1
|
Zeh JM, Adcock DL, Perez-Marrufo V, Cusano DA, Robbins J, Tackaberry JE, Jensen FH, Weinrich M, Friedlaender AS, Wiley DN, Parks SE. Acoustic behavior of humpback whale calves on the feeding ground: Comparisons across age and implications for vocal development. PLoS One 2024; 19:e0303741. [PMID: 38809930 PMCID: PMC11135678 DOI: 10.1371/journal.pone.0303741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Studying sound production at different developmental stages can provide insight into the processes involved in vocal ontogeny. Humpback whales (Megaptera novaeangliae) are a known vocal learning species, but their vocal development is poorly understood. While studies of humpback whale calves in the early stages of their lives on the breeding grounds and migration routes exist, little is known about the behavior of these immature, dependent animals by the time they reach the feeding grounds. In this study, we used data from groups of North Atlantic humpback whales in the Gulf of Maine in which all members were simultaneously carrying acoustic recording tags attached with suction cups. This allowed for assignment of likely caller identity using the relative received levels of calls across tags. We analyzed data from 3 calves and 13 adults. There were high levels of call rate variation among these individuals and the results represent preliminary descriptions of calf behavior. Our analysis suggests that, in contrast to the breeding grounds or on migration, calves are no longer acoustically cryptic by the time they reach their feeding ground. Calves and adults both produce calls in bouts, but there may be some differences in bout parameters like inter-call intervals and bout durations. Calves were able to produce most of the adult vocal repertoire but used different call types in different proportions. Finally, we found evidence of immature call types in calves, akin to protosyllables used in babbling in other mammals, including humans. Overall, the sound production of humpback whale calves on the feeding grounds appears to be already similar to that of adults, but with differences in line with ontogenetic changes observed in other vocal learning species.
Collapse
Affiliation(s)
- Julia M. Zeh
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Dana L. Adcock
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Valeria Perez-Marrufo
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Dana A. Cusano
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Jooke Robbins
- Center for Coastal Studies, Provincetown, Massachusetts, United States of America
| | | | - Frants H. Jensen
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Mason Weinrich
- Whale Center of New England, Gloucester, Massachusetts, United States of America
| | - Ari S. Friedlaender
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - David N. Wiley
- Stellwagen Bank National Marine Sanctuary, Scituate, Massachusetts, United States of America
| | - Susan E. Parks
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
2
|
Langehennig-Peristenidou A, Romero-Mujalli D, Bergmann T, Scheumann M. Features of animal babbling in the vocal ontogeny of the gray mouse lemur (Microcebus murinus). Sci Rep 2023; 13:21384. [PMID: 38049448 PMCID: PMC10696017 DOI: 10.1038/s41598-023-47919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
In human infants babbling is an important developmental stage of vocal plasticity to acquire maternal language. To investigate parallels in the vocal development of human infants and non-human mammals, seven key features of human babbling were defined, which are up to date only shown in bats and marmosets. This study will explore whether these features can also be found in gray mouse lemurs by investigating how infant vocal streams gradually resemble the structure of the adult trill call, which is not present at birth. Using unsupervised clustering, we distinguished six syllable types, whose sequential order gradually reflected the adult trill. A subset of adult syllable types was produced by several infants, with the syllable production being rhythmic, repetitive, and independent of the social context. The temporal structure of the calling bouts and the tempo-spectral features of syllable types became adult-like at the age of weaning. The age-dependent changes in the acoustic parameters differed between syllable types, suggesting that they cannot solely be explained by physical maturation of the vocal apparatus. Since gray mouse lemurs exhibit five features of animal babbling, they show parallels to the vocal development of human infants, bats, and marmosets.
Collapse
Affiliation(s)
| | - Daniel Romero-Mujalli
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
- Department for Environment Constructions and Design, Institute of Microbiology (IM), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850, Mendrisio, Switzerland
| | - Tjard Bergmann
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Marina Scheumann
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| |
Collapse
|
3
|
Behavioral-psychological motivations encoded in the vocal repertoire of captive Amur tiger (Panthera tigris altaica) cubs. BMC ZOOL 2022; 7:2. [PMID: 37170180 PMCID: PMC10127000 DOI: 10.1186/s40850-021-00102-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The Amur tiger (Panthera tigris altaica) is the largest and one of the most endangered cats in the world. In wild and captive cats, communication is mainly dependent on olfaction. However, vocal communication also plays a key role between mother and cubs during the breeding period. How cubs express their physiological and psychological needs to their mother and companions by using acoustic signals is little known and mainly hindered by the difficult process of data collection. Here, we quantitatively summarized the vocal repertoire and behavioral contexts of captive Amur tiger cubs. The aim of the present work was to investigate the behavioral motivations of cub calls by considering influential factors of age, sex, and rearing experiences.
Results
The 5335 high-quality calls from 65 tiger cubs were classified into nine call types (Ar-1, Ar-2, Er, eee, Chuff, Growl, Hiss, Haer, and Roar) produced in seven behavioral contexts. Except for Er, eight of the nine call types were context-specific, related to Play (Ar-2, eee, and Roar), Isolation (Ar-1), Offensive Context (Haer, Growl, and Hiss), and a friendly context (Chuff).
Conclusions
The results suggest that cubs are not quiet, but instead they express rich information by emitting various call types, which are probably crucial for survival in the wild. We herein provide the first detailed spectrogram classification to indicate vocal repertoires of calls and their coding with respect to behavioral contexts in Amur tiger cubs, and we pave the steps for revealing their social communication system, which can be applied for conservation of populations. These insights can help tiger managers or keepers to improve the rearing conditions by understanding the feline cubs’ inner status and needs by monitoring their vocal information expressions and exchanges.
Collapse
|
4
|
Ter Haar SM, Fernandez AA, Gratier M, Knörnschild M, Levelt C, Moore RK, Vellema M, Wang X, Oller DK. Cross-species parallels in babbling: animals and algorithms. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200239. [PMID: 34482727 PMCID: PMC8419573 DOI: 10.1098/rstb.2020.0239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A key feature of vocal ontogeny in a variety of taxa with extensive vocal repertoires is a developmental pattern in which vocal exploration is followed by a period of category formation that results in a mature species-specific repertoire. Vocal development preceding the adult repertoire is often called ‘babbling’, a term used to describe aspects of vocal development in species of vocal-learning birds, some marine mammals, some New World monkeys, some bats and humans. The paper summarizes the results of research on babbling in examples from five taxa and proposes a unifying definition facilitating their comparison. There are notable similarities across these species in the developmental pattern of vocalizations, suggesting that vocal production learning might require babbling. However, the current state of the literature is insufficient to confirm this suggestion. We suggest directions for future research to elucidate this issue, emphasizing the importance of (i) expanding the descriptive data and seeking species with complex mature repertoires where babbling may not occur or may occur only to a minimal extent; (ii) (quasi-)experimental research to tease apart possible mechanisms of acquisition and/or self-organizing development; and (iii) computational modelling as a methodology to test hypotheses about the origins and functions of babbling. This article is part of the theme issue ‘Vocal learning in animals and humans’.
Collapse
Affiliation(s)
- Sita M Ter Haar
- Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
| | - Ahana A Fernandez
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Maya Gratier
- Laboratoire Ethologie, Cognition, Développement, Paris Nanterre University, Nanterre, France
| | - Mirjam Knörnschild
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Animal Behavior Lab, Freie Universität, Berlin, Germany.,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Claartje Levelt
- Leiden University Centre for Linguistics, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Roger K Moore
- Department Computer Science, University of Sheffield, Sheffield, UK
| | - Michiel Vellema
- Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University, PO Box 80086, 3508 TB Utrecht, The Netherlands
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - D Kimbrough Oller
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, USA.,Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA.,Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
5
|
Lattenkamp EZ, Hörpel SG, Mengede J, Firzlaff U. A researcher's guide to the comparative assessment of vocal production learning. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200237. [PMID: 34482725 PMCID: PMC8422597 DOI: 10.1098/rstb.2020.0237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
Vocal production learning (VPL) is the capacity to learn to produce new vocalizations, which is a rare ability in the animal kingdom and thus far has only been identified in a handful of mammalian taxa and three groups of birds. Over the last few decades, approaches to the demonstration of VPL have varied among taxa, sound production systems and functions. These discrepancies strongly impede direct comparisons between studies. In the light of the growing number of experimental studies reporting VPL, the need for comparability is becoming more and more pressing. The comparative evaluation of VPL across studies would be facilitated by unified and generalized reporting standards, which would allow a better positioning of species on any proposed VPL continuum. In this paper, we specifically highlight five factors influencing the comparability of VPL assessments: (i) comparison to an acoustic baseline, (ii) comprehensive reporting of acoustic parameters, (iii) extended reporting of training conditions and durations, (iv) investigating VPL function via behavioural, perception-based experiments and (v) validation of findings on a neuronal level. These guidelines emphasize the importance of comparability between studies in order to unify the field of vocal learning. This article is part of the theme issue 'Vocal learning in animals and humans'.
