1
|
Tao L, Liu H, Adeola AC, Xie HB, Feng ST, Zhang YP. The effects of runs-of-homozygosity on pig domestication and breeding. BMC Genomics 2025; 26:6. [PMID: 39762732 PMCID: PMC11702194 DOI: 10.1186/s12864-024-11189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Since their domestication, recent inbreeding together with intensive artificial selection and population bottlenecks have allowed the prevalence of deleterious mutations and the increase of runs-of-homozygosity (ROH) in domestic pigs. This makes pigs a good model to understand the genetic underpinnings of inbreeding depression. RESULTS Here we integrated a comprehensive dataset comprising 7239 domesticated pigs and wild boars genotyped by single nucleotide polymorphism (SNP) chips, along with phenotypic data encompassing growth, reproduction and disease-associated traits. Our study revealed differential ROH landscapes during domestication and artificial selection of Eurasian pigs. We observed associations between ROH burden and phenotypic traits such as body conformation and susceptibility to diseases like scrotal hernia. By examining associations of whole-genome and regional ROH burden with gene expression, we identified specific genes and pathways affected by inbreeding depression. Associations of regional ROH burden with gene expression also enabled the discovery of novel regulatory elements. Lastly, we inferred recessive lethal mutations by examining depletion of ROH in an inbred population with relatively small sample size, following by fine mapping with sequencing data. CONCLUSIONS These findings suggested that both phenotypic and genetic variations have been reshaped by inbreeding, and provided insights to the genetic mechanisms underlying inbreeding depression.
Collapse
Affiliation(s)
- Lin Tao
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Liu
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Adeniyi C Adeola
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hai-Bing Xie
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Shu-Tang Feng
- Beijing Grand-Life Science and Technology Company, Beijing, 102206, China.
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Science, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
2
|
Kinoshita K, Tanabe K, Nakamura Y, Nishijima KI, Suzuki T, Okuzaki Y, Mizushima S, Wang MS, Khan SU, Xu K, Jamal MA, Wei T, Zhao H, Su Y, Sun F, Liu G, Zhu F, Zhao HY, Wei HJ. PGC-based cryobanking, regeneration through germline chimera mating, and CRISPR/Cas9-mediated TYRP1 modification in indigenous Chinese chickens. Commun Biol 2024; 7:1127. [PMID: 39271811 PMCID: PMC11399235 DOI: 10.1038/s42003-024-06775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Primordial germ cells (PGCs) are vital for producing sperm and eggs and are crucial for conserving chicken germplasm and creating genetically modified chickens. However, efforts to use PGCs for preserving native chicken germplasm and genetic modification via CRISPR/Cas9 are limited. Here we show that we established 289 PGC lines from eight Chinese chicken populations with an 81.6% success rate. We regenerated Piao chickens by repropagating cryopreserved PGCs and transplanting them into recipient chickens, achieving a 12.7% efficiency rate. These regenerated chickens carried mitochondrial DNA from female donor PGC and the rumplessness mutation from both male and female donors. Additionally, we created the TYRP1 (tyrosinase-related protein 1) knockout (KO) PGC lines via CRISPR/Cas9. Transplanting KO cells into male recipients and mating them with wild-type hens produced four TYRP1 KO chickens with brown plumage due to reduced eumelanin production. Our work demonstrates efficient PGC culture, cryopreservation, regeneration, and gene editing in chickens.
