1
|
Lisouskaya M, Antipova OA, Zhavoronok IP, Mikhalchuk A. Synthesis and physiological effects of new 4-aminophenol derivatives as paracetamol analogues. Bioorg Med Chem Lett 2025; 117:130080. [PMID: 39706497 DOI: 10.1016/j.bmcl.2024.130080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Paracetamol has antipyretic and analgesic properties and it is widely used for fever and pain. However, paracetamol is partially metabolized to N-acetyl-p-benzoquinoneimine, which in overdose leads to liver necrosis, urging for safer paracetamol analogues. As the latter, new para-aminophenol derivatives containing fragments of acetic acid, saturated fatty acids and monoethanolamine were synthesized. The obtained compounds at equimolar doses of paracetamol (0.5 mmol/kg) have been shown to have modulating effect on thermoregulatory (in experimental fever) and nociceptive (in experimental arthritis) reactions. The studied derivatives in rats with LPS-induced fever leveled the first phase of the febrile response and reduced the increase in core body temperature in the second phase by three times. The synthesized compounds in rats with zymosan-induced arthritis suppressed the nociceptive response in Randall-Selitto test and Hot plate test by 21-48 % and 8-42 %, respectively.
Collapse
Affiliation(s)
- Maryna Lisouskaya
- Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus, 5/2 Kuprevič St., Minsk 220084, the Republic of Belarus.
| | - Olga A Antipova
- Institute of Physiology of National Academy of Sciences of Belarus, 28 Akademičnaja St., Minsk 220012, the Republic of Belarus
| | - Irina P Zhavoronok
- Institute of Physiology of National Academy of Sciences of Belarus, 28 Akademičnaja St., Minsk 220012, the Republic of Belarus
| | - Alexander Mikhalchuk
- Institute of Bioorganic Chemistry of National Academy of Sciences of Belarus, 5/2 Kuprevič St., Minsk 220084, the Republic of Belarus
| |
Collapse
|
2
|
Al-Wahaibi L, El-Emam AