1
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Wayllace NM, Martín M, Busi MV, Gomez-Casati DF. Microbial glucoamylases: structural and functional properties and biotechnological uses. World J Microbiol Biotechnol 2023; 39:293. [PMID: 37653355 DOI: 10.1007/s11274-023-03731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Glucoamylases (GAs) are one of the principal groups of enzymes involved in starch hydrolysis and belong to the glycosylhydrolase family. They are classified as exo-amylases due to their ability to hydrolyze α-1,4 glycosidic bonds from the non-reducing end of starch, maltooligosaccharides, and related substrates, releasing β-D-glucose. Structurally, GAs possess a characteristic catalytic domain (CD) with an (α/α)6 fold and exhibit five conserved regions within this domain. The CD may or may not be linked to a non-catalytic domain with variable functions depending on its origin. GAs are versatile enzymes with diverse applications in food, biofuel, bioplastic and other chemical industries. Although fungal GAs are commonly employed for these purposes, they have limitations such as their low thermostability and an acidic pH requirement. Alternatively, GAs derived from prokaryotic organisms are a good option to save costs as they exhibit greater thermostability compared to fungal GAs. Moreover, a group of cold-adapted GAs from psychrophilic organisms demonstrates intriguing properties that make them suitable for application in various industries. This review provides a comprehensive overview of the structural and sequential properties as well as biotechnological applications of GAs in different industrial processes.
Collapse
Affiliation(s)
- Natael M Wayllace
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Mariana Martín
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - María V Busi
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| | - Diego F Gomez-Casati
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| |
Collapse
|
3
|
Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC. Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv 2023; 63:108100. [PMID: 36669745 DOI: 10.1016/j.biotechadv.2023.108100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose. Intrinsically, S. cerevisiae strains lack the ability to ferment pentose sugars and genetic engineering of S. cerevisiae to inculcate the ability to ferment pentose sugars is ongoing to develop recombinant strains with the required stability and robustness for commercial second generation bioethanol production. Furthermore, pre-treatment of these lignocellulosic wastes leads to the release of inhibitory compounds which adversely affect the growth and fermentation by S. cerevisae. S. cerevisiae also lacks the ability to grow at high temperatures which favour Simultaneous Saccharification and Fermentation of substrates to bioethanol. There is, therefore, a need for robust yeast species which can co-ferment hexose and pentose sugars and can tolerate high temperatures and the inhibitory substances produced during pre-treatment and hydrolysis of lignocellulosic materials. Non-conventional yeast strains are potential solutions to these problems due to their abilities to ferment both hexose and pentose sugars, and tolerate high temperature and stress conditions encountered during ethanol production from lignocellulosic hydrolysate. This review highlights the limitations of the conventional yeast species and the potentials of non-conventional yeast strains in commercialization of second generation bioethanol.
Collapse
Affiliation(s)
| | - Chioma O Amadi
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Tochukwu N Nwagu
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Y Murata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - James C Ogbonna
- Department of Microbiology, University of Nigeria Nsukka, Nigeria.
