gene expression and retrograde signalling in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:459-471. [PMID: 31850621 DOI: 10.1111/plb.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/06/2019] [Indexed: 05/16/2023]
Abstract
We previously showed that Arabidopsis mda1 and mterf9 mutants, defective in the chloroplast-targeted mitochondrial transcription termination factors mTERF5 and mTERF9, respectively, display altered responses to abiotic stresses and abscisic acid (ABA), as well as perturbed development, likely through abnormal chloroplast biogenesis. To advance the functional analysis of mTERF5 and mTERF9, we obtained and characterized overexpression (OE) lines. Additionally, we studied genetic interactions between sca3-2, affected in the plastid-RNA polymerase RpoTp, and the mda1-1 and mterf9 mutations. We also investigated the role of mTERF5 and mTERF9 in plastid translation and plastid-to-nucleus signalling. We found that mTERF9 OE reduces salt and ABA tolerance, while mTERF5 or mTERF9 OE alter expression of nuclear and plastid genes. We determined that mda1-1 and mterf9 mutations genetically interact with sca3-2. Further, plastid 16S rRNA levels were reduced in mda1-1 and mterf9 mutants, and mterf9 was more sensitive to chemical inhibitors of chloroplast translation. Expression of the photosynthesis gene LHCB1, a retrograde signalling marker, was differentially affected in mda1-1 and/or mterf9 compared to wild-type Col-0, after treatments with inhibitors of carotenoid biosynthesis (norflurazon) or chloroplast translation (lincomycin). Moreover, mterf9, but not mda1-1, synergistically interacts with gun1-1, defective in GUN1, a central integrator of plastid retrograde signals. Our results show that mTERF9, and to a lesser extent mTERF5, are negative regulators of salt tolerance and that both genes are functionally related to RpoTp, and that mTERF9 is likely required for plastid ribosomal stability and/or assembly. Furthermore, our findings support a role for mTERF9 in retrograde signalling.
Collapse
Affiliation(s)
- E Núñez-Delegido
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - P Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - A Ferrández-Ayela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - V Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
38
|
Smoczynska A, Pacak AM, Nuc P, Swida-Barteczka A, Kruszka K, Karlowski WM, Jarmolowski A, Szweykowska-Kulinska Z. A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought. Genes (Basel) 2020; 11:genes11050488. [PMID: 32365647 PMCID: PMC7290300 DOI: 10.3390/genes11050488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022] Open
Abstract
The regulation of mRNA (messenger RNA) levels by microRNA-mediated activity is especially important in plant responses to environmental stresses. In this work, we report six novel barley microRNAs, including two processed from the same precursor that are severely downregulated under drought conditions. For all analyzed microRNAs, we found target genes that were upregulated under drought conditions and that were known to be involved in a plethora of processes from disease resistance to chromatin–protein complex formation and the regulation of transcription in mitochondria. Targets for novel barley microRNAs were confirmed through degradome data analysis and RT-qPCR using primers flanking microRNA-recognition site. Our results show a broad transcriptional response of barley to water deficiency conditions through microRNA-mediated gene regulation and facilitate further research on drought tolerance in crops.
Collapse
Affiliation(s)
- Aleksandra Smoczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (A.S.); (A.M.P.); (P.N.); (A.S.-B.); (K.K.); (A.J.)
| | - Andrzej M. Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (A.S.); (A.M.P.); (P.N.); (A.S.-B.); (K.K.); (A.J.)
| | - Przemysław Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (A.S.); (A.M.P.); (P.N.); (A.S.-B.); (K.K.); (A.J.)
| | - Aleksandra Swida-Barteczka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (A.S.); (A.M.P.); (P.N.); (A.S.-B.); (K.K.); (A.J.)
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (A.S.); (A.M.P.); (P.N.); (A.S.-B.); (K.K.); (A.J.)
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznan, Poland;
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (A.S.); (A.M.P.); (P.N.); (A.S.-B.); (K.K.); (A.J.)
