1
|
Sánchez WN, Driessen AJM, Wilson CAM. Protein targeting to the ER membrane: multiple pathways and shared machinery. Crit Rev Biochem Mol Biol 2025:1-47. [PMID: 40377270 DOI: 10.1080/10409238.2025.2503746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
The endoplasmic reticulum (ER) serves as a central hub for protein production and sorting in eukaryotic cells, processing approximately one-third of the cellular proteome. Protein targeting to the ER occurs through multiple pathways that operate both during and independent of translation. The classical translation-dependent pathway, mediated by cytosolic factors like signal recognition particle, recognizes signal peptides or transmembrane helices in nascent proteins, while translation-independent mechanisms utilize RNA-based targeting through specific sequence elements and RNA-binding proteins. At the core of these processes lies the Sec61 complex, which undergoes dynamic conformational changes and coordinates with numerous accessory factors to facilitate protein translocation and membrane insertion across and into the endoplasmic reticulum membrane. This review focuses on the molecular mechanisms of protein targeting to the ER, from the initial recognition of targeting signals to the dynamics of the translocation machinery, highlighting recent discoveries that have revealed unprecedented complexity in these cellular trafficking pathways.
Collapse
Affiliation(s)
- Wendy N Sánchez
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Hill J, Nyathi Y. USP5 enhances SGTA mediated protein quality control. PLoS One 2022; 17:e0257786. [PMID: 35895711 PMCID: PMC9328565 DOI: 10.1371/journal.pone.0257786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Mislocalised membrane proteins (MLPs) present a risk to the cell due to exposed hydrophobic amino acids which cause MLPs to aggregate. Previous studies identified SGTA as a key component of the machinery that regulates the quality control of MLPs. Overexpression of SGTA promotes deubiqutination of MLPs resulting in their accumulation in cytosolic inclusions, suggesting SGTA acts in collaboration with deubiquitinating enzymes (DUBs) to exert these effects. However, the DUBs that play a role in this process have not been identified. In this study we have identified the ubiquitin specific peptidase 5 (USP5) as a DUB important in regulating the quality control of MLPs. We show that USP5 is in complex with SGTA, and this association is increased in the presence of an MLP. Overexpression of SGTA results in an increase in steady-state levels of MLPs suggesting a delay in proteasomal degradation of substrates. However, our results show that this effect is strongly dependent on the presence of USP5. We find that in the absence of USP5, the ability of SGTA to increase the steady state levels of MLPs is compromised. Moreover, knockdown of USP5 results in a reduction in the steady state levels of MLPs, while overexpression of USP5 increases the steady state levels. Our findings suggest that the interaction of SGTA with USP5 enables specific MLPs to escape proteasomal degradation allowing selective modulation of MLP quality control. These findings progress our understanding of aggregate formation, a hallmark in a range of neurodegenerative diseases and type II diabetes, as well as physiological processes of aggregate clearance.
Collapse
Affiliation(s)
- Jake Hill
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Yvonne Nyathi
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
4
|
Quel NG, Fernando de C Rodrigues L, Aragão AZB, Pinheiro GMS, Camacho RP, Souto DEP, Kubota LT, Barbosa LRS, Ramos CHI. Insights into the structure and function of the C-terminus of SGTs (small glutamine-rich TPR-containing proteins): A study of the Aedes aegypti homolog. Biochimie 2021; 187:131-143. [PMID: 34082040 DOI: 10.1016/j.biochi.2021.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
SGTs (small glutamine-rich TPR-containing proteins) are dimeric proteins that belong to the class of co-chaperones characterized by the presence of TPR domains (containing tetratricopeptide repeats). Human (SGTA) and yeast (Sgt2) SGTs are characterized by three distinct domains: an N-terminal dimerization domain, a central TPR-domain important for binding to other proteins (chaperones included) and a C-terminal domain involved in hydrophobic interactions. Both these SGTs are involved in the cellular PQC (protein quality control) system, as they interact with chaperones and have functions that aid stress recovery. However, there are differences between them, such as structural features and binding specificities, that could be better understood if other orthologous proteins were studied. Therefore, we produced and characterized a putative SGT protein, designated AaSGT, from the mosquito Aedes aegypti, which is a vector of several diseases, such as dengue and Zika. The protein was produced as a folded dimer which was stable up to 40 °C and was capable of binding to AaHsp90 and fully protecting a model protein, α-synuclein, from aggregation. The conformation of AaSGT was investigated by biophysical tools and small angle X-ray scattering, which showed that the protein had an elongated conformation and that its C-terminal domain was mainly disordered. The results with a C-terminal deletion mutant supported these observations. Altogether, these results are consistent with those from other functional SGT proteins and add to the understanding of the PQC system in Aedes aegypti, an important aim that may help to develop inhibitory strategies against this vector of neglected diseases.
