1
|
Stolfi P, Manni L, Soligo M, Vergni D, Tieri P. Designing a Network Proximity-Based Drug Repurposing Strategy for COVID-19. Front Cell Dev Biol 2020; 8:545089. [PMID: 33123533 PMCID: PMC7573309 DOI: 10.3389/fcell.2020.545089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
The ongoing COVID-19 pandemic still requires fast and effective efforts from all fronts, including epidemiology, clinical practice, molecular medicine, and pharmacology. A comprehensive molecular framework of the disease is needed to better understand its pathological mechanisms, and to design successful treatments able to slow down and stop the impressive pace of the outbreak and harsh clinical symptomatology, possibly via the use of readily available, off-the-shelf drugs. This work engages in providing a wider picture of the human molecular landscape of the SARS-CoV-2 infection via a network medicine approach as the ground for a drug repurposing strategy. Grounding on prior knowledge such as experimentally validated host proteins known to be viral interactors, tissue-specific gene expression data, and using network analysis techniques such as network propagation and connectivity significance, the host molecular reaction network to the viral invasion is explored and exploited to infer and prioritize candidate target genes, and finally to propose drugs to be repurposed for the treatment of COVID-19. Ranks of potential target genes have been obtained for coherent groups of tissues/organs, potential and distinct sites of interaction between the virus and the organism. The normalization and the aggregation of the different scores allowed to define a preliminary, restricted list of genes candidates as pharmacological targets for drug repurposing, with the aim of contrasting different phases of the virus infection and viral replication cycle.
Collapse
Affiliation(s)
- Paola Stolfi
- National Research Council (CNR), Institute for Applied Computing (IAC), Rome, Italy
| | - Luigi Manni
- National Research Council (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Marzia Soligo
- National Research Council (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Davide Vergni
- National Research Council (CNR), Institute for Applied Computing (IAC), Rome, Italy
| | - Paolo Tieri
- National Research Council (CNR), Institute for Applied Computing (IAC), Rome, Italy
| |
Collapse
|
2
|
Bersanelli M, Mosca E, Milanesi L, Bazzani A, Castellani G. Frailness and resilience of gene networks predicted by detection of co-occurring mutations via a stochastic perturbative approach. Sci Rep 2020; 10:2643. [PMID: 32060296 PMCID: PMC7021762 DOI: 10.1038/s41598-020-59036-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/22/2019] [Indexed: 11/13/2022] Open
Abstract
In recent years complex networks have been identified as powerful mathematical frameworks for the adequate modeling of many applied problems in disparate research fields. Assuming a Master Equation (ME) modeling the exchange of information within the network, we set up a perturbative approach in order to investigate how node alterations impact on the network information flow. The main assumption of the perturbed ME (pME) model is that the simultaneous presence of multiple node alterations causes more or less intense network frailties depending on the specific features of the perturbation. In this perspective the collective behavior of a set of molecular alterations on a gene network is a particularly adapt scenario for a first application of the proposed method, since most diseases are neither related to a single mutation nor to an established set of molecular alterations. Therefore, after characterizing the method numerically, we applied as a proof of principle the pME approach to breast cancer (BC) somatic mutation data downloaded from Cancer Genome Atlas (TCGA) database. For each patient we measured the network frailness of over 90 significant subnetworks of the protein-protein interaction network, where each perturbation was defined by patient-specific somatic mutations. Interestingly the frailness measures depend on the position of the alterations on the gene network more than on their amount, unlike most traditional enrichment scores. In particular low-degree mutations play an important role in causing high frailness measures. The potential applicability of the proposed method is wide and suggests future development in the control theory context.
Collapse
Affiliation(s)
- Matteo Bersanelli
- Department of Physics and Astronomy, University of Bologna, Bologna, 40127, Italy. .,National Institute for Nuclear Physics (INFN), Bologna, 40127, Italy.
