1
|
Sarnobat D, Moffett RC, Ma J, Flatt PR, McClenaghan NH, Tarasov AI. Taurine rescues pancreatic β-cell stress by stimulating α-cell transdifferentiation. Biofactors 2023. [PMID: 36714992 DOI: 10.1002/biof.1938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023]
Abstract
The semi-essential ubiquitous amino acid taurine has been shown to alleviate obesity and hyperglycemia in humans; however, the pathways underlying the antidiabetic actions have not been characterized. We explored the effect of chronic taurine exposure on cell biology of pancreatic islets, in degenerative type 1-like diabetes. The latter was modeled by small dose of streptozotocin (STZ) injection for 5 days in mice, followed by a 10-day administration of taurine (2% w/v, orally) in the drinking water. Taurine treatment opposed the detrimental changes in islet morphology and β-/α-cell ratio, induced by STZ diabetes, coincidentally with a significant 3.9 ± 0.7-fold enhancement of proliferation and 40 ± 5% reduction of apoptosis in β-cells. In line with these findings, the treatment counteracted an upregulation of antioxidant (Sod1, Sod2, Cat, Gpx1) and downregulation of islet expansion (Ngn3, Itgb1) genes induced by STZ, in a pancreatic β-cell line. At the same time, taurine enhanced the transdifferentiation of α-cells into β-cells by 2.3 ± 0.8-fold, echoed in strong non-metabolic elevation of cytosolic Ca2+ levels in pancreatic α-cells. Our data suggest a bimodal effect of dietary taurine on islet β-cell biology, which combines the augmentation of α-/β-cell transdifferentiation with downregulation of apoptosis. The dualism of action, stemming presumably from the intra- and extracellular modality of the signal, is likely to explain the antidiabetic potential of taurine supplementation.
Collapse
Affiliation(s)
- Dipak Sarnobat
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Neville H McClenaghan
- School of Biomedical Sciences, Ulster University, Coleraine, UK
- Department of Life Sciences, Atlantic Technological University, Sligo, Ireland
| | | |
Collapse
|
2
|
Ribeiro RA, Bonfleur ML, Batista TM, Borck PC, Carneiro EM. Regulation of glucose and lipid metabolism by the pancreatic and extra-pancreatic actions of taurine. Amino Acids 2018; 50:1511-1524. [PMID: 30206707 DOI: 10.1007/s00726-018-2650-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
The beneficial actions of L-taurine (Tau) against glucose intolerance, obesity, type 2 diabetes (T2D), and non-alcoholic fat liver disease (NAFLD) have been linked to its antioxidant and anti-inflammatory effects, which ameliorate tissue insulin sensitivity. Importantly, there are several lines of evidence that indicate a direct action of Tau on the endocrine pancreas to regulate the secretion and paracrine actions of insulin, glucagon, and somatostatin. Furthermore, Tau can also ameliorate glucose metabolism through the enhancement of insulin signaling. However, some of the benefits of Tau upon intermediary metabolism may manifest via considerable antagonism of the action of insulin. Therefore, this review discusses the mechanisms of action by which Tau may regulate endocrine pancreatic morphofunction, and glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Rosane A Ribeiro
- NUPEM, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Avenida São José do Barreto, 764, Macaé, RJ, CEP: 27965-045, Brazil.
| | - Maria L Bonfleur
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, PR, Brazil
| | - Thiago M Batista
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Patricia C Borck
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Everardo M Carneiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
3
|
Taurine improves glucose tolerance in STZ-induced insulin-deficient diabetic mice. Diabetol Int 2018; 9:234-242. [PMID: 30603373 DOI: 10.1007/s13340-018-0353-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
Blood glucose levels fluctuate considerably in diabetic patients with reduced secretion of endogenous insulin. We previously reported that glucagon is secreted excessively in these patients and that taurine increases glucagon secretion in vitro. Therefore, we hypothesized that glucose tolerance would further deteriorate when taurine was administered to diabetic mice incapable of insulin secretion. We generated four groups of streptozotocin (STZ)-treated C57BL/6J mice (STZ-mice): STZ-mice without taurine treatment (STZ-Con), STZ-mice treated with 0.5% (w/v) taurine (STZ-0.5% Tau), STZ-mice treated with 1% (w/v) taurine (STZ-1% Tau), and STZ-mice treated with 2% (w/v) taurine (STZ-2% Tau). Mice were treated for 4 weeks, and then, we evaluated glucose tolerance, pancreatic β-cell area and α-cell area, pancreatic insulin and glucagon content, and daily blood glucose variability. As a result, following the administration of taurine, glucose tolerance improved, both pancreatic β- and α-cell area increased, and both insulin and glucagon content increased. In the 1% taurine administration group, blood glucose variability decreased. These unexpected results suggest that taurine improves glucose tolerance, in spite of its subsequent increased glucagon production, partly by increasing pancreatic β-cells and insulin production in vivo.