| |
Collapse
|
4
|
Xia Y, Zhou W, Du Y, Wang Y, Zhu M, Zhao Y, Wu Z, Zhang W. Difference of microbial community and gene composition with saccharification function between Chinese nongxiangxing daqu and jiangxiangxing daqu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:637-647. [PMID: 36053854 DOI: 10.1002/jsfa.12175] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The saccharification function of daqu is usually characterized by two indicators: saccharification power and liquefaction power. Daqu provides diverse microbial saccharifying enzymes for hydrolyzing carbohydrate in Baijiu fermenting grain. Obviously, the composition of microbial communities and enzymatic genes in different types of daqu cultured at varied temperatures is different. However, these differences in saccharification function are not fully understood. RESULTS The findings suggested that the saccharification power and liquefaction power of jiangxiangxing daqu were lower than those of nongxiangxing daqu throughout the production process. We employed metagenomics to find evidence that a mode of multiple saccharifying enzymes involving amylase, cellulase and hemicellulase originating from various microbes exists in daqu. Moreover, a totality of 541 related differential genes were obtained, some of which, annotated to genera of Aspergillus, Lactobacillus and Weissella, were significantly enriched (P < 0.05) in nongxiangxing daqu, while others, annotated to thermophilic genera of Virgibacillus, Bacillus, Kroppenstedtia and Saccharopolyspora, showed a higher relative abundance in jiangxiangxing daqu (P < 0.05). CONCLUSION Various microbial communities of daqu showed diverse saccharification capacity during cultivation of different parameters. These findings are helpful in comprehending the saccharification functional genes of daqu. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wen Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yake Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Min Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yajiao Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- School of Liquor-Making Engineering, Sichuan University Jinjiang College, Meishan, China
| |
Collapse
|
5
|
Tong L, Huang H, Zheng J, Wang X, Bai Y, Wang X, Wang Y, Tu T, Yao B, Qin X, Luo H. Engineering a carbohydrate-binding module to increase the expression level of glucoamylase in Pichia pastoris. Microb Cell Fact 2022; 21:95. [PMID: 35643500 PMCID: PMC9148494 DOI: 10.1186/s12934-022-01833-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
Background Glucoamylase is an important industrial enzyme for the saccharification of starch during sugar production, but the production cost of glucoamylase is a major limiting factor for the growth of the starch-based sugar market. Therefore, seeking strategies for high-level expression of glucoamylase in heterologous hosts are considered as the main way to reduce the enzyme cost. Results ReGa15A from Rasamsonia emersonii and TlGa15B-GA2 from Talaromyces leycettanus have similar properties. However, the secretion level of ReGa15A was significantly higher than TlGa15B-GA2 in Pichia pastoris. To explore the underlying mechanisms affecting the differential expression levels of glucoamylase in P. pastoris, the amino acid sequences and three-dimensional structures of them were compared and analyzed. First, the CBM region was identified by fragment replacement as the key region affecting the expression levels of ReGa15A and TlGa15B-GA2. Then, through the substitution and site-directed mutation of the motifs in the CBM region, three mutants with significantly increased expression levels were obtained. The eight-point mutant TlGA-M4 (S589D/Q599A/G600Y/V603Q/T607I/V608L/N609D/R613Q), the three-point mutant TlGA-M6 (Q599A/G600Y/V603Q) and the five-point mutant TlGA-M7 (S589D/T607I/V608L/N609D/R613Q) have the same specific activity with the wild-type, and the enzyme activity and secretion level have increased by 4–5 times, respectively. At the same time, the expression levels were 5.8-, 2.0- and 2.4-fold higher than that of wild type, respectively. Meanwhile, the expression of genes related to the unfolded protein responses (UPR) in the endoplasmic reticulum (ER) did not differ significantly between the mutants and wild type. In addition, the most highly expressed mutant, TlGA-M7 exhibits rapidly and effectively hydrolyze raw corn starch. Conclusions Our results constitute the first demonstration of improved expression and secretion of a glucoamylase in P. pastoris by introducing mutations within the non-catalytic CBM. This provides a novel and effective strategy for improving the expression of recombinant proteins in heterologous host expression systems. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01833-1.
Collapse
|
6
|
Guo W, Yang J, Huang T, Liu D, Liu Q, Li J, Sun W, Wang X, Zhu L, Tian C. Synergistic effects of multiple enzymes from industrial Aspergillus niger strain O1 on starch saccharification. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:225. [PMID: 34838099 PMCID: PMC8627030 DOI: 10.1186/s13068-021-02074-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/13/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Starch is one of the most important renewable polysaccharides in nature for production of bio-ethanol. The starch saccharification step facilitates the depolymerization of starch to yield glucose for biofuels production. The filamentous fungus Aspergillus niger (A. niger) is the most used microbial cell factory for production of the commercial glucoamylase. However, the role of each component in glucoamylases cocktail of A. niger O1 for starch saccharification remains unclear except glucoamylase. RESULTS In this study, we identified the key enzymes contributing to the starch saccharification process are glucoamylase, α-amylase and acid α-amylase out of 29 glycoside hydrolases from the 6-day fermentation products of A. niger O1. Through the synergistic study of the multienzymes for the starch saccharification in vitro, we found that increasing the amount of α-amylase by 5-10 times enhanced the efficiency of starch saccharification by 14.2-23.2%. Overexpression of acid α-amylase in strain O1 in vivo increased the total glucoamylase activity of O1 cultures by 15.0%. CONCLUSIONS Our study clarifies the synergistic effects among the components of glucoamylases cocktail, and provides an effective approach to optimize the profile of saccharifying enzymes of strain O1 for improving the total glucoamylase activity.