Collapse
Affiliation(s)
- Keiji Kinoshita
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Kumiko Tanabe
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Yoshiaki Nakamura
- Laboratory of Animal Breeding and Genetics, Graduate School of Integrated Sciences for Life and School of Applied Biological Science, Hiroshima University, Hiroshima, 739-8528, Japan
| | - Ken-Ichi Nishijima
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Takayuki Suzuki
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, 558-8585, Japan
| | - Yuya Okuzaki
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Shusei Mizushima
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ming-Shan Wang
- State Key Laboratory of Genetic resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Sami Ullah Khan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Muhammad Ameen Jamal
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory of Genetic resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Taiyun Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanhua Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China
| | - Feizhou Sun
- National Center for Preservation of Animal Genetic Resources, National Animal Husbandry Service, Beijing, 100125, China
| | - Gang Liu
- National Center for Preservation of Animal Genetic Resources, National Animal Husbandry Service, Beijing, 100125, China
| | - Fangxian Zhu
- National Center for Preservation of Animal Genetic Resources, National Animal Husbandry Service, Beijing, 100125, China
| | - Hong-Ye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
- State Key Laboratory of Genetic resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
3
|
Chen A, Wang Q, Zhao X, Wang G, Zhang X, Ren X, Zhang Y, Cheng X, Yu X, Mei X, Wang H, Guo M, Jiang X, Wei G, Wang X, Jiang R, Guo X, Ning Z, Qu L. Molecular genetic foundation of a sex-linked tailless trait in Hongshan chicken by whole genome data analysis. Poult Sci 2024; 103:103685. [PMID: 38603937 PMCID: PMC11017342 DOI: 10.1016/j.psj.2024.103685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
As a Chinese local chicken breed, Hongshan chickens have 2 kinds of tail feather phenotypes, normal and taillessness. Our previous studies showed that taillessness was a sex-linked dominant trait. Abnormal development of the tail vertebrae could be explained this phenomenon in some chicken breeds. However, the number of caudal vertebrae in rumpless Hongshan chickens was normal, so rumplessness in Hongshan chicken was not related to the development of the caudal vertebrae. Afterwards, we found that rumplessness in Hongshan was due to abnormal development of tail feather rather than abnormal development of caudal vertebrae. In order to understand the genetic foundation of the rumplessness of Hongshan chickens, we compared and reanalyzed 2 sets of data in normal and rumpless Hongshan chickens from our previous studies. By joint analysis of genome-wide selection signature analysis and genome-wide association approach, we found that 1 overlapping gene (EDIL3) and 16 peak genes (ENSGALG00000051843, ENSGALG00000053498, ENSGALG00000054800, KIF27, PTPRD, ENSGALG00000047579, ENSGALG00000041052, ARHGEF28, CAMK4, SERINC5, ENSGALG00000050776, ERCC8, MCC, ADAMTS19, ENSGALG00000053322, CHRNA8) located on the Z chromosome was associated with the rumpless trait. The results of this study furtherly revealed the molecular mechanism of the rumpless trait in Hongshan chickens, and identified the candidate genes associated with this trait. Our results will help to improve the shape of chicken tail feathers and to rise individual economic value in some specific market in China.
Collapse
Affiliation(s)
- Anqi Chen
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiong Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiurong Zhao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinye Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalan Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Cheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaofan Yu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaohan Mei
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huie Wang
- Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, China
| | - Menghan Guo
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Jiang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guozhen Wei
- Qingliu Animal Husbandry, Veterinary and Aquatic Products Center, Sanming, China
| | - Xue Wang
- VVBK Animal Medical Diagnostic Technology (Beijing) Co., Ltd, Beijing, China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Xinjiang Production and Construction Corps, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar 843300, China.
| |
Collapse
|
4
|
Wu S, Dou T, Wang K, Yuan S, Yan S, Xu Z, Liu Y, Jian Z, Zhao J, Zhao R, Wu H, Gu D, Liu L, Li Q, Wu DD, Ge C, Su Z, Jia J. Artificial selection footprints in indigenous and commercial chicken genomes. BMC Genomics 2024; 25:428. [PMID: 38689225 PMCID: PMC11061962 DOI: 10.1186/s12864-024-10291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Although many studies have been done to reveal artificial selection signatures in commercial and indigenous chickens, a limited number of genes have been linked to specific traits. To identify more trait-related artificial selection signatures and genes, we re-sequenced a total of 85 individuals of five indigenous chicken breeds with distinct traits from Yunnan Province, China. RESULTS We found 30 million non-redundant single nucleotide variants and small indels (< 50 bp) in the indigenous chickens, of which 10 million were not seen in 60 broilers, 56 layers and 35 red jungle fowls (RJFs) that we compared with. The variants in each breed are enriched in non-coding regions, while those in coding regions are largely tolerant, suggesting that most variants might affect cis-regulatory sequences. Based on 27 million bi-allelic single nucleotide polymorphisms identified in the chickens, we found numerous selective sweeps and affected genes in each indigenous chicken breed and substantially larger numbers of selective sweeps and affected genes in the broilers and layers than previously reported using a rigorous statistical model. Consistent with the locations of the variants, the vast majority (~ 98.3%) of the identified selective sweeps overlap known quantitative trait loci (QTLs). Meanwhile, 74.2% known QTLs overlap our identified selective sweeps. We confirmed most of previously identified trait-related genes and identified many novel ones, some of which might be related to body size and high egg production traits. Using RT-qPCR, we validated differential expression of eight genes (GHR, GHRHR, IGF2BP1, OVALX, ELF2, MGARP, NOCT, SLC25A15) that might be related to body size and high egg production traits in relevant tissues of relevant breeds. CONCLUSION We identify 30 million single nucleotide variants and small indels in the five indigenous chicken breeds, 10 million of which are novel. We predict substantially more selective sweeps and affected genes than previously reported in both indigenous and commercial breeds. These variants and affected genes are good candidates for further experimental investigations of genotype-phenotype relationships and practical applications in chicken breeding programs.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sisi Yuan
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zonghui Jian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rouhan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dahai Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qihua Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Ling RE, Cross JW, Roy A. Aberrant stem cell and developmental programs in pediatric leukemia. Front Cell Dev Biol 2024; 12:1372899. [PMID: 38601080 PMCID: PMC11004259 DOI: 10.3389/fcell.2024.1372899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.