Collapse
Affiliation(s)
- Natália G Quel
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970 Brazil; National Institute of Science & Technology of Structural Biology and Bioimage (INCTBEB), Brazil
| | | | - Annelize Z B Aragão
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970 Brazil
| | - Glaucia M S Pinheiro
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970 Brazil
| | - Rafael P Camacho
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970 Brazil
| | - Denio E P Souto
- Department of Chemistry, Federal University of Paraná-UFPR, Curitiba PR, 81530-900, Brazil
| | - Lauro T Kubota
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970 Brazil; National Institute of Science & Technology of Bioanalytics (INCTBio), Brazil
| | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo SP, 05508-090 Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970 Brazil; National Institute of Science & Technology of Structural Biology and Bioimage (INCTBEB), Brazil.
| |
Collapse
|
5
|
Lin KF, Fry MY, Saladi SM, Clemons WM. Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2. J Biol Chem 2021; 296:100441. [PMID: 33610544 PMCID: PMC8010706 DOI: 10.1016/j.jbc.2021.100441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023] Open
Abstract
The targeting and insertion of tail-anchored (TA) integral membrane proteins (IMPs) into the correct membrane is critical for cellular homeostasis. The fungal protein Sgt2, and its human homolog SGTA, is the entry point for clients to the guided entry of tail-anchored protein (GET) pathway, which targets endoplasmic reticulum-bound TA IMPs. Consisting of three structurally independent domains, the C terminus of Sgt2 binds to the hydrophobic transmembrane domain (TMD) of clients. However, the exact binding interface within Sgt2 and molecular details that underlie its binding mechanism and client preference are not known. Here, we reveal the mechanism of Sgt2 binding to hydrophobic clients, including TA IMPs. Through sequence analysis, biophysical characterization, and a series of capture assays, we establish that the Sgt2 C-terminal domain is flexible but conserved and sufficient for client binding. A molecular model for this domain reveals a helical hand forming a hydrophobic groove approximately 15 Å long that is consistent with our observed higher affinity for client TMDs with a hydrophobic face and a minimal length of 11 residues. This work places Sgt2 into a broader family of TPR-containing cochaperone proteins, demonstrating structural and sequence-based similarities to the DP domains in the yeast Hsp90 and Hsp70 coordinating protein, Sti1.
Collapse
Affiliation(s)
- Ku-Feng Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Michelle Y Fry
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Shyam M Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
6
|
Graham JB, Canniff NP, Hebert DN. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Crit Rev Biochem Mol Biol 2019; 54:103-118. [PMID: 31023093 DOI: 10.1080/10409238.2019.1590305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The endoplasmic reticulum (ER) is a complex, multifunctional organelle comprised of a continuous membrane and lumen that is organized into a number of functional regions. It plays various roles including protein translocation, folding, quality control, secretion, calcium signaling, and lipid biogenesis. Cellular protein homeostasis is maintained by a complicated chaperone network, and the largest functional family within this network consists of proteins containing tetratricopeptide repeats (TPRs). TPRs are well-studied structural motifs that mediate intermolecular protein-protein interactions, supporting interactions with a wide range of ligands or substrates. Seven TPR-containing proteins have thus far been shown to localize to the ER and control protein organization and homeostasis within this multifunctional organelle. Here, we discuss the roles of these proteins in controlling ER processes and organization. The crucial roles that TPR-containing proteins play in the ER are highlighted by diseases or defects associated with their mutation or disruption.