Collapse
Affiliation(s)
- Wenzhu Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jianhua Yang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Tianchen Huang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Dandan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Xingji Wang
- Longda Biotechnology Inc, Shandong, 276400, China
| | - Leilei Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
7
|
Tong L, Zheng J, Wang X, Wang X, Huang H, Yang H, Tu T, Wang Y, Bai Y, Yao B, Luo H, Qin X. Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:202. [PMID: 34656167 PMCID: PMC8520190 DOI: 10.1186/s13068-021-02052-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/02/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Glucoamylase is an important industrial enzyme in the saccharification of starch into glucose. However, its poor thermostability and low catalytic efficiency limit its industrial saccharification applications. Therefore, improving these properties of glucoamylase is of great significance for saccharification in the starch industry. RESULTS In this study, a novel glucoamylase-encoding gene TlGa15B from the thermophilic fungus Talaromyces leycettanus JCM12802 was cloned and expressed in Pichia pastoris. The optimal temperature and pH of recombinant TlGa15B were 65 ℃ and 4.5, respectively. TlGa15B exhibited excellent thermostability at 60 ℃. To further improve thermostability without losing catalytic efficiency, TlGa15B-GA1 and TlGa15B-GA2 were designed by introducing disulfide bonds and optimizing residual charge-charge interactions in a region distant from the catalytic center. Compared with TlGa15B, mutants showed improved optimal temperature, melting temperature, specific activity, and catalytic efficiency. The mechanism underlying these improvements was elucidated through molecular dynamics simulation and dynamics cross-correlation matrices analysis. Besides, the performance of TlGa15B-GA2 was the same as that of the commercial glucoamylase during saccharification. CONCLUSIONS We provide an effective strategy to simultaneously improve both thermostability and catalytic efficiency of glucoamylase. The excellent thermostability and high catalytic efficiency of TlGa15B-GA2 make it a good candidate for industrial saccharification applications.
Collapse
Affiliation(s)
- Lige Tong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haomeng Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Enhanced Thermostability of D-Psicose 3-Epimerase from Clostridium bolteae through Rational Design and Engineering of New Disulfide Bridges. Int J Mol Sci 2021; 22:ijms221810007. [PMID: 34576170 PMCID: PMC8464696 DOI: 10.3390/ijms221810007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
D-psicose 3-epimerase (DPEase) catalyzes the isomerization of D-fructose to D-psicose (aka D-allulose, a low-calorie sweetener), but its industrial application has been restricted by the poor thermostability of the naturally available enzymes. Computational rational design of disulfide bridges was used to select potential sites in the protein structure of DPEase from Clostridium bolteae to engineer new disulfide bridges. Three mutants were engineered successfully with new disulfide bridges in different locations, increasing their optimum catalytic temperature from 55 to 65 °C, greatly improving their thermal stability and extending their half-lives (t1/2) at 55 °C from 0.37 h to 4−4.5 h, thereby greatly enhancing their potential for industrial application. Molecular dynamics simulation and spatial configuration analysis revealed that introduction of a disulfide bridge modified the protein hydrogen–bond network, rigidified both the local and overall structures of the mutants and decreased the entropy of unfolded protein, thereby enhancing the thermostability of DPEase.