Collapse
Affiliation(s)
- Rebecca E. Ling
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Joe W. Cross
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
6
|
Wang J, Liu J, Lei Q, Liu Z, Han H, Zhang S, Qi C, Liu W, Li D, Li F, Cao D, Zhou Y. Elucidation of the genetic determination of body weight and size in Chinese local chicken breeds by large-scale genomic analyses. BMC Genomics 2024; 25:296. [PMID: 38509464 PMCID: PMC10956266 DOI: 10.1186/s12864-024-10185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Body weight and size are important economic traits in chickens. While many growth-related quantitative trait loci (QTLs) and candidate genes have been identified, further research is needed to confirm and characterize these findings. In this study, we investigate genetic and genomic markers associated with chicken body weight and size. This study provides new insights into potential markers for genomic selection and breeding strategies to improve meat production in chickens. METHODS We performed whole-genome resequencing of and Wenshang Barred (WB) chickens (n = 596) and three additional breeds with varying body sizes (Recessive White (RW), WB, and Luxi Mini (LM) chickens; (n = 50)). We then used selective sweeps of mutations coupled with genome-wide association study (GWAS) to identify genomic markers associated with body weight and size. RESULTS We identified over 9.4 million high-quality single nucleotide polymorphisms (SNPs) among three chicken breeds/lines. Among these breeds, 287 protein-coding genes exhibited positive selection in the RW and WB populations, while 241 protein-coding genes showed positive selection in the LM and WB populations. Genomic heritability estimates were calculated for 26 body weight and size traits, including body weight, chest breadth, chest depth, thoracic horn, body oblique length, keel length, pelvic width, shank length, and shank circumference in the WB breed. The estimates ranged from 0.04 to 0.67. Our analysis also identified a total of 2,522 genome-wide significant SNPs, with 2,474 SNPs clustered around two genomic regions. The first region, located on chromosome 4 (7.41-7.64 Mb), was linked to body weight after ten weeks and body size traits. LCORL, LDB2, and PPARGC1A were identified as candidate genes in this region. The other region, located on chromosome 1 (170.46-171.53 Mb), was associated with body weight from four to eighteen weeks and body size traits. This region contained CAB39L and WDFY2 as candidate genes. Notably, LCORL, LDB2, and PPARGC1A showed highly selective signatures among the three breeds of chicken with varying body sizes. CONCLUSION Overall this study provides a comprehensive map of genomic variants associated with body weight and size in chickens. We propose two genomic regions, one on chromosome 1 and the other on chromosome 4, that could helpful for developing genome selection breeding strategies to enhance meat yield in chickens.
Collapse
Affiliation(s)
- Jie Wang
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Jie Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Qiuxia Lei
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Zhihe Liu
- Sichuan agricultural university college of animal science and technology, Chengdu, 611130, China
| | - Haixia Han
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Shuer Zhang
- Shandong Animal Husbandry General Station, Jinan, 250023, China
| | - Chao Qi
- Shandong Animal Husbandry General Station, Jinan, 250023, China
| | - Wei Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Dapeng Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Fuwei Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Dingguo Cao
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Yan Zhou
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China.