Collapse
Affiliation(s)
- Jill B Graham
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Nathan P Canniff
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Daniel N Hebert
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| |
Collapse
|
7
|
Benarroch R, Austin JM, Ahmed F, Isaacson RL. The roles of cytosolic quality control proteins, SGTA and the BAG6 complex, in disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 114:265-313. [PMID: 30635083 PMCID: PMC7102839 DOI: 10.1016/bs.apcsb.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SGTA is a co-chaperone that, in collaboration with the complex of BAG6/UBL4A/TRC35, facilitates the biogenesis and quality control of hydrophobic proteins, protecting them from the aqueous cytosolic environment. This work includes targeting tail-anchored proteins to their resident membranes, sorting of membrane and secretory proteins that mislocalize to the cytoplasm and endoplasmic reticulum-associated degradation of misfolded proteins. Since these functions are all vital for the cell's continued proteostasis, their disruption poses a threat to the cell, with a particular risk of protein aggregation, a phenomenon that underpins many diseases. Although the specific disease implications of machinery involved in quality control of hydrophobic substrates are poorly understood, here we summarize much of the available information on this topic.
Collapse
Affiliation(s)
- Rashi Benarroch
- Department of Chemistry, King's College London, London, United Kingdom
| | - Jennifer M Austin
- Department of Chemistry, King's College London, London, United Kingdom
| | - Fahmeda Ahmed
- Department of Chemistry, King's College London, London, United Kingdom
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, London, United Kingdom.
| |
Collapse
|
8
|
Coto AL, Seraphim TV, Batista FA, Dores-Silva PR, Barranco ABF, Teixeira FR, Gava LM, Borges JC. Structural and functional studies of the Leishmania braziliensis SGT co-chaperone indicate that it shares structural features with HIP and can interact with both Hsp90 and Hsp70 with similar affinities. Int J Biol Macromol 2018; 118:693-706. [DOI: 10.1016/j.ijbiomac.2018.06.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
|
9
|
Martínez-Lumbreras S, Krysztofinska EM, Thapaliya A, Spilotros A, Matak-Vinkovic D, Salvadori E, Roboti P, Nyathi Y, Muench JH, Roessler MM, Svergun DI, High S, Isaacson RL. Structural complexity of the co-chaperone SGTA: a conserved C-terminal region is implicated in dimerization and substrate quality control. BMC Biol 2018; 16:76. [PMID: 29996828 PMCID: PMC6042327 DOI: 10.1186/s12915-018-0542-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/20/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Protein quality control mechanisms are essential for cell health and involve delivery of proteins to specific cellular compartments for recycling or degradation. In particular, stray hydrophobic proteins are captured in the aqueous cytosol by a co-chaperone, the small glutamine-rich, tetratricopeptide repeat-containing protein alpha (SGTA), which facilitates the correct targeting of tail-anchored membrane proteins, as well as the sorting of membrane and secretory proteins that mislocalize to the cytosol and endoplasmic reticulum-associated degradation. Full-length SGTA has an unusual elongated dimeric structure that has, until now, evaded detailed structural analysis. The C-terminal region of SGTA plays a key role in binding a broad range of hydrophobic substrates, yet in contrast to the well-characterized N-terminal and TPR domains, there is a lack of structural information on the C-terminal domain. In this study, we present new insights into the conformation and organization of distinct domains of SGTA and show that the C-terminal domain possesses a conserved region essential for substrate processing in vivo. RESULTS We show that the C-terminal domain region is characterized by α-helical propensity and an intrinsic ability to dimerize independently of the N-terminal domain. Based on the properties of different regions of SGTA that are revealed using cell biology, NMR, SAXS, Native MS, and EPR, we observe that its C-terminal domain can dimerize in the full-length protein and propose that this reflects a closed conformation of the substrate-binding domain. CONCLUSION Our results provide novel insights into the structural complexity of SGTA and provide a new basis for mechanistic studies of substrate binding and release at the C-terminal region.