Collapse
|
9
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
10
|
Characterization of SdGA, a cold-adapted glucoamylase from Saccharophagus degradans. ACTA ACUST UNITED AC 2021; 30:e00625. [PMID: 34041001 PMCID: PMC8141877 DOI: 10.1016/j.btre.2021.e00625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022]
Abstract
We investigated the structural and functional properties of SdGA, a glucoamylase (GA) from Saccharophagus degradans, a marine bacterium which degrades different complex polysaccharides at high rate. SdGA is composed mainly by a N-terminal GH15_N domain linked to a C-terminal catalytic domain (CD) found in the GH15 family of glycosylhydrolases with an overall structure similar to other bacterial GAs. The protein was expressed in Escherichia coli cells, purified and its biochemical properties were investigated. Although SdGA has a maximum activity at 39 °C and pH 6.0, it also shows high activity in a wide range, from low to mild temperatures, like cold-adapted enzymes. Furthermore, SdGA has a higher content of flexible residues and a larger CD due to various amino acid insertions compared to other thermostable GAs. We propose that this novel SdGA, is a cold-adapted enzyme that might be suitable for use in different industrial processes that require enzymes which act at low or medium temperatures.
Collapse
|
11
|
Bi J, Jing X, Wu L, Zhou X, Gu J, Nie Y, Xu Y. Computational design of noncanonical amino acid-based thioether staples at N/C-terminal domains of multi-modular pullulanase for thermostabilization in enzyme catalysis. Comput Struct Biotechnol J 2021; 19:577-585. [PMID: 33510863 PMCID: PMC7811066 DOI: 10.1016/j.csbj.2020.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Enzyme thermostabilization is considered a critical and often obligatory step in biosynthesis, because thermostability is a significant property of enzymes that can be used to evaluate their feasibility for industrial applications. However, conventional strategies for thermostabilizing enzymes generally introduce non-covalent interactions and/or natural covalent bonds caused by natural amino acid substitutions, and the trade-off between the activity and stability of enzymes remains a challenge. Here, we developed a computationally guided strategy for constructing thioether staples by incorporating noncanonical amino acid (ncAA) into the more flexible N/C-terminal domains of the multi-modular pullulanase from Bacillus thermoleovorans (BtPul) to enhance its thermostability. First, potential thioether staples located in the N/C-terminal domains of BtPul were predicted using RosettaMatch. Next, eight variants involving stable thioether staples were precisely predicted using FoldX and Rosetta ddg_monomer. Six positive variants were obtained, of which T73(O2beY)-171C had a 157% longer half-life at 70 °C and an increase of 7.0 °C in T m, when compared with the wild-type (WT). T73(O2beY)-171C/T126F/A72R exhibited an even more improved thermostability, with a 211% increase in half-life at 70 °C and a 44% enhancement in enzyme activity compared with the WT, which was attributed to further optimization of the local interaction network. This work introduces and validates an efficient strategy for enhancing the thermostability and activity of multi-modular enzymes.
Collapse
Affiliation(s)
- Jiahua Bi
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoran Jing
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xia Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jie Gu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Bi J, Chen S, Zhao X, Nie Y, Xu Y. Computation-aided engineering of starch-debranching pullulanase from Bacillus thermoleovorans for enhanced thermostability. Appl Microbiol Biotechnol 2020; 104:7551-7562. [PMID: 32632476 DOI: 10.1007/s00253-020-10764-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/26/2022]
Abstract
Pullulanases are widely used in food, medicine, and other industries because they specifically hydrolyze α-1,6-glycosidic linkages in starch and oligosaccharides. In addition, high-temperature thermostable pullulanase has multiple advantages, including decreasing saccharification solution viscosity accompanied with enhanced mass transfer and reducing microbial contamination in starch hydrolysis. However, thermophilic pullulanase availability remains limited. Additionally, most do not meet starch-manufacturing requirements due to weak thermostability. Here, we developed a computation-aided strategy to engineer the thermophilic pullulanase from Bacillus thermoleovorans. First, three computational design predictors (FoldX, I-Mutant 3.0, and dDFIRE) were combined to predict stability changes introduced by mutations. After excluding conserved and catalytic sites, 17 mutants were identified. After further experimental verification, we confirmed six positive mutants. Among them, the G692M mutant had the highest thermostability improvement, with 3.8 °C increased Tm and 2.1-fold longer half-life than the wild type at 70 °C. We then characterized the mechanism underlying increased thermostability, such as rigidity enhancement, closer conformation, and strengthened motion correlation using root mean square fluctuation (RMSF), principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. KEY POINTS: • A computation-aided strategy was developed to engineer pullulanase thermostability. • Seventeen mutants were identified by combining three computational design predictors. • The G692M mutant was obtained with increased Tmand half-life at 70 °C.