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China.
| |
Collapse
|
7
|
Guo Y, Tian J, Song C, Han W, Zhu C, Li H, Zhang S, Chen K, Li N, Carlborg Ö, Hu X. Mapping and Functional Dissection of the Rumpless Trait in Piao Chicken Identifies a Causal Loss of Function Mutation in the Novel Gene Rum. Mol Biol Evol 2023; 40:msad273. [PMID: 38069902 PMCID: PMC10735294 DOI: 10.1093/molbev/msad273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/21/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Rumpless chickens exhibit an abnormality in their tail development. The genetics and biology of this trait has been studied for decades to illustrate a broad variation in both the types of inheritance and the severity in the developmental defects of the tail. In this study, we created a backcross pedigree by intercrossing Piao (rumpless) with Xianju (normal) to investigate the genetic mechanisms and molecular basis of the rumpless trait in Piao chicken. Through genome-wide association and linkage analyses, the candidate region was fine-mapped to 798.5 kb (chromosome 2: 86.9 to 87.7 Mb). Whole-genome sequencing analyses identified a single variant, a 4.2 kb deletion, which was completely associated with the rumpless phenotype. Explorations of the expression data identified a novel causative gene, Rum, that produced a long, intronless transcript across the deletion. The expression of Rum is embryo-specific, and it regulates the expression of MSGN1, a key factor in regulating T-box transcription factors required for mesoderm formation and differentiation. These results provide genetic and molecular experimental evidence for a novel mechanism regulating tail development in chicken and report the likely causal mutation for the tail abnormity in the Piao chicken. The novel regulatory gene, Rum, will, due to its role in fundamental embryo development, be of interest for further explorations of a potential role in tail and skeletal development also in other vertebrates.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing CN-100193, China
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing CN-100193, China
- Yazhouwan National Laboratory, Sanya CN-572024, China
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala SE-751 23, Sweden
| | - Jing Tian
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing CN-100193, China
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing CN-100193, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot CN-010031, China
| | - Chi Song
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou CN-225125, Jiangsu, China
| | - Wei Han
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou CN-225125, Jiangsu, China
| | - Chunhong Zhu
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou CN-225125, Jiangsu, China
| | - Huifang Li
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou CN-225125, Jiangsu, China
| | - Shuangjie Zhang
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou CN-225125, Jiangsu, China
| | - Kuanwei Chen
- National Chickens Genetic Resources, Jiangsu Institute of Poultry Science, Yangzhou CN-225125, Jiangsu, China
| | - Ning Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing CN-100193, China
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing CN-100193, China
| | - Örjan Carlborg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala SE-751 23, Sweden
| | - Xiaoxiang Hu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing CN-100193, China
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing CN-100193, China
| |
Collapse
|
8
|
Xu D, Zhu W, Wu Y, Wei S, Shu G, Tian Y, Du X, Tang J, Feng Y, Wu G, Han X, Zhao X. Whole-genome sequencing revealed genetic diversity, structure and patterns of selection in Guizhou indigenous chickens. BMC Genomics 2023; 24:570. [PMID: 37749517 PMCID: PMC10521574 DOI: 10.1186/s12864-023-09621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The eight phenotypically distinguishable indigenous chicken breeds in Guizhou province of China are great resources for high-quality development of the poultry industry in China. However, their full value and potential have yet to be understood in depth. To illustrate the genetic diversity, the relationship and population structure, and the genetic variation patterns shaped by selection in Guizhou indigenous chickens, we performed a genome-wide analysis of 240 chickens from 8 phenotypically and geographically representative Guizhou chicken breeds and 60 chickens from 2 commercial chicken breeds (one broiler and one layer), together with 10 red jungle fowls (RJF) genomes available from previous studies. RESULTS The results obtained in this present study showed that Guizhou chicken breed populations harbored higher genetic diversity as compared to commercial chicken breeds, however unequal polymorphisms were present within Guizhou indigenous chicken breeds. The results from the population structure analysis markedly reflected the breeding history and the geographical distribution of Guizhou indigenous chickens, whereas, some breeds with complex genetic structure were ungrouped into one cluster. In addition, we confirmed mutual introgression within Guizhou indigenous chicken breeds and from commercial chicken breeds. Furthermore, selective sweep analysis revealed candidate genes which were associated with specific and common phenotypic characteristics evolved rapidly after domestication of Guizhou local chicken breeds and economic traits such as egg production performance, growth performance, and body size. CONCLUSION Taken together, the results obtained from the comprehensive analysis of the genetic diversity, genetic relationships and population structures in this study showed that Guizhou indigenous chicken breeds harbor great potential for commercial utilization, however effective conservation measures are currently needed. Additionally, the present study drew a genome-wide selection signature draft for eight Guizhou indigenous chicken breeds and two commercial breeds, as well as established a resource that can be exploited in chicken breeding programs to manipulate the genes associated with desired phenotypes. Therefore, this study will provide an essential genetic basis for further research, conservation, and breeding of Guizhou indigenous chickens.