Collapse
Affiliation(s)
| | - Ewelina M Krysztofinska
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, SE1 1DB, UK
| | - Arjun Thapaliya
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, SE1 1DB, UK
| | - Alessandro Spilotros
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603, Hamburg, Germany
| | - Dijana Matak-Vinkovic
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Enrico Salvadori
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
| | - Peristera Roboti
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yvonne Nyathi
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- Present Address: School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, UK
| | - Janina H Muench
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, SE1 1DB, UK
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603, Hamburg, Germany
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, SE1 1DB, UK.
| |
Collapse
|
10
|
Abstract
Proper localization of membrane proteins is essential for the function of biological membranes and for the establishment of organelle identity within a cell. Molecular machineries that mediate membrane protein biogenesis need to not only achieve a high degree of efficiency and accuracy, but also prevent off-pathway aggregation events that can be detrimental to cells. The posttranslational targeting of tail-anchored proteins (TAs) provides tractable model systems to probe these fundamental issues. Recent advances in understanding TA-targeting pathways reveal sophisticated molecular machineries that drive and regulate these processes. These findings also suggest how an interconnected network of targeting factors, cochaperones, and quality control machineries together ensures robust membrane protein biogenesis.
Collapse
Affiliation(s)
- Un Seng Chio
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125; , ,
| |
Collapse
|
11
|
Krysztofinska EM, Evans NJ, Thapaliya A, Murray JW, Morgan RML, Martinez-Lumbreras S, Isaacson RL. Structure and Interactions of the TPR Domain of Sgt2 with Yeast Chaperones and Ybr137wp. Front Mol Biosci 2017; 4:68. [PMID: 29075633 PMCID: PMC5641545 DOI: 10.3389/fmolb.2017.00068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Small glutamine-rich tetratricopeptide repeat-containing protein 2 (Sgt2) is a multi-module co-chaperone involved in several protein quality control pathways. The TPR domain of Sgt2 and several other proteins, including SGTA, Hop, and CHIP, is a highly conserved motif known to form transient complexes with molecular chaperones such as Hsp70 and Hsp90. In this work, we present the first high resolution crystal structures of Sgt2_TPR alone and in complex with a C-terminal peptide PTVEEVD from heat shock protein, Ssa1. Using nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, we demonstrate that Sgt2_TPR interacts with peptides corresponding to the C-termini of Ssa1, Hsc82, and Ybr137wp with similar binding modes and affinities.