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (A.S.); (A.M.P.); (P.N.); (A.S.-B.); (K.K.); (A.J.)
- Correspondence: ; Tel.: +48-61-829-5950
| |
Collapse
|
39
|
Pentatricopeptide repeat protein MID1 modulates nad2 intron 1 splicing and Arabidopsis development. Sci Rep 2020; 10:2008. [PMID: 32029763 PMCID: PMC7005036 DOI: 10.1038/s41598-020-58495-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
As one of the best-studied RNA binding proteins in plant, pentatricopeptide repeats (PPRs) protein are mainly targeted to mitochondria and/or chloroplasts for RNA processing to regulate the biogenesis and function of the organelles, but its molecular mechanism and role in development remain to be further revealed. Here, we identified a mitochondria-localized P-type small PPR protein, MITOCHONDRION-MEDIATED GROWTH DEFECT 1 (MID1) that is crucial for Arabidopsis development. Mutation in MID1 causes retarded embryo development and stunted plant growth with defects in cell expansion and proliferation. Molecular experiments showed that MID1 is required for the splicing of the nad2 intron 1 in mitochondria. Consistently, mid1 plants display significant reduction in the abundance and activity of mitochondrial respiration complex I, accompanied by abnormal mitochondrial morphology and energy metabolism. Furthermore, MID1 is associated with other trans-factors involved in NICOTINAMIDE ADENINE DINUCLEOTIDE HYDROGEN (NADH) DEHYDROGENASE SUBUNIT 2 (nad2) intron 1 splicing, and interacts directly with itself and MITOCHONDRIAL STABILITY FACTOR 1 (MTSF1). This suggests that MID1 most likely functions as a dimer for nad2 intron 1 splicing. Together, we characterized a novel PPR protein MID1 for nad2 intron 1 splicing.
Collapse
|
40
|
Yang YZ, Ding S, Wang Y, Wang HC, Liu XY, Sun F, Xu C, Liu B, Tan BC. PPR20 Is Required for the cis-Splicing of Mitochondrial nad2 Intron 3 and Seed Development in Maize. PLANT & CELL PHYSIOLOGY 2020; 61:370-380. [PMID: 31670803 DOI: 10.1093/pcp/pcz204] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/22/2019] [Indexed: 05/02/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are helical repeat RNA-binding proteins that function in RNA processing by conferring sequence-specific RNA-binding activity. Owing to the lethality of PPR mutants, functions of many PPR proteins remain obscure. In this study, we report the function of PPR20 in intron splicing in mitochondria and its role in maize seed development. PPR20 is a P-type PPR protein targeted to mitochondria. The ppr20 mutants display slow embryo and endosperm development. Null mutation of PPR20 severely reduces the cis-splicing of mitochondrial nad2 intron 3, resulting in reduction in the assembly and activity of mitochondrial complex I. The ppr20-35 allele with a Mu insertion in the N-terminal region shows a much weaker phenotype. Molecular analyses revealed that the mutant produces a truncated transcript, coding for PPR20ΔN120 lacking the N-terminal 120 amino acids. Subcellular localization revealed that PPR20ΔN120:GFP is able to target to mitochondria as well, suggesting the sequence diversity of the mitochondrial targeting peptides. Another mutant zm_mterf15 was also found to be impaired in the splicing of mitochondrial nad2 intron 3. Further analyses are required to identify the exact function of PPR20 and Zm_mTERF15 in the splicing of nad2 intron 3.