Collapse
Affiliation(s)
- Jiahua Bi
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Shuhui Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xianghan Zhao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
13
|
Wang C, Yang L, Luo L, Tang S, Wang Q. Purification and characterization of glucoamylase of Aspergillus oryzae from Luzhou-flavour Daqu. Biotechnol Lett 2020; 42:2345-2355. [PMID: 32623532 DOI: 10.1007/s10529-020-02956-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To obtain novel glucoamylase from Daqu microbe. RESULTS A dominant strain known as LZ2 with high activity of hydrolyzing starch was isolated from Luzhou Daqu, a Chinese traditional fermentation starter. The LZ2 was identified as Aspergillus oryzae by 18S rDNA sequence analysis. Glucoamylase from LZ2, named as GA-LZ2, was purified to homogeneity and showed a single band with expected molecular mass of 60 kD. The GA-LZ2 effectively degraded amylose, rice starch and wheat starch. Optimal temperature and pH value of enzyme were 60 °C and pH 4.0 respectively. The GA-LZ2 displayed significant thermal stability and pH stability at moderate temperature and low pH. Intriguingly, the thermostability was enhanced in the presence of starch. In addition, GA-LZ2 exhibited insensitivity to glucose, independence of metal ions and tolerance to organic solvents. The GA-LZ2 retained complete activity in the presence of 100 mM glucose and 5% ethanol and methanol. CONCLUSION Glucoamylase GA-LZ2 displayed broad substrate specificity, strong stability and tolerance, suggesting that GA-LZ2 carry potential for industrial application in bioethanol production.
Collapse
Affiliation(s)
- Chuan Wang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China.
| | - Lianli Yang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| | - Lunan Luo
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| | - Shichao Tang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| | - Qiang Wang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Ghani M, Ansari A, Haider MS, Asif T, Ibrahim F, Qader SAU, Aman A. Purification and Characterization of a Thermostable Starch‐Saccharifying Alpha‐1,4‐Glucan‐Glucohydrolase Produced byBacillus licheniformis. STARCH-STARKE 2019. [DOI: 10.1002/star.201800352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Ghani
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE)University of Karachi Karachi 75270 Pakistan
| | - Asma Ansari
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE)University of Karachi Karachi 75270 Pakistan
| | - Muhammad Samee Haider
- Food and Marine Resource Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Karachi 75280 Pakistan
| | - Tayyaba Asif
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE)University of Karachi Karachi 75270 Pakistan
| | - Fariha Ibrahim
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE)University of Karachi Karachi 75270 Pakistan
| | - Shah Ali Ul Qader
- Department of BiochemistryUniversity of Karachi Karachi 75270 Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE)University of Karachi Karachi 75270 Pakistan
| |
Collapse
|
15
|
Yasin MZ, Rashid MH. Purification and extreme thermostabilization of glucoamylase by zinc produce of novel fungus Gymnoascella citrina. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Karim KMR, Husaini A, Sing NN, Tasnim T, Mohd Sinang F, Hussain H, Hossain MA, Roslan H. Characterization and expression in Pichia pastoris of a raw starch degrading glucoamylase (GA2) derived from Aspergillus flavus NSH9. Protein Expr Purif 2019; 164:105462. [PMID: 31351992 DOI: 10.1016/j.pep.2019.105462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 11/25/2022]
Abstract
The Aspergillus flavus NSH9 gene, encoding a pH and thermostable glucoamylase with a starch binding domain (SBD), was expressed in Pichia pastoris to produce recombinant glucoamylase (rGA2). The full-length glucoamylase gene (2039 bp), and cDNA (1839 bp) encode a 612 amino acid protein most similar to glucoamylase from Aspergillus oryzae RIB40; the first 19 amino acids are presumed to be a signal peptide for secretion, and the SBD is at the C-terminal. The cDNA was successfully secreted by Pichia at 8.23 U mL-1, and the rGA2 was found to be: a 80 kDa monomer, stable from pH 3.0-9.0, with optimum catalytic activity at pH 5.0, active at temperatures up to 80°C (rGA2 retained 58% of its activity after 60 min of incubation at 70°C), and metal ions such as Na+, K+, Ca++ and Mg++ enhanced rGA2 enzyme activity. The starch degrading ability of rGA2 was also observed on raw sago starch and where prolonged incubation generated larger, deeper, holes on the starch granules, indicating rGA2 is an excellent candidate for industrial starch processing applications.