Collapse
Affiliation(s)
| | - Nicola J Evans
- Department of Chemistry, King's College London, London, United Kingdom
| | - Arjun Thapaliya
- Department of Chemistry, King's College London, London, United Kingdom
| | - James W Murray
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom
| | - Rhodri M L Morgan
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom
| | | | - Rivka L Isaacson
- Department of Chemistry, King's College London, London, United Kingdom
| |
Collapse
|
12
|
SGTA-Dependent Regulation of Hsc70 Promotes Cytosol Entry of Simian Virus 40 from the Endoplasmic Reticulum. J Virol 2017; 91:JVI.00232-17. [PMID: 28356524 DOI: 10.1128/jvi.00232-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/24/2017] [Indexed: 01/01/2023] Open
Abstract
Membrane penetration by nonenveloped viruses remains enigmatic. In the case of the nonenveloped polyomavirus simian virus 40 (SV40), the virus penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol and then traffics to the nucleus to cause infection. We previously demonstrated that the cytosolic Hsc70-SGTA-Hsp105 complex is tethered to the ER membrane, where Hsp105 and SGTA facilitate the extraction of SV40 from the ER and transport of the virus into the cytosol. We now find that Hsc70 also ejects SV40 from the ER into the cytosol in a step regulated by SGTA. Although SGTA's N-terminal domain, which mediates homodimerization and recruits cellular adaptors, is dispensable during ER-to-cytosol transport of SV40, this domain appears to exert an unexpected post-ER membrane translocation function during SV40 entry. Our study thus establishes a critical function of Hsc70 within the Hsc70-SGTA-Hsp105 complex in promoting SV40 ER-to-cytosol membrane penetration and unveils a role of SGTA in controlling this step.IMPORTANCE How a nonenveloped virus transports across a biological membrane to cause infection remains mysterious. One enigmatic step is whether host cytosolic components are co-opted to transport the viral particle into the cytosol. During ER-to-cytosol membrane transport of the nonenveloped polyomavirus SV40, a decisive infection step, a cytosolic complex composed of Hsc70-SGTA-Hsp105 was previously shown to associate with the ER membrane. SGTA and Hsp105 have been shown to extract SV40 from the ER and transport the virus into the cytosol. We demonstrate here a critical role of Hsc70 in SV40 ER-to-cytosol penetration and reveal how SGTA controls Hsc70 to impact this process.
Collapse
|
13
|
Thapaliya A, Nyathi Y, Martínez-Lumbreras S, Krysztofinska EM, Evans NJ, Terry IL, High S, Isaacson RL. SGTA interacts with the proteasomal ubiquitin receptor Rpn13 via a carboxylate clamp mechanism. Sci Rep 2016; 6:36622. [PMID: 27827410 PMCID: PMC5101480 DOI: 10.1038/srep36622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022] Open
Abstract
The fate of secretory and membrane proteins that mislocalize to the cytosol is decided by a collaboration between cochaperone SGTA (small, glutamine-rich, tetratricopeptide repeat protein alpha) and the BAG6 complex, whose operation relies on multiple transient and subtly discriminated interactions with diverse binding partners. These include chaperones, membrane-targeting proteins and ubiquitination enzymes. Recently a direct interaction was discovered between SGTA and the proteasome, mediated by the intrinsic proteasomal ubiquitin receptor Rpn13. Here, we structurally and biophysically characterize this binding and identify a region of the Rpn13 C-terminal domain that is necessary and sufficient to facilitate it. We show that the contact occurs through a carboxylate clamp-mediated molecular recognition event with the TPR domain of SGTA, and provide evidence that the interaction can mediate the association of Rpn13 and SGTA in a cellular context.
Collapse
Affiliation(s)
- Arjun Thapaliya
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, U.K
| | - Yvonne Nyathi
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | | | - Ewelina M. Krysztofinska
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, U.K
| | - Nicola J. Evans
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, U.K
| | - Isabelle L. Terry
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, U.K
| | - Stephen High
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Rivka L. Isaacson
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, U.K
| |
Collapse
|
14
|
Krysztofinska EM, Martínez-Lumbreras S, Thapaliya A, Evans NJ, High S, Isaacson RL. Structural and functional insights into the E3 ligase, RNF126. Sci Rep 2016; 6:26433. [PMID: 27193484 PMCID: PMC4872217 DOI: 10.1038/srep26433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/03/2016] [Indexed: 12/14/2022] Open
Abstract
RNF126 is an E3 ubiquitin ligase that collaborates with the BAG6 sortase complex to ubiquitinate hydrophobic substrates in the cytoplasm that are destined for proteasomal recycling. Composed of a trimeric complex of BAG6, TRC35 and UBL4A the BAG6 sortase is also associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates. Here we solve the solution structure of the RNF126 zinc finger domain in complex with the BAG6 UBL domain. We also characterise an interaction between RNF126 and UBL4A and analyse the competition between SGTA and RNF126 for the N-terminal BAG6 binding site. This work sheds light on the sorting mechanism of the BAG6 complex and its accessory proteins which, together, decide the fate of stray hydrophobic proteins in the aqueous cytoplasm.