Collapse
Affiliation(s)
- Ella Z. Lattenkamp
- Division of Neurobiology, Department of Biology II, LMU Munich, Germany
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Stephen G. Hörpel
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Animal Sciences, Chair of Zoology, TU Munich, Germany
| | - Janine Mengede
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Uwe Firzlaff
- Department of Animal Sciences, Chair of Zoology, TU Munich, Germany
| |
Collapse
|
6
|
Fernandez AA, Burchardt LS, Nagy M, Knörnschild M. Babbling in a vocal learning bat resembles human infant babbling. Science 2021; 373:923-926. [PMID: 34413237 DOI: 10.1126/science.abf9279] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/13/2021] [Indexed: 11/02/2022]
Abstract
Babbling is a production milestone in infant speech development. Evidence for babbling in nonhuman mammals is scarce, which has prevented cross-species comparisons. In this study, we investigated the conspicuous babbling behavior of Saccopteryx bilineata, a bat capable of vocal production learning. We analyzed the babbling of 20 bat pups in the field during their 3-month ontogeny and compared its features to those that characterize babbling in human infants. Our findings demonstrate that babbling in bat pups is characterized by the same eight features as babbling in human infants, including the conspicuous features reduplication and rhythmicity. These parallels in vocal ontogeny between two mammalian species offer future possibilities for comparison of cognitive and neuromolecular mechanisms and adaptive functions of babbling in bats and humans.
Collapse
Affiliation(s)
- Ahana A Fernandez
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Animal Behavior Lab, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Lara S Burchardt
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Animal Behavior Lab, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Martina Nagy
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Mirjam Knörnschild
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Institute of Biology, Animal Behavior Lab, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany.,Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Balboa Ancon, Republic of Panama
| |
Collapse
|
7
|
Bettoni S, Stoeger A, Rodriguez C, Fitch WT. Airborne vocal communication in adult neotropical otters (Lontra longicaudis). PLoS One 2021; 16:e0251974. [PMID: 34038461 PMCID: PMC8153427 DOI: 10.1371/journal.pone.0251974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/07/2021] [Indexed: 11/19/2022] Open
Abstract
Most aquatic mammals have complex social and communication systems. Interestingly, little is known about otters' vocal communication compared to other aquatic mammals. Here, for the first time, we acoustically describe vocalizations of the neotropical otter (Lontra longicaudis), a solitary and endangered New World otter species. We recorded vocalizations and behavioral contexts from six captive neotropical otters at Projeto Lontra, Santa Catarina Island, Brazil. Analysis of acoustic parameters were used to classify the vocalizations according to structure and context. We describe six call types with highly tonal as well as chaotic vocalizations with fundamental frequencies ranging from 90 to 2500 Hz. Additionally, we identified sex differences in the usage of calls. Results suggest that the neotropical river otter has a rich vocal repertoire, similar in complexity to other solitary otter species, but less complex than that of the social giant otter. Despite differences in sociality, phylogeny and ecology, L. longicaudis seems to possess vocalizations homologous to those found in other otters (e.g. hah and chirp), suggesting phylogenetic inertia in otter communicative repertoire. Otters thus offer an interesting but neglected group to explore the evolution of communication systems.