Collapse
Affiliation(s)
- Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Wei Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Shuo Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Jigao Tang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Yulong Feng
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Gemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China.
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China.
| |
Collapse
|
9
|
Nagel S. The Role of IRX Homeobox Genes in Hematopoietic Progenitors and Leukemia. Genes (Basel) 2023; 14:genes14020297. [PMID: 36833225 PMCID: PMC9957183 DOI: 10.3390/genes14020297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
IRX genes are members of the TALE homeobox gene class and encode six related transcription factors (IRX1-IRX6) controlling development and cell differentiation of several tissues in humans. Classification of TALE homeobox gene expression patterns for the hematopoietic compartment, termed TALE-code, has revealed exclusive IRX1 activity in pro-B-cells and megakaryocyte erythroid progenitors (MEPs), highlighting its specific contribution to developmental processes at these early stages of hematopoietic lineage differentiation. Moreover, aberrant expression of IRX homeobox genes IRX1, IRX2, IRX3 and IRX5 has been detected in hematopoietic malignancies, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL), T-cell ALL, and some subtypes of acute myeloid leukemia (AML). Expression analyses of patient samples and experimental studies using cell lines and mouse models have revealed oncogenic functions in cell differentiation arrest and upstream and downstream genes, thus, revealing normal and aberrant regulatory networks. These studies have shown how IRX genes play key roles in the development of both normal blood and immune cells, and hematopoietic malignancies. Understanding their biology serves to illuminate developmental gene regulation in the hematopoietic compartment, and may improve diagnostic classification of leukemias in the clinic and reveal new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Cultures, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Zhang J, Nie C, Zhang X, Zhao X, Jia Y, Han J, Chen Y, Wang L, Lv X, Yang W, Li K, Zhang J, Ning Z, Bao H, Li J, Zhao C, Qu L. A ∼ 4.1 kb deletion in IRX1 gene upstream is completely associated with rumplessness in Piao chicken. Genomics 2022; 114:110515. [PMID: 36306957 DOI: 10.1016/j.ygeno.2022.110515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/02/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
Abstract
Piao chicken, a Chinese indigenous rumpless chicken breed, lacks pygostyle, caudal vertebra, uropygial gland and tail feathers. The rumplessness in Piao chicken presents an autosomal dominant inheritance pattern. However, the molecular genetic mechanisms underlying the rumplessness in Piao chicken remains unclear. In this study, whole-genome resequencing was performed for 146 individuals from 10 chicken breeds, including 9 tailed chicken breeds and Piao rumpless breed. Tailbone CT scan for Piao chickens and WL chickens, revealed that some Piao chicken tails were normal in number, and for a few Piao chickens tail length and tail bone numbers were between the rumpless and the normal tailed chickens. The results showed that the rumpless phenotype has not been completely fixed in Piao chicken breed. Using selection signature analysis and structural variation detection, we found a 4174 bp deletion located in the upstream region of IRX1 gene on chromosome 2 related to rumpless phenotype. Structural variation genotyping showed that the deletion was present in all 32 rumpless Piao chickens (del/del, wild/del) and absent from all 112 tailed chickens included in the dataset for the other 9 breeds and 2 tailed Piao chickens (wild/wild). In summary, all rumpless Piao chickens tested here carry this deletion mutation, to show a complete linkage association with rumplessness trait. We suggested that the 4174 bp deletion could be causative for rumpless phenotype in Piao chicken since this is the only mutation to show the complete linkage disequilibrium with rumplessness on whole genome level across all of 146 chickens from the 10 breeds. This study could facilitate a better understanding of the genetic characteristics of Piao chicken.