Collapse
Affiliation(s)
| | - Ahmad Husaini
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota, Samarahan, Sarawak, Malaysia.
| | - Ngieng Ngui Sing
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota, Samarahan, Sarawak, Malaysia
| | - Tasmia Tasnim
- Department of Nutrition and Food Engineering, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fazia Mohd Sinang
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota, Samarahan, Sarawak, Malaysia
| | - Hasnain Hussain
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota, Samarahan, Sarawak, Malaysia
| | - Md Anowar Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Hairul Roslan
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota, Samarahan, Sarawak, Malaysia
| |
Collapse
|
17
|
Yi Z, Jin Y, Xiao Y, Chen L, Tan L, Du A, He K, Liu D, Luo H, Fang Y, Zhao H. Unraveling the Contribution of High Temperature Stage to Jiang-Flavor Daqu, a Liquor Starter for Production of Chinese Jiang-Flavor Baijiu, With Special Reference to Metatranscriptomics. Front Microbiol 2019; 10:472. [PMID: 30930875 PMCID: PMC6423406 DOI: 10.3389/fmicb.2019.00472] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/22/2019] [Indexed: 12/27/2022] Open
Abstract
Jiang-flavor (JF) daqu is a liquor starter used for production of JF baijiu, a well-known distilled liquor in China. Although a high temperature stage (70°C) is necessary for qualifying JF daqu, little is known regarding its active microbial community and functional enzymes, along with its role in generating flavor precursors for JF baijiu aroma. In this investigation, based on metatranscriptomics, fungi, such as Aspergillus and Penicillium, were identified as the most active microbial members and 230 carbohydrate-active enzymes were identified as potential saccharifying enzymes at 70°C of JF daqu. Notably, most of enzymes in identified carbohydrate and energy pathways showed lower expression levels at 70°C of JF daqu than those at the high temperature stage (62°C) of Nong-flavor (NF) daqu, indicating lowering capacities of saccharification and fermentation by high temperature stage. Moreover, many enzymes, especially those related to the degradation of aromatic compounds, were only detected with low expression levels at 70°C of JF daqu albeit not at 62°C of NF daqu, indicating enhancing capacities of generating special trace aroma compounds in JF daqu by high temperature stage. Additionally, most of enzymes related to those capacities were highly expressed at 70°C by fungal genus of Aspergillus, Coccidioides, Paracoccidioides, Penicillium, and Rasamsonia. Therefore, this study not only sheds light on the crucial functions of high temperature stage but also paves the way to improve the quality of JF baijiu and provide active community and functional enzymes for other fermentation industries.