Collapse
Affiliation(s)
- Sabrina Bettoni
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Angela Stoeger
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Camilo Rodriguez
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - W. Tecumseh Fitch
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Localize Animal Sound Events Reliably (LASER): A New Software for Sound Localization in Zoos. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2021. [DOI: 10.3390/jzbg2020011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Locating a vocalizing animal can be useful in many fields of bioacoustics and behavioral research, and is often done in the wild, covering large areas. In zoos, however, the application of this method becomes particularly difficult, because, on the one hand, the animals are in a relatively small area and, on the other hand, reverberant environments and background noise complicate the analysis. Nevertheless, by localizing and analyzing animal sounds, valuable information on physiological state, sex, subspecies, reproductive state, social status, and animal welfare can be gathered. Therefore, we developed a sound localization software that is able to estimate the position of a vocalizing animal precisely, making it possible to assign the vocalization to the corresponding individual, even under difficult conditions. In this study, the accuracy and reliability of the software is tested under various conditions. Different vocalizations were played back through a loudspeaker and recorded with several microphones to verify the accuracy. In addition, tests were carried out under real conditions using the example of the giant otter enclosure at Dortmund Zoo, Germany. The results show that the software can estimate the correct position of a sound source with a high accuracy (median of the deviation 0.234 m). Consequently, this software could make an important contribution to basic research via position determination and the associated differentiation of individuals, and could be relevant in a long-term application for monitoring animal welfare in zoos.
Collapse
|
9
|
Sainburg T, Thielk M, Gentner TQ. Finding, visualizing, and quantifying latent structure across diverse animal vocal repertoires. PLoS Comput Biol 2020; 16:e1008228. [PMID: 33057332 PMCID: PMC7591061 DOI: 10.1371/journal.pcbi.1008228] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/27/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022] Open
Abstract
Animals produce vocalizations that range in complexity from a single repeated call to hundreds of unique vocal elements patterned in sequences unfolding over hours. Characterizing complex vocalizations can require considerable effort and a deep intuition about each species' vocal behavior. Even with a great deal of experience, human characterizations of animal communication can be affected by human perceptual biases. We present a set of computational methods for projecting animal vocalizations into low dimensional latent representational spaces that are directly learned from the spectrograms of vocal signals. We apply these methods to diverse datasets from over 20 species, including humans, bats, songbirds, mice, cetaceans, and nonhuman primates. Latent projections uncover complex features of data in visually intuitive and quantifiable ways, enabling high-powered comparative analyses of vocal acoustics. We introduce methods for analyzing vocalizations as both discrete sequences and as continuous latent variables. Each method can be used to disentangle complex spectro-temporal structure and observe long-timescale organization in communication.
Collapse
Affiliation(s)
- Tim Sainburg
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
- Center for Academic Research & Training in Anthropogeny, University of California, San Diego, La Jolla, CA, USA
| | - Marvin Thielk
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Timothy Q. Gentner
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Charlton BD, Newman C, Macdonald DW, Buesching CD. Male European badger churrs: insights into call function and motivational basis. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00033-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ravignani A, Dalla Bella S, Falk S, Kello CT, Noriega F, Kotz SA. Rhythm in speech and animal vocalizations: a cross-species perspective. Ann N Y Acad Sci 2019; 1453:79-98. [PMID: 31237365 PMCID: PMC6851814 DOI: 10.1111/nyas.14166] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/14/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
Abstract
Why does human speech have rhythm? As we cannot travel back in time to witness how speech developed its rhythmic properties and why humans have the cognitive skills to process them, we rely on alternative methods to find out. One powerful tool is the comparative approach: studying the presence or absence of cognitive/behavioral traits in other species to determine which traits are shared between species and which are recent human inventions. Vocalizations of many species exhibit temporal structure, but little is known about how these rhythmic structures evolved, are perceived and produced, their biological and developmental bases, and communicative functions. We review the literature on rhythm in speech and animal vocalizations as a first step toward understanding similarities and differences across species. We extend this review to quantitative techniques that are useful for computing rhythmic structure in acoustic sequences and hence facilitate cross-species research. We report links between vocal perception and motor coordination and the differentiation of rhythm based on hierarchical temporal structure. While still far from a complete cross-species perspective of speech rhythm, our review puts some pieces of the puzzle together.