Collapse
|
4
|
Piao F, Aadil RM, Suleman R, Li K, Zhang M, Wu P, Shahbaz M, Ahmed Z. Ameliorative effects of taurine against diabetes: a review. Amino Acids 2018; 50:487-502. [PMID: 29492671 DOI: 10.1007/s00726-018-2544-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/19/2018] [Indexed: 01/01/2023]
Abstract
Diets in rats and humans have shown promising results. Taurine improved glucagon activity, promoted glycemic stability, modified glucose levels, successfully addressed hyperglycemia via advanced glycation end-product control, improved insulin secretion and had a beneficial effect on insulin resistance. Taurine treatment performed well against oxidative stress in brain, increased the secretion of required hormones and protected against neuropathy, retinopathy and nephropathy in diabetes compared with the control. Taurine has been observed to be effective in treatments against diabetic hepatotoxicity, vascular problems and heart injury in diabetes. Taurine was shown to be effective against oxidative stress. The mechanism of action of taurine cannot be explained by one pathway, as it has many effects. Several of the pathways are the advanced glycation end-product pathway, PI3-kinase/AKT pathway and mitochondrial apoptosis pathway. The worldwide threat of diabetes underscores the urgent need for novel therapeutic measures against this disorder. Taurine (2-aminoethane sulfonic acid) is a natural compound that has been studied in diabetes and diabetes-induced complications.
Collapse
Affiliation(s)
- Fengyuan Piao
- School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faislabad, Pakistan
| | - Raheel Suleman
- Institute of Food Science and Technology, Graduate School of Chinese Academy of Agriculture Science, Beijing, China
| | - Kaixin Li
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Mengren Zhang
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Pingan Wu
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Muhammad Shahbaz
- Department of Food Science and Technology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Zulfiqar Ahmed
- Department of Food Science and Technology, College of Environmental and Agricultural Sciences, Islamia University Bahawalpur, Bhawalpur, Pakistan
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Autoimmune destruction of the β cells is considered the key abnormality in type 1 diabetes mellitus and insulin replacement the primary therapeutic strategy. However, a lack of insulin is accompanied by disturbances in glucagon release, which is excessive postprandially, but insufficient during hypoglycaemia. In addition, replacing insulin alone appears insufficient for adequate glucose control. This review focuses on the growing body of evidence that glucagon abnormalities contribute significantly to the pathophysiology of diabetes and on recent efforts to target the glucagon axis as adjunctive therapy to insulin replacement. RECENT FINDINGS This review discusses recent (since 2013) advances in abnormalities of glucagon regulation and their link to the pathophysiology of diabetes; new mechanisms of glucagon action and regulation; manipulation of glucagon in diabetes treatment; and analytical and systems biology tools to study glucagon regulation. SUMMARY Recent efforts 'resurrected' glucagon as a key hormone in the pathophysiology of diabetes. New studies target its abnormal regulation and action that is key for improving diabetes treatment. The progress is promising, but major questions remain, including unravelling the mechanism of loss of glucagon counterregulation in type 1 diabetes mellitus and how best to manipulate glucagon to achieve more efficient and safer glycaemic control.
Collapse
Affiliation(s)
- Leon S Farhy
- Division of Endocrinology and Metabolism, Department of Medicine and Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
6
|
Metabolomics applied to the pancreatic islet. Arch Biochem Biophys 2015; 589:120-30. [PMID: 26116790 DOI: 10.1016/j.abb.2015.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 01/18/2023]
Abstract
Metabolomics, the characterization of the set of small molecules in a biological system, is advancing research in multiple areas of islet biology. Measuring a breadth of metabolites simultaneously provides a broad perspective on metabolic changes as the islets respond dynamically to metabolic fuels, hormones, or environmental stressors. As a result, metabolomics has the potential to provide new mechanistic insights into islet physiology and pathophysiology. Here we summarize advances in our understanding of islet physiology and the etiologies of type-1 and type-2 diabetes gained from metabolomics studies.
Collapse
|