Collapse
Affiliation(s)
- Yan-Zhuo Yang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Shuo Ding
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hong-Chun Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xin-Yuan Liu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Feng Sun
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chunhui Xu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Bao-Cai Tan
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
41
|
Jiang D, Tang R, Shi Y, Ke X, Wang Y, Che Y, Luan S, Hou X. Arabidopsis Seedling Lethal 1 Interacting With Plastid-Encoded RNA Polymerase Complex Proteins Is Essential for Chloroplast Development. FRONTIERS IN PLANT SCIENCE 2020; 11:602782. [PMID: 33391315 PMCID: PMC7772139 DOI: 10.3389/fpls.2020.602782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 05/16/2023]
Abstract
Mitochondrial transcription termination factors (mTERFs) are highly conserved proteins in metazoans. Plants have many more mTERF proteins than animals. The functions and the underlying mechanisms of plants' mTERFs remain largely unknown. In plants, mTERF family proteins are present in both mitochondria and plastids and are involved in gene expression in these organelles through different mechanisms. In this study, we screened Arabidopsis mutants with pigment-defective phenotypes and isolated a T-DNA insertion mutant exhibiting seedling-lethal and albino phenotypes [seedling lethal 1 (sl1)]. The SL1 gene encodes an mTERF protein localized in the chloroplast stroma. The sl1 mutant showed severe defects in chloroplast development, photosystem assembly, and the accumulation of photosynthetic proteins. Furthermore, the transcript levels of some plastid-encoded proteins were significantly reduced in the mutant, suggesting that SL1/mTERF3 may function in the chloroplast gene expression. Indeed, SL1/mTERF3 interacted with PAP12/PTAC7, PAP5/PTAC12, and PAP7/PTAC14 in the subgroup of DNA/RNA metabolism in the plastid-encoded RNA polymerase (PEP) complex. Taken together, the characterization of the plant chloroplast mTERF protein, SL1/mTERF3, that associated with PEP complex proteins provided new insights into RNA transcription in the chloroplast.
Collapse
Affiliation(s)
- Deyuan Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangsheng Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yetao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yufen Che
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Sheng Luan,
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Xin Hou,
| |
Collapse
|
42
|
Li L, Hu B, Li X, Li L. Characterization of mTERF family in allotetraploid peanut and their expression levels in response to dehydration stress. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1825121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Limei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, PR China
| | - Bo Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, PR China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, PR China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, PR China
| |
Collapse
|
43
|
Xiong HB, Wang J, Huang C, Rochaix JD, Lin FM, Zhang JX, Ye LS, Shi XH, Yu QB, Yang ZN. mTERF8, a Member of the Mitochondrial Transcription Termination Factor Family, Is Involved in the Transcription Termination of Chloroplast Gene psbJ. PLANT PHYSIOLOGY 2020; 182:408-423. [PMID: 31685645 PMCID: PMC6945865 DOI: 10.1104/pp.19.00906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/21/2019] [Indexed: 05/28/2023]
Abstract
Members of the mitochondrial transcription terminator factor (mTERF) family, originally identified in vertebrate mitochondria, are involved in the termination of organellular transcription. In plants, mTERF proteins are mainly localized in chloroplasts and mitochondria. In Arabidopsis (Arabidopsis thaliana), mTERF8/pTAC15 was identified in the plastid-encoded RNA polymerase (PEP) complex, the major RNA polymerase of chloroplasts. In this work, we demonstrate that mTERF8 is associated with the PEP complex. An mTERF8 knockout line displayed a wild-type-like phenotype under standard growth conditions, but showed impaired efficiency of photosystem II electron flow. Transcription of most chloroplast genes was not substantially affected in the mterf8 mutant; however, the level of the psbJ transcript from the psbEFLJ polycistron was increased. RNA blot analysis showed that a larger transcript accumulates in mterf8 than in the wild type. Thus, abnormal transcription and/or RNA processing occur for the psbEFLJ polycistron. Circular reverse transcription PCR and sequence analysis showed that the psbJ transcript terminates 95 nucleotides downstream of the translation stop codon in the wild type, whereas its termination is aberrant in mterf8 Both electrophoresis mobility shift assays and chloroplast chromatin immunoprecipitation analysis showed that mTERF8 specifically binds to the 3' terminal region of psbJ Transcription analysis using the in vitro T7 RNA polymerase system showed that mTERF8 terminates psbJ transcription. Together, these results suggest that mTERF8 is specifically involved in the transcription termination of the chloroplast gene psbJ.