Collapse
Affiliation(s)
- Andrea Ravignani
- Artificial Intelligence LaboratoryVrije Universiteit BrusselBrusselsBelgium
- Institute for Advanced StudyUniversity of AmsterdamAmsterdamthe Netherlands
| | - Simone Dalla Bella
- International Laboratory for BrainMusic and Sound Research (BRAMS)MontréalQuebecCanada
- Department of PsychologyUniversity of MontrealMontréalQuebecCanada
- Department of Cognitive PsychologyWarsawPoland
| | - Simone Falk
- International Laboratory for BrainMusic and Sound Research (BRAMS)MontréalQuebecCanada
- Laboratoire de Phonétique et Phonologie, UMR 7018, CNRS/Université Sorbonne Nouvelle Paris‐3Institut de Linguistique et Phonétique générales et appliquéesParisFrance
| | | | - Florencia Noriega
- Chair for Network DynamicsCenter for Advancing Electronics Dresden (CFAED), TU DresdenDresdenGermany
- CODE University of Applied SciencesBerlinGermany
| | - Sonja A. Kotz
- International Laboratory for BrainMusic and Sound Research (BRAMS)MontréalQuebecCanada
- Basic and Applied NeuroDynamics Laboratory, Faculty of Psychology and Neuroscience, Department of Neuropsychology and PsychopharmacologyMaastricht UniversityMaastrichtthe Netherlands
- Department of NeuropsychologyMax‐Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
12
|
Abstract
Language is a cornerstone of human culture, yet the evolution of this cognitive-demanding ability is shrouded in mystery. Studying how different species demonstrate this trait can provide clues for its evolutionary route. Indeed, recent decades saw ample scientific attempts to compare human speech, the prominent behavioral manifestation of language, with other animals' vocalizations. Diligent studies have found only elementary parallels to speech in other animals, fortifying the belief that language is uniquely human. But have we really tested this uniqueness claim? Surprisingly, a true impartial comparison between human speech and other animals' vocalizations has hardly ever been conducted. Here, I illustrate how treating humans as an equal species in vocal-communication research is expected to provide us with no evidence for human superiority in this realm. Thus, novel balanced and unbiased comparative studies are vital for identifying any unique component of human speech and language.
Collapse
Affiliation(s)
- Yosef Prat
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University
| |
Collapse
|
13
|
Wermke K, Quast A, Hesse V. From melody to words: The role of sex hormones in early language development. Horm Behav 2018; 104:206-215. [PMID: 29573996 DOI: 10.1016/j.yhbeh.2018.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Human infants are the most proficient of the few vocal learner species. Sharing similar principles in terms of the generation and modification of complex sounds, cross-vocal learner comparisons are a suitable strategy when it comes to better understanding the evolution and mechanisms of auditory-vocal learning in human infants. This approach will also help us to understand sex differences in relation to vocal development towards language, the underlying brain mechanisms thereof and sex-specific hormonal effects. Although we are still far from being capable of discovering the "fast effects of steroids" in human infants, we have identified that peripheral hormones (blood serum) are important regulators of vocal behaviour towards language during a transitory hormone surge ("mini-puberty") that is comparable in its extent to puberty. This new area of research in human infants provides a promising opportunity to not only better understand early language acquisition from an ontogenetic and phylogenetic perspective, but to also identify reliable clinical risk-markers in infants for the development of later language disorders.