Collapse
Affiliation(s)
- Ewelina M. Krysztofinska
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, UK
| | | | - Arjun Thapaliya
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, UK
| | - Nicola J. Evans
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, UK
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Rivka L. Isaacson
- Department of Chemistry, King’s College London, Britannia House, Trinity Street, London, SE1 1DB, UK
| |
Collapse
|
15
|
Roberts JD, Thapaliya A, Martínez-Lumbreras S, Krysztofinska EM, Isaacson RL. Structural and Functional Insights into Small, Glutamine-Rich, Tetratricopeptide Repeat Protein Alpha. Front Mol Biosci 2015; 2:71. [PMID: 26734616 PMCID: PMC4683186 DOI: 10.3389/fmolb.2015.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/29/2015] [Indexed: 11/21/2022] Open
Abstract
The small glutamine-rich, tetratricopeptide repeat-containing protein alpha (SGTA) is an emerging player in the quality control of secretory and membrane proteins mislocalized to the cytosol, with established roles in tail-anchored (TA) membrane protein biogenesis. SGTA consists of three structural domains with individual functions, an N-terminal dimerization domain that assists protein sorting pathways, a central tetratricopeptide repeat (TPR) domain that mediates interactions with heat-shock proteins, proteasomal, and hormonal receptors, and viral proteins, and a C-terminal glutamine rich region that binds hydrophobic substrates. SGTA has been linked to viral lifecycles and hormone receptor signaling, with implications in the pathogenesis of various disease states. Thus far, a range of biophysical techniques have been employed to characterize SGTA structure in some detail, and to investigate its interactions with binding partners in different biological contexts. A complete description of SGTA structure, together with further investigation into its function as a co-chaperone involved quality control, could provide us with useful insights into its role in maintaining cellular proteostasis, and broaden our understanding of mechanisms underlying associated pathologies. This review describes how some structural features of SGTA have been elucidated, and what this has uncovered about its cellular functions. A brief background on the structure and function of SGTA is given, highlighting its importance to biomedicine and related fields. The current level of knowledge and what remains to be understood about the structure and function of SGTA is summarized, discussing the potential direction of future research.
Collapse
|
16
|
Leznicki P, Korac-Prlic J, Kliza K, Husnjak K, Nyathi Y, Dikic I, High S. Binding of SGTA to Rpn13 selectively modulates protein quality control. J Cell Sci 2015; 128:3187-96. [PMID: 26169395 PMCID: PMC4582187 DOI: 10.1242/jcs.165209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/03/2015] [Indexed: 12/16/2022] Open
Abstract
Rpn13 is an intrinsic ubiquitin receptor of the 26S proteasome regulatory subunit that facilitates substrate capture prior to degradation. Here we show that the C-terminal region of Rpn13 binds to the tetratricopeptide repeat (TPR) domain of SGTA, a cytosolic factor implicated in the quality control of mislocalised membrane proteins (MLPs). The overexpression of SGTA results in a substantial increase in steady-state MLP levels, consistent with an effect on proteasomal degradation. However, this effect is strongly dependent upon the interaction of SGTA with the proteasomal component Rpn13. Hence, overexpression of the SGTA-binding region of Rpn13 or point mutations within the SGTA TPR domain both inhibit SGTA binding to the proteasome and substantially reduce MLP levels. These findings suggest that SGTA can regulate the access of MLPs to the proteolytic core of the proteasome, implying that a protein quality control cycle that involves SGTA and the BAG6 complex can operate at the 19S regulatory particle. We speculate that the binding of SGTA to Rpn13 enables specific polypeptides to escape proteasomal degradation and/or selectively modulates substrate degradation. Highlighted Article: Binding of SGTA to the proteasome delays substrate degradation, thereby providing a mechanism for potentially viable proteins to be rescued for reuse.