Collapse
Affiliation(s)
- Zhuolin Yi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yanling Jin
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yao Xiao
- Analytical and Testing Center, Sichuan University of Science and Engineering, Zigong, China
| | - Lanchai Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Li Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Anping Du
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Kaize He
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Dayu Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Huibo Luo
- Bioengineering College, Sichuan University of Science and Engineering, Zigong, China
| | - Yang Fang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Hai Zhao
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
18
|
Hujslová M, Bystrianský L, Benada O, Gryndler M. Fungi, a neglected component of acidophilic biofilms: do they have a potential for biotechnology? Extremophiles 2019; 23:267-275. [PMID: 30840146 DOI: 10.1007/s00792-019-01085-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/25/2019] [Indexed: 01/18/2023]
Abstract
Fungi from extreme environments, including acidophilic ones, belong to biotechnologically most attractive organisms. They can serve as a source of enzymes and metabolites with potentially uncommon properties and may actively participate within bioremediation processes. In respect of their biotechnological potential, extremophilic fungi are mostly studied as individual species. Nevertheless, microorganisms rarely live separately and they form biofilms instead. Living in biofilms is the most successful life strategy on the Earth and the biofilm is the most abundant form of life in extreme environments including highly acidic ones. Compared to bacterial fraction, fungal part of acidophilic biofilms represents a largely unexplored source of organisms with possible use in biotechnology and especially data on biofilms of highly acidic soils are missing. The functioning of the biofilm results from interactions between organisms whose metabolic capabilities are efficiently combined. When we look on acidophilic fungi and their biotechnological potential we should take this fact into account as well. The practical problem to be resolved in connection with extensive studies of exploitable properties and abilities of acidophilic fungi is the methodology of isolation of strains from the nature. In this respect, novel isolation techniques should be developed.
Collapse
Affiliation(s)
- Martina Hujslová
- Laboratory of Fungal biology, Institute of Microbiology ASCR, Vídeňská 1083, 14220, Prague, Czech Republic.
| | - Lukáš Bystrianský
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Za válcovnou 1000/8, 400 01, Ústí nad Labem, Czech Republic
| | - Oldřich Benada
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Za válcovnou 1000/8, 400 01, Ústí nad Labem, Czech Republic.,Laboratory of Molecular Structure Characterization, Institute of Microbiology ASCR, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Milan Gryndler
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Za válcovnou 1000/8, 400 01, Ústí nad Labem, Czech Republic
| |
Collapse
|
19
|
You S, Tu T, Ma R, Huang HQ, Wang Y, Bai YG, Su XY, Cai HY, Yao B, Luo HY. Functional Analysis of a Highly Active β-Glucanase from Bispora sp. MEY-1 Using Its C-terminally Truncated Mutant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9728-9737. [PMID: 30043608 DOI: 10.1021/acs.jafc.8b01928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A β-1,3-1,4-glucanase-encoding gene, Bisglu16B, was identified in Bispora sp. MEY-1. The deduced BisGlu16B consists of an N-terminal signal peptide, a catalytic module of glycoside hydrolase family 16 (GH16), and a C-terminal serine/proline-rich module. After expression in Pichia pastoris GS115, the purified recombinant BisGlu16B showed maximal activity at pH 4.0 and 55 °C and had broad substrate specificity (β-1,3-/β-1,4-mixed, β-1,3-, β-1,4-, and β-1,6-linked glucan, and β-1,4-mannan). The enzyme possessed high specific activities toward barley β-glucan (34 700 U·mg-1), lichenan (23 900 U·mg-1), and laminarin (9 000 U·mg-1). After removing the C-terminal module, the truncated mutant, BisGlu16B-ΔC, retained similar enzymatic properties to the wild type but displayed significantly enhanced activities (up to 2.5-fold). Functional and structural analyses indicated that the C-terminal module plays a key role in the substrate binding of BisGlu16B. This study provided an excellent candidate glucanase for industrial purposes and revealed the functions of a C-terminal serine/proline-rich region.
Collapse
Affiliation(s)
- Shuai You
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Huo-Qing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Ying-Guo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Xiao-Yun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Hui-Yi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Hui-Ying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| |
Collapse
|
20
|
Hanif E, Qader SAU, Zohra RR. Role of Metal Ions, Surfactants and Solvents on Enzymatic Activity of Partial Purified Glucoamylase from Aspergillus niger ER05. ACTA ACUST UNITED AC 2018. [DOI: 10.6000/1927-5129.2018.14.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
21
|
|
22
|
Heterologous, Expression, and Characterization of Thermostable Glucoamylase Derived from Aspergillus flavus NSH9 in Pichia pastoris. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5962028. [PMID: 27504454 PMCID: PMC4967687 DOI: 10.1155/2016/5962028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 11/20/2022]
Abstract
A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg++, Fe++, Zn++, Cu++, and Pb++) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries.
Collapse
|