Collapse
Affiliation(s)
- Kathleen Wermke
- Center for Prespeech Development & Developmental Disorders, Department of Orthodontics University Hospital of Würzburg, 97070 Würzburg, Germany.
| | - Anja Quast
- Center for Prespeech Development & Developmental Disorders, Department of Orthodontics University Hospital of Würzburg, 97070 Würzburg, Germany; Department of Orthodontics, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Volker Hesse
- Institute for Experimental Paediatric Endocrinology, Charité-University-Medicine Berlin, 13533 Berlin, Germany
| |
Collapse
|
14
|
Linn SN, Boeer M, Scheumann M. First insights into the vocal repertoire of infant and juvenile Southern white rhinoceros. PLoS One 2018; 13:e0192166. [PMID: 29513670 PMCID: PMC5841651 DOI: 10.1371/journal.pone.0192166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/17/2018] [Indexed: 11/22/2022] Open
Abstract
Describing vocal repertoires represents an essential step towards gaining an overview about the complexity of acoustic communication in a given species. The analysis of infant vocalisations is essential for understanding the development and usage of species-specific vocalisations, but is often underrepresented, especially in species with long inter-birth intervals such as the white rhinoceros. Thus, this study aimed for the first time to characterise the infant and juvenile vocal repertoire of the Southern white rhinoceros and to relate these findings to the adult vocal repertoire. The behaviour of seven mother-reared white rhinoceros calves (two males, five females) and one hand-reared calf (male), ranging from one month to four years, was simultaneously audio and video-taped at three zoos. Normally reared infants and juveniles uttered four discriminable call types (Whine, Snort, Threat, and Pant) that were produced in different behavioural contexts. All call types were also uttered by the hand-reared calf. Call rates of Whines, but not of the other call types, decreased with age. These findings provide the first evidence that infant and juvenile rhinoceros utter specific call types in distinct contexts, even if they grow up with limited social interaction with conspecifics. By comparing our findings with the current literature on vocalisations of adult white rhinoceros and other solitary rhinoceros species, we discuss to which extent differences in the social lifestyle across species affect acoustic communication in mammals.
Collapse
Affiliation(s)
- Sabrina N. Linn
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, Hannover, Germany
- Serengeti-Park Hodenhagen GmbH, Am Safaripark 1, Hodenhagen, Germany
| | - Michael Boeer
- Osnabrück Zoo, Klaus-Strick-Weg 12, Osnabrück, Germany
| | - Marina Scheumann
- Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, Hannover, Germany
| |
Collapse
|
15
|
Mumm CAS, Knörnschild M. Territorial choruses of giant otter groups (Pteronura brasiliensis) encode information on group identity. PLoS One 2017; 12:e0185733. [PMID: 29023545 PMCID: PMC5638252 DOI: 10.1371/journal.pone.0185733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/18/2017] [Indexed: 11/22/2022] Open
Abstract
Group living animals often engage in corporate territorial defence. Territorial group vocalizations can provide information about group identity, size and composition. Neighbouring groups may use this information to avoid unfavourable direct conflicts. Giant otters are highly social and territorial animals with an elaborate vocal repertoire. They produce long-range screams when they are alert or excited, i.e. in an alarm, isolation or begging context. Long-range screams are not only produced by one individual at a time ('single screams') but also by multiple group members simultaneously, resulting in a highly conspicuous 'group chorus'. Wild giant otters regularly produce group choruses during interactions with predators, when they detect intruders in their territory or before group reunions after separation. Since single screams and especially group choruses probably contribute to the groups' corporate territorial defence, we hypothesized that group identity is encoded in single screams and group choruses. We analysed vocalizations from five wild and three captive giant otter groups and found statistical evidence for a group signature in group choruses. Results for single screams were less conclusive, which might have been caused by the comparatively lower sample size. We suggest that giant otters may gain information on group identity by listening to group choruses. Group identity likely constitutes important social information for giant otters since territory boundaries of neighbouring groups can overlap and direct inter-group conflicts are severe. Therefore, group chorusing may contribute to the mutual avoidance of members from different groups.
Collapse
Affiliation(s)
- Christina A. S. Mumm
- Animal Behavior Lab, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Mirjam Knörnschild
- Animal Behavior Lab, Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Smithsonian Tropical Research Institute, Ancón, Panamáa
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
16
|
Walter MH, Schnitzler HU. Spectral call features provide information about the aggression level of greater mouse-eared bats (Myotis myotis) during agonistic interactions. BIOACOUSTICS 2017. [DOI: 10.1080/09524622.2017.1359798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Michael H. Walter
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Schnitzler
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
|