Collapse
Affiliation(s)
- Jinxin Zhang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Changsheng Nie
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinye Zhang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiurong Zhao
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100097, China
| | - Jianlin Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100097, China
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing 100101, China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing 100101, China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing 100101, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing 100101, China
| | - Kaiyang Li
- Beijing Municipal General Station of Animal Science, Beijing 100101, China
| | - Jianwei Zhang
- Beijing Municipal General Station of Animal Science, Beijing 100101, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haigang Bao
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chunjiang Zhao
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lujiang Qu
- Xinjiang Production & construction corps key laboratory of protection and utilization of biological resources in Tarim Basin, Tarim University, Alar, 843300, China; National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Wang YM, Khederzadeh S, Li SR, Otecko NO, Irwin DM, Thakur M, Ren XD, Wang MS, Wu DD, Zhang YP. Integrating Genomic and Transcriptomic Data to Reveal Genetic Mechanisms Underlying Piao Chicken Rumpless Trait. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:787-799. [PMID: 33631431 PMCID: PMC9170765 DOI: 10.1016/j.gpb.2020.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/14/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
Piao chicken, a rare Chinese native poultry breed, lacks primary tail structures, such as pygostyle, caudal vertebra, uropygial gland, and tail feathers. So far, the molecular mechanisms underlying tail absence in this breed remain unclear. In this study, we comprehensively employed comparative transcriptomic and genomic analyses to unravel potential genetic underpinnings of rumplessness in Piao chicken. Our results reveal many biological factors involved in tail development and several genomic regions under strong positive selection in this breed. These regions contain candidate genes associated with rumplessness, including Irx4, Il18, Hspb2, and Cryab. Retrieval of quantitative trait loci (QTL) and gene functions implies that rumplessness might be consciously or unconsciously selected along with the high-yield traits in Piao chicken. We hypothesize that strong selection pressures on regulatory elements might lead to changes in gene activity in mesenchymal stem cells of the tail bud. The ectopic activity could eventually result in tail truncation by impeding differentiation and proliferation of the stem cells. Our study provides fundamental insights into early initiation and genetic basis of the rumpless phenotype in Piao chicken.
Collapse
Affiliation(s)
- Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China; Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - Shi-Rong Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - Newton Otieno Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Mukesh Thakur
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Zoological Survey of India, Kolkata 700053, India
| | - Xiao-Die Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
12
|
Rashid DJ, Chapman SC. The long and the short of tails. Dev Dyn 2021; 250:1229-1235. [DOI: 10.1002/dvdy.311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Dana J. Rashid
- Department of Microbiology and Immunology Montana State University Bozeman Montana USA
| | - Susan C. Chapman
- Department of Biological Sciences Clemson University Clemson South Carolina USA
| |
Collapse
|
13
|
Distal spinal nerve development and divergence of avian groups. Sci Rep 2020; 10:6303. [PMID: 32286419 PMCID: PMC7156524 DOI: 10.1038/s41598-020-63264-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/26/2020] [Indexed: 11/16/2022] Open
Abstract
The avian transition from long to short, distally fused tails during the Mesozoic ushered in the Pygostylian group, which includes modern birds. The avian tail embodies a bipartite anatomy, with the proximal separate caudal vertebrae region, and the distal pygostyle, formed by vertebral fusion. This study investigates developmental features of the two tail domains in different bird groups, and analyzes them in reference to evolutionary origins. We first defined the early developmental boundary between the two tail halves in the chicken, then followed major developmental structures from early embryo to post-hatching stages. Differences between regions were observed in sclerotome anterior/posterior polarity and peripheral nervous system development, and these were consistent in other neognathous birds. However, in the paleognathous emu, the neognathous pattern was not observed, such that spinal nerve development extends through the pygostyle region. Disparities between the neognaths and paleognaths studied were also reflected in the morphology of their pygostyles. The ancestral long-tailed spinal nerve configuration was hypothesized from brown anole and alligator, which unexpectedly more resembles the neognathous birds. This study shows that tail anatomy is not universal in avians, and suggests several possible scenarios regarding bird evolution, including an independent paleognathous long-tailed ancestor.