Collapse
Affiliation(s)
- Pawel Leznicki
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jelena Korac-Prlic
- Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanska 2, Split 21000, Croatia
| | - Katarzyna Kliza
- Institute of Biochemistry II, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany
| | - Yvonne Nyathi
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ivan Dikic
- Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanska 2, Split 21000, Croatia Institute of Biochemistry II, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany Buchmann Institute for Molecular Life Sciences, School of Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt (Main) 60590, Germany
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
17
|
Ma N, Zhou LW, Li LJ, Li Z, Feng BS. Role of HLA-B associated transcript 3 in immune diseases. Shijie Huaren Xiaohua Zazhi 2015; 23:2761-2767. [DOI: 10.11569/wcjd.v23.i17.2761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
HLA-B associated transcript 3 (BAT3/Scythe/BAG6) is a member of the BAG protein family which can regulate the cell cycle. Recently, BAT3 has also been identified to have immunoregulatory function through kinds of mechanisms. First, BAT3 can promote the maturation of dendritic cells (DCs), the activity of macrophages and the expression of major histocompatibility complex (MHC)-Ⅱ on antigen presenting cells (APCs) to regulate chronic inflammation. Second, BAT3 can suppress T cell immunoglobulin and mucin domain 3 (Tim-3)-mediated cell death and exhaustion of T helper cell type 1 (Th1) to exacerbate autoimmune diseases. Finally, BAT3 can regulate the cytotoxicity of natural killer cells (NKs) in a NKp30-dependent manner to play a part in tumor immune evasion and tumor rejection. Further details about BAT3 and its involvement in immunity and immunity-associated diseases will benefit the novel strategy for treatment of immune diseases.
Collapse
|
18
|
Kuwabara N, Minami R, Yokota N, Matsumoto H, Senda T, Kawahara H, Kato R. Structure of a BAG6 (Bcl-2-associated athanogene 6)-Ubl4a (ubiquitin-like protein 4a) complex reveals a novel binding interface that functions in tail-anchored protein biogenesis. J Biol Chem 2015; 290:9387-98. [PMID: 25713138 PMCID: PMC4392246 DOI: 10.1074/jbc.m114.631804] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/10/2015] [Indexed: 11/07/2022] Open
Abstract
BAG6 is an essential protein that functions in two distinct biological pathways, ubiquitin-mediated protein degradation of defective polypeptides and tail-anchored (TA) transmembrane protein biogenesis in mammals, although its structural and functional properties remain unknown. We solved a crystal structure of the C-terminal heterodimerization domains of BAG6 and Ubl4a and characterized their interaction biochemically. Unexpectedly, the specificity and structure of the C terminus of BAG6, which was previously classified as a BAG domain, were completely distinct from those of the canonical BAG domain. Furthermore, the tight association of BAG6 and Ubl4a resulted in modulation of Ubl4a protein stability in cells. Therefore, we propose to designate the Ubl4a-binding region of BAG6 as the novel BAG-similar (BAGS) domain. The structure of Ubl4a, which interacts with BAG6, is similar to the yeast homologue Get5, which forms a homodimer. These observations indicate that the BAGS domain of BAG6 promotes the TA protein biogenesis pathway in mammals by the interaction with Ubl4a.
Collapse
Affiliation(s)
- Naoyuki Kuwabara
- From the Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan and
| | - Ryosuke Minami
- the Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Naoto Yokota
- the Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hirofumi Matsumoto
- the Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Toshiya Senda
- From the Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan and
| | - Hiroyuki Kawahara
- the Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Ryuichi Kato
- From the Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan and
| |
Collapse
|