| | - Ettore Mosca
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, 20090, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, 20090, Italy
| | - Armando Bazzani
- Department of Physics and Astronomy, University of Bologna, Bologna, 40127, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, 40127, Italy
| |
Collapse
|
3
|
Di Nanni N, Gnocchi M, Moscatelli M, Milanesi L, Mosca E. Gene relevance based on multiple evidences in complex networks. Bioinformatics 2019; 36:865-871. [PMID: 31504182 PMCID: PMC9883679 DOI: 10.1093/bioinformatics/btz652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/17/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION Multi-omics approaches offer the opportunity to reconstruct a more complete picture of the molecular events associated with human diseases, but pose challenges in data analysis. Network-based methods for the analysis of multi-omics leverage the complex web of macromolecular interactions occurring within cells to extract significant patterns of molecular alterations. Existing network-based approaches typically address specific combinations of omics and are limited in terms of the number of layers that can be jointly analysed. In this study, we investigate the application of network diffusion to quantify gene relevance on the basis of multiple evidences (layers). RESULTS We introduce a gene score (mND) that quantifies the relevance of a gene in a biological process taking into account the network proximity of the gene and its first neighbours to other altered genes. We show that mND has a better performance over existing methods in finding altered genes in network proximity in one or more layers. We also report good performances in recovering known cancer genes. The pipeline described in this article is broadly applicable, because it can handle different types of inputs: in addition to multi-omics datasets, datasets that are stratified in many classes (e.g., cell clusters emerging from single cell analyses) or a combination of the two scenarios. AVAILABILITY AND IMPLEMENTATION The R package 'mND' is available at URL: https://www.itb.cnr.it/mnd. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Noemi Di Nanni
- Department of Biomedical Sciences, Institute of Biomedical Technologies, National Research Council, 20090 Segrate (MI), Italy,Department of Industrial and Information Engineering, University of Pavia, Italy
| | - Matteo Gnocchi
- Department of Biomedical Sciences, Institute of Biomedical Technologies, National Research Council, 20090 Segrate (MI), Italy
| | - Marco Moscatelli
- Department of Biomedical Sciences, Institute of Biomedical Technologies, National Research Council, 20090 Segrate (MI), Italy
| | - Luciano Milanesi
- Department of Biomedical Sciences, Institute of Biomedical Technologies, National Research Council, 20090 Segrate (MI), Italy
| | | |
Collapse
|
4
|
Di Nanni N, Bersanelli M, Cupaioli FA, Milanesi L, Mezzelani A, Mosca E. Network-Based Integrative Analysis of Genomics, Epigenomics and Transcriptomics in Autism Spectrum Disorders. Int J Mol Sci 2019; 20:E3363. [PMID: 31323926 PMCID: PMC6651137 DOI: 10.3390/ijms20133363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/16/2023] Open
Abstract
Current studies suggest that autism spectrum disorders (ASDs) may be caused by many genetic factors. In fact, collectively considering multiple studies aimed at characterizing the basic pathophysiology of ASDs, a large number of genes has been proposed. Addressing the problem of molecular data interpretation using gene networks helps to explain genetic heterogeneity in terms of shared pathways. Besides, the integrative analysis of multiple omics has emerged as an approach to provide a more comprehensive view of a disease. In this work, we carry out a network-based meta-analysis of the genes reported as associated with ASDs by studies that involved genomics, epigenomics, and transcriptomics. Collectively, our analysis provides a prioritization of the large number of genes proposed to be associated with ASDs, based on genes' relevance within the intracellular circuits, the strength of the supporting evidence of association with ASDs, and the number of different molecular alterations affecting genes. We discuss the presence of the prioritized genes in the SFARI (Simons Foundation Autism Research Initiative) database and in gene networks associated with ASDs by other investigations. Lastly, we provide the full results of our analyses to encourage further studies on common targets amenable to therapy.
Collapse
Affiliation(s)
- Noemi Di Nanni
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
- Department of Industrial and Information Engineering, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Matteo Bersanelli
- Department of Physics and Astronomy, University of Bologna, Via B. Pichat 6/2, 40127 Bologna, Italy
- National Institute of Nuclear Physics (INFN), 40127 Bologna, Italy
| | - Francesca Anna Cupaioli
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy
| | - Ettore Mosca
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate (MI), Italy.
| |
Collapse
|
5
|
Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules. Sci Rep 2016; 6:34841. [PMID: 27731320 PMCID: PMC5059623 DOI: 10.1038/srep34841] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/19/2016] [Indexed: 11/08/2022] Open
Abstract
A relation exists between network proximity of molecular entities in interaction networks, functional similarity and association with diseases. The identification of network regions associated with biological functions and pathologies is a major goal in systems biology. We describe a network diffusion-based pipeline for the interpretation of different types of omics in the context of molecular interaction networks. We introduce the network smoothing index, a network-based quantity that allows to jointly quantify the amount of omics information in genes and in their network neighbourhood, using network diffusion to define network proximity. The approach is applicable to both descriptive and inferential statistics calculated on omics data. We also show that network resampling, applied to gene lists ranked by quantities derived from the network smoothing index, indicates the presence of significantly connected genes. As a proof of principle, we identified gene modules enriched in somatic mutations and transcriptional variations observed in samples of prostate adenocarcinoma (PRAD). In line with the local hypothesis, network smoothing index and network resampling underlined the existence of a connected component of genes harbouring molecular alterations in PRAD.