Collapse
|
14
|
Noorai RE, Shankar V, Freese NH, Gregorski CM, Chapman SC. Discovery of genomic variations by whole-genome resequencing of the North American Araucana chicken. PLoS One 2019; 14:e0225834. [PMID: 31821332 PMCID: PMC6903725 DOI: 10.1371/journal.pone.0225834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Gallus gallus (chicken) is phenotypically diverse, with over 60 recognized breeds, among the myriad species within the Aves lineage. Domestic chickens have been under artificial selection by humans for thousands of years for agricultural purposes. The North American Araucana (NAA) breed arose as a cross between the Chilean “Collonocas” that laid blue eggs and was rumpless and the “Quetros” that had unusual tufts but with tail. NAAs were introduced from South America in the 1940s and have been kept as show birds by enthusiasts since then due to several distinctive traits: laying eggs with blue eggshells, characteristic ear-tufts, a pea comb, and rumplessness. The population has maintained variants for clean-faced and tufted, as well as tailed and rumplessness traits making it advantageous for genetic studies. Genome resequencing of six NAA chickens with a mixture of these traits was done to 71-fold coverage using Illumina HiSeq 2000 paired-end reads. Trimmed and concordant reads were mapped to the Gallus_gallus-5.0 reference genome (galGal5), generated from a female Red Junglefowl (UCD001). To identify candidate genes that are associated with traits of the NAA, their genome was compared with the Korean Araucana, Korean Domestic and White Leghorn breeds. Genomic regions with significantly reduced levels of heterogeneity were detected on five different chromosomes in NAA. The sequence data generated confirm the identity of variants responsible for the blue eggshells, pea comb, and rumplessness traits of NAA and propose one for ear-tufts.
Collapse
Affiliation(s)
- Rooksana E. Noorai
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| | - Vijay Shankar
- Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Nowlan H. Freese
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Christopher M. Gregorski
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Susan C. Chapman
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
15
|
Wang Q, Pi J, Pan A, Shen J, Qu L. A novel sex-linked mutant affecting tail formation in Hongshan chicken. Sci Rep 2017; 7:10079. [PMID: 28855651 PMCID: PMC5577132 DOI: 10.1038/s41598-017-10943-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023] Open
Abstract
The Hongshan chicken is a Chinese indigenous breed that has two distinctly different tail types. Some chickens have stunted tails as compared to the normal phenotype, and they are termed rumpless. Rumplessness in other chicken breeds was caused by a reduction in the number of coccygeal vertebrae. However, X-ray examination showed that rumpless Hongshan chickens possess the normal number of coccygeal vertebrae. Our analyses of the main tail feathers and tissue sections led us to speculate that their stunted tail appearance may be the result of abnormal feather development. To investigate the genetic mechanism underlying rumplessness in Hongshan chickens, we analyzed the results of various crosses. The results indicated that rumplessness is a Z-linked dominant character. In addition, we chose some normal and rumpless individuals for pool-sequencing. Nucleotide diversity and Fst were calculated, and a selective sweep was detected on the Z chromosome. These analyses allowed us to reduce the search area to 71.8–72 Mb on the Z chromosome (galGal5.0). A pseudogene LOC431648 located in this region appeared a strong candidate involving in Wnt/β-catenin signaling pathway to regulate feather development in chickens.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryonic Engineering and Molecular Breeding, Wuhan, Hubei Province, China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryonic Engineering and Molecular Breeding, Wuhan, Hubei Province, China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryonic Engineering and Molecular Breeding, Wuhan, Hubei Province, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
16
|
Jeong H, Kim K, Caetano-Anollés K, Kim H, Kim BK, Yi JK, Ha JJ, Cho S, Oh DY. Whole genome sequencing of Gyeongbuk Araucana, a newly developed blue-egg laying chicken breed, reveals its origin and genetic characteristics. Sci Rep 2016; 6:26484. [PMID: 27215397 PMCID: PMC4877703 DOI: 10.1038/srep26484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 05/03/2016] [Indexed: 01/15/2023] Open
Abstract
Chicken, Gallus gallus, is a valuable species both as a food source and as a model organism for scientific research. Here, we sequenced the genome of Gyeongbuk Araucana, a rare chicken breed with unique phenotypic characteristics including flight ability, large body size, and laying blue-shelled eggs, to identify its genomic features. We generated genomes of Gyeongbuk Araucana, Leghorn, and Korean Native Chicken at a total of 33.5, 35.82, and 33.23 coverage depth, respectively. Along with the genomes of 12 Chinese breeds, we identified genomic variants of 16.3 million SNVs and 2.3 million InDels in mapped regions. Additionally, through assembly of unmapped reads and selective sweep, we identified candidate genes that fall into heart, vasculature and muscle development and body growth categories, which provided insight into Gyeongbuk Araucana's phenotypic traits. Finally, genetic variation based on the transposable element insertion pattern was investigated to elucidate the features of transposable elements related to blue egg shell formation. This study presents results of the first genomic study on the Gyeongbuk Araucana breed; it has potential to serve as an invaluable resource for future research on the genomic characteristics of this chicken breed as well as others.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Kwondo Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, South Korea 151-741, Republic of Korea
- C&K genomics, Main Bldg. #514, SNU Research Park, Seoul 151-919, Republic of Korea
| | - Kelsey Caetano-Anollés
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, South Korea 151-741, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul 151-742, Republic of Korea
| | - Byung-ki Kim
- Gyeongsangbuk-do Livestock Research Institute, 186, Daeryongsan-ro, Anjung-myon, Yeoungju, Gyeongsangbuk-do, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbuk-do Livestock Research Institute, 186, Daeryongsan-ro, Anjung-myon, Yeoungju, Gyeongsangbuk-do, Republic of Korea
| | - Jae-Jung Ha
- Gyeongsangbuk-do Livestock Research Institute, 186, Daeryongsan-ro, Anjung-myon, Yeoungju, Gyeongsangbuk-do, Republic of Korea
| | - Seoae Cho
- C&K genomics, Main Bldg. #514, SNU Research Park, Seoul 151-919, Republic of Korea
| | - Dong Yep Oh
- Gyeongsangbuk-do Livestock Research Institute, 186, Daeryongsan-ro, Anjung-myon, Yeoungju, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
17
|
Martin BL. Factors that coordinate mesoderm specification from neuromesodermal progenitors with segmentation during vertebrate axial extension. Semin Cell Dev Biol 2016; 49:59-67. [DOI: 10.1016/j.semcdb.2015.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
|
18
|
Row RH, Tsotras SR, Goto H, Martin BL. The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate in response to local signaling cues. Development 2015; 143:244-54. [PMID: 26674311 DOI: 10.1242/dev.129015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022]
Abstract
Vertebrate body axis formation depends on a population of bipotential neuromesodermal cells along the posterior wall of the tailbud that make a germ layer decision after gastrulation to form spinal cord and mesoderm. Despite exhibiting germ layer plasticity, these cells never give rise to midline tissues of the notochord, floor plate and dorsal endoderm, raising the question of whether midline tissues also arise from basal posterior progenitors after gastrulation. We show in zebrafish that local posterior signals specify germ layer fate in two basal tailbud midline progenitor populations. Wnt signaling induces notochord within a population of notochord/floor plate bipotential cells through negative transcriptional regulation of sox2. Notch signaling, required for hypochord induction during gastrulation, continues to act in the tailbud to specify hypochord from a notochord/hypochord bipotential cell population. Our results lend strong support to a continuous allocation model of midline tissue formation in zebrafish, and provide an embryological basis for zebrafish and mouse bifurcated notochord phenotypes as well as the rare human congenital split notochord syndrome. We demonstrate developmental equivalency between the tailbud progenitor cell populations. Midline progenitors can be transfated from notochord to somite fate after gastrulation by ectopic expression of msgn1, a master regulator of paraxial mesoderm fate, or if transplanted into the bipotential progenitors that normally give rise to somites. Our results indicate that the entire non-epidermal posterior body is derived from discrete, basal tailbud cell populations. These cells remain receptive to extracellular cues after gastrulation and continue to make basic germ layer decisions.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Steve R Tsotras
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Hana Goto
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
19
|
Gouti M, Metzis V, Briscoe J. The route to spinal cord cell types: a tale of signals and switches. Trends Genet 2015; 31:282-9. [PMID: 25823696 DOI: 10.1016/j.tig.2015.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/20/2023]
Abstract
Understanding the mechanisms that control induction and elaboration of the vertebrate central nervous system (CNS) requires an analysis of the extrinsic signals and downstream transcriptional networks that assign cell fates in the correct space and time. We focus on the generation and patterning of the spinal cord. We summarize evidence that the origin of the spinal cord is distinct from the anterior regions of the CNS. We discuss how this affects the gene regulatory networks and cell state transitions that specify spinal cord cell subtypes, and we highlight how the timing of extracellular signals and dynamic control of transcriptional networks contribute to the correct spatiotemporal generation of different neural cell types.
Collapse
Affiliation(s)
- Mina Gouti
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Vicki Metzis
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - James Briscoe
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| |
Collapse
|