Collapse
Affiliation(s)
- Hai-Bo Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jing Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chao Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Fei-Min Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia-Xing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lin-Shan Ye
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-He Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qing-Bo Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
44
|
Yang H, Xiu Z, Wang L, Cao SK, Li X, Sun F, Tan BC. Two Pentatricopeptide Repeat Proteins Are Required for the Splicing of nad5 Introns in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:732. [PMID: 32582256 PMCID: PMC7284535 DOI: 10.3389/fpls.2020.00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/07/2020] [Indexed: 05/06/2023]
Abstract
Mitochondrial genes in flowering plants contain predominantly group II introns that require precise splicing before translation into functional proteins. Splicing of these introns is facilitated by various nucleus-encoded splicing factors. Due to lethality of mutants, functions of many splicing factors have not been revealed. Here, we report the function of two P-type PPR proteins PPR101 and PPR231, and their role in maize seed development. PPR101 and PPR231 are targeted to mitochondria. Null mutation of PPR101 and PPR231 arrests embryo and endosperm development, generating empty pericarp and small kernel phenotype, respectively, in maize. Loss-of-function in PPR101 abolishes the splicing of nad5 intron 2, and reduces the splicing of nad5 intron 1. Loss-of-function in PPR231 reduces the splicing of nad5 introns 1, 2, 3 and nad2 intron 3. The absence of Nad5 protein eliminates assembly of complex I, and activates the expression of alternative oxidase AOX2. These results indicate that both PPR101 and PPR231 are required for mitochondrial nad5 introns 1 and 2 splicing, while PPR231 is also required for nad5 intron 3 and nad2 intron 3. Both genes are essential to complex I assembly, mitochondrial function, and maize seed development. This work reveals that the splicing of a single intron involves multiple PPRs.
Collapse
|
45
|
Wang HC, Chen Z, Yang YZ, Sun F, Ding S, Li XL, Xu C, Tan BC. PPR14 Interacts With PPR-SMR1 and CRM Protein Zm-mCSF1 to Facilitate Mitochondrial Intron Splicing in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:814. [PMID: 32595685 PMCID: PMC7304344 DOI: 10.3389/fpls.2020.00814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 05/17/2023]
Abstract
In plants, splicing of organellar group II introns involves numerous nucleus-encoded trans-factors. But, how these trans-factors function and interact is not well understood. Here we report the function of a pentatricopeptide repeat (PPR) protein PPR14 and its physical relationship with other splicing factors in mitochondria. Null mutations of PPR14 severely arrest the embryo and endosperm development, causing an empty pericarp phenotype. PPR14 is required for the splicing of NADH dehydrogenase 2 (nad2) intron 3 and nad7 introns 1 and 2 in mitochondria. The absence of nad2 and nad7 transcripts leads to disruption of the mitochondrial complex I assembly and abolishes its NADH dehydrogenase activity. This is accompanied with increased levels of other mitochondrial complexes and elevated expression of the alternative oxidase proteins. As the function of PPR14 overlaps with PPR-SMR1 and the CRM-domain containing protein Zm-mCSF1, we tested their interactions. Protein-protein interaction analysis indicated that PPR14 interacts with PPR-SMR1 and Zm-mCSF1, suggesting that these three proteins may form a complex. As PPR proteins and CRM-domain containing proteins have many members in mitochondria and chloroplasts, we propose that organellar group II intron splicing is probably mediated by a dynamic complex that includes different PPR and CRM proteins in plants.