Collapse
|
6
|
Budzko L, Marcinkowska-Swojak M, Jackowiak P, Kozlowski P, Figlerowicz M. Copy number variation of genes involved in the hepatitis C virus-human interactome. Sci Rep 2016; 6:31340. [PMID: 27510840 PMCID: PMC4980658 DOI: 10.1038/srep31340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023] Open
Abstract
Copy number variation (CNV) is a newly discovered form of intra-species genetic polymorphism that is defined as deletions or duplications of genome segments ranging from 1 kbp to several Mbp. CNV accounts for the majority of the genetic variation observed in humans (CNV regions cover more than 10% of the human genome); therefore, it may significantly influence both the phenotype and susceptibility to various diseases. Unfortunately, the impact of CNV on a number of diseases, including hepatitis C virus (HCV) infection, remains largely unexplored. Here, we analyzed 421 human genes encoding proteins that have been shown to interact with HCV proteins or genomic RNA (proteins from the HCV-human interactome). We found that 19 of the 421 candidate genes are located in putative CNV regions. For all of these genes, copy numbers were determined for European, Asiatic and African populations using the multiplex ligation-dependent amplification (MLPA) method. As a result, we identified 4 genes, IGLL1, MLLT4, PDPK1, PPP1R13L, for which the CN-genotype ranged from 1 to 6. All of these genes are involved in host-virus interaction; thus, their polymorphism has a potential impact on the development of HCV infection and/or therapy outcome.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
7
|
Ammari MG, Gresham CR, McCarthy FM, Nanduri B. HPIDB 2.0: a curated database for host-pathogen interactions. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw103. [PMID: 27374121 PMCID: PMC4930832 DOI: 10.1093/database/baw103] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/08/2016] [Indexed: 11/13/2022]
Abstract
Identification and analysis of host–pathogen interactions (HPI) is essential to study infectious diseases. However, HPI data are sparse in existing molecular interaction databases, especially for agricultural host–pathogen systems. Therefore, resources that annotate, predict and display the HPI that underpin infectious diseases are critical for developing novel intervention strategies. HPIDB 2.0 (http://www.agbase.msstate.edu/hpi/main.html) is a resource for HPI data, and contains 45, 238 manually curated entries in the current release. Since the first description of the database in 2010, multiple enhancements to HPIDB data and interface services were made that are described here. Notably, HPIDB 2.0 now provides targeted biocuration of molecular interaction data. As a member of the International Molecular Exchange consortium, annotations provided by HPIDB 2.0 curators meet community standards to provide detailed contextual experimental information and facilitate data sharing. Moreover, HPIDB 2.0 provides access to rapidly available community annotations that capture minimum molecular interaction information to address immediate researcher needs for HPI network analysis. In addition to curation, HPIDB 2.0 integrates HPI from existing external sources and contains tools to infer additional HPI where annotated data are scarce. Compared to other interaction databases, our data collection approach ensures HPIDB 2.0 users access the most comprehensive HPI data from a wide range of pathogens and their hosts (594 pathogen and 70 host species, as of February 2016). Improvements also include enhanced search capacity, addition of Gene Ontology functional information, and implementation of network visualization. The changes made to HPIDB 2.0 content and interface ensure that users, especially agricultural researchers, are able to easily access and analyse high quality, comprehensive HPI data. All HPIDB 2.0 data are updated regularly, are publically available for direct download, and are disseminated to other molecular interaction resources. Database URL:http://www.agbase.msstate.edu/hpi/main.html
Collapse
Affiliation(s)
- Mais G Ammari
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Cathy R Gresham
- Institute for Genomics, Biocomputing and Biotechnology, College of Veterinary Medicine, Institute for Genomics, Mississippi State University, Mississippi State, MS 39762, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Bindu Nanduri
- Institute for Genomics, Biocomputing and Biotechnology, College of Veterinary Medicine, Institute for Genomics, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
8
|
Castellani GC, Menichetti G, Garagnani P, Giulia Bacalini M, Pirazzini C, Franceschi C, Collino S, Sala C, Remondini D, Giampieri E, Mosca E, Bersanelli M, Vitali S, Valle IFD, Liò P, Milanesi L. Systems medicine of inflammaging. Brief Bioinform 2016; 17:527-40. [PMID: 26307062 PMCID: PMC4870395 DOI: 10.1093/bib/bbv062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/29/2015] [Indexed: 12/30/2022] Open
Abstract
Systems Medicine (SM) can be defined as an extension of Systems Biology (SB) to Clinical-Epidemiological disciplines through a shifting paradigm, starting from a cellular, toward a patient centered framework. According to this vision, the three pillars of SM are Biomedical hypotheses, experimental data, mainly achieved by Omics technologies and tailored computational, statistical and modeling tools. The three SM pillars are highly interconnected, and their balancing is crucial. Despite the great technological progresses producing huge amount of data (Big Data) and impressive computational facilities, the Bio-Medical hypotheses are still of primary importance. A paradigmatic example of unifying Bio-Medical theory is the concept of Inflammaging. This complex phenotype is involved in a large number of pathologies and patho-physiological processes such as aging, age-related diseases and cancer, all sharing a common inflammatory pathogenesis. This Biomedical hypothesis can be mapped into an ecological perspective capable to describe by quantitative and predictive models some experimentally observed features, such as microenvironment, niche partitioning and phenotype propagation. In this article we show how this idea can be supported by computational methods useful to successfully integrate, analyze and model large data sets, combining cross-sectional and longitudinal information on clinical, environmental and omics data of healthy subjects and patients to provide new multidimensional biomarkers capable of distinguishing between different pathological conditions, e.g. healthy versus unhealthy state, physiological versus pathological aging.
Collapse
|