Collapse
|
46
|
Genome-Wide Identification and Characterization of the Mitochondrial Transcription Termination Factors (mTERFs) in Capsicum annuum L. Int J Mol Sci 2019; 21:ijms21010269. [PMID: 31906076 PMCID: PMC6982079 DOI: 10.3390/ijms21010269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial transcription termination factors (mTERFs) regulate the expression of mitochondrial genes and are closely related to the function of the mitochondrion and chloroplast. In this study, the mTERF gene family in capsicum (Capsicum annuum L.) was identified and characterized through genomic and bioinformatic analyses. Capsicum was found to possess at least 35 mTERF genes (CamTERFs), which were divided into eight major groups following phylogenetic analysis. Analysis of CamTERF promoters revealed the presence of many cis-elements related to the regulation of cellular respiration and photosynthesis. In addition, CamTERF promoters contained cis-elements related to phytohormone regulation and stress responses. Differentially expressed genes in different tissues and developmental phases were identified using RNA-seq data, which revealed that CamTERFs exhibit various expression and co-expression patterns. Gene ontology (GO) annotations associated CamTERFs primarily with mitochondrion and chloroplast function and composition. These results contribute towards understanding the role of mTERFs in capsicum growth, development, and stress responses. Moreover, our data assist in the identification of CamTERFs with important functions, which opens avenues for future studies.
Collapse
|
47
|
Chen Z, Wang HC, Shen J, Sun F, Wang M, Xu C, Tan BC. PPR-SMR1 is required for the splicing of multiple mitochondrial introns, interacts with Zm-mCSF1, and is essential for seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5245-5258. [PMID: 31257441 PMCID: PMC6793435 DOI: 10.1093/jxb/erz305] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/19/2019] [Indexed: 05/18/2023]
Abstract
Group II introns are ribozymes that can excise themselves from precursor-RNA transcripts, but plant organellar group II introns have structural deviations that inhibit ribozyme activity. Therefore, splicing of these introns requires the assistance of nuclear- and/or organellar-encoded splicing factors; however, how these splicing factors function remains unclear. In this study, we report the functions and interactions of two splicing factors, PPR-SMR1 and Zm-mCSF1, in intron splicing in maize mitochondria. PPR-SMR1 is a SMR domain-containing pentatricopeptide repeat (PPR) protein and Zm-mCSF1 is a CRM domain-containing protein, and both are targeted to mitochondria. Loss-of-function mutations in each of them severely arrests embryogenesis and endosperm development in maize. Functional analyses indicate that PPR-SMR1 and Zm-mCSF1 are required for the splicing of most mitochondrial group II introns. Among them, nad2-intron 2 and 3, and nad5-intron 1 are PPR-SMR1/Zm-mCSF1-dependent introns. Protein interaction assays suggest that PPR-SMR1 can interact with Zm-mCSF1 through its N-terminus, and that Zm-mCSF1 is self-interacting. Our findings suggest that PPR-SMR1, a novel splicing factor, acts in the splicing of multiple group II introns in maize mitochondria, and the protein-protein interaction between it and Zm-mCSF1 might allow the formation of large macromolecular splicing complexes.
Collapse
Affiliation(s)
- Zongliang Chen
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Hong-Chun Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jiayu Shen
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Miaodi Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chunhui Xu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Correspondence:
| |
Collapse
|
48
|
Ding S, Zhang Y, Hu Z, Huang X, Zhang B, Lu Q, Wen X, Wang Y, Lu C. mTERF5 Acts as a Transcriptional Pausing Factor to Positively Regulate Transcription of Chloroplast psbEFLJ. MOLECULAR PLANT 2019; 12:1259-1277. [PMID: 31128276 DOI: 10.1016/j.molp.2019.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/22/2019] [Accepted: 05/16/2019] [Indexed: 05/21/2023]
Abstract
RNA polymerase transcriptional pausing represents a major checkpoint in transcription in bacteria and metazoans, but it is unknown whether this phenomenon occurs in plant organelles. Here, we report that transcriptional pausing occurs in chloroplasts. We found that mTERF5 specifically and positively regulates the transcription of chloroplast psbEFLJ in Arabidopsis thaliana that encodes four key subunits of photosystem II. We found that mTERF5 causes the plastid-encoded RNA polymerase (PEP) complex to pause at psbEFLJ by binding to the +30 to +51 region of double-stranded DNA. Moreover, we revealed that mTERF5 interacts with pTAC6, an essential subunit of the PEP complex, although pTAC6 is not involved in the transcriptional pausing at psbEFLJ. We showed that mTERF5 recruits additional pTAC6 to the transcriptionally paused region of psbEFLJ, and the recruited pTAC6 proteins could be assembled into the PEP complex to regulate psbEFLJ transcription. Taken together, our findings shed light on the role of transcriptional pausing in chloroplast transcription in plants.
Collapse
Affiliation(s)
- Shunhua Ding
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Hu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bohan Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtao Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaogang Wen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yingchun Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
49
|
A Mitochondrial Transcription Termination Factor, ZmSmk3, Is Required for nad1 Intron4 and nad4 Intron1 Splicing and Kernel Development in Maize. G3-GENES GENOMES GENETICS 2019; 9:2677-2686. [PMID: 31196888 PMCID: PMC6686911 DOI: 10.1534/g3.119.400265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression systems of the mitochondrial genes are derived from their bacterial ancestors, but have evolved many new features in their eukaryotic hosts. Mitochondrial RNA splicing is a complex process regulated by families of nucleus-encoded RNA-binding proteins, few of which have been characterized in maize (Zea mays L.). Here, we identified the Zea mays small kernel 3 (Zmsmk3) candidate gene, which encodes a mitochondrial transcription termination factor (mTERF) containing two mTERF motifs, which is conserved in monocotyledon; and the target introns were also quite conserved during evolution between monocotyledons and dicotyledons. The mutations of Zmsmk3 led to arrested embryo and endosperm development, resulting in small kernels. A transcriptome of 12 days after pollination endosperm analysis revealed that the starch biosynthetic pathway and the zein gene family were down-regulated in the Zmsmk3 mutant kernels. ZmSMK3 is localized in mitochondria. The reduced expression of ZmSmk3 in the mutant resulted in the splicing deficiency of mitochondrial nad4 intron1 and nad1 intron4, causing a reduction in complex I assembly and activity, impairing mitochondria structure and activating the alternative respiratory pathway. So, the results suggest that ZmSMK3 is required for the splicing of nad4 intron 1 and nad1 intron 4, complex I assembly and kernel development in maize.
Collapse
|
50
|
C�rdoba JP, Fassolari M, Marchetti F, Soto D, Pagnussat GC, Zabaleta E. Different Types Domains are Present in Complex I from Immature Seeds and of CA Adult Plants in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:986-998. [PMID: 30668784 PMCID: PMC6498749 DOI: 10.1093/pcp/pcz011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/10/2019] [Indexed: 05/10/2023]
Abstract
Mitochondrial Nicotinamide adenine dinucleotide (NADH) dehydrogenase complex is the first complex of the mitochondrial electron transfer chain. In plants and in a variety of eukaryotes except Opisthokonta, complex I (CI) contains an extra spherical domain called carbonic anhydrase (CA) domain. This domain is thought to be composed of trimers of gamma type CA and CA-like subunits. In Arabidopsis, the CA gene family contains five members (CA1, CA2, CA3, CAL1 and CAL2). The CA domain appears to be crucial for CI assembly and is essential for normal embryogenesis. As CA and CA-like proteins are arranged in trimers to form the CA domain, it is possible for the complex to adopt different arrangements that might be tissue-specific or have specialized functions. In this work, we show that the proportion of specific CI changes in a tissue-specific manner. In immature seeds, CI assembly may be indistinctly dependent on CA1, CA2 or CA3. However, in adult plant tissues (or tissues derived from stem cells, as cell cultures), CA2-dependent CI is clearly the most abundant. This difference might account for specific physiological functions. We present evidence suggesting that CA3 does not interact with any other CA family member. As CA3 was found to interact with CI FRO1 (NDUFS4) subunit, which is located in the matrix arm, this suggests a role for CA3 in assembly and stability of CI.
Collapse
Affiliation(s)
- Juan Pablo C�rdoba
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Marisol Fassolari
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Fernanda Marchetti
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - D�bora Soto
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biol�gicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, Mar del Plata, Argentina
- Corresponding author: E-mail, ; Fax, +54 223 475 30 30
| |
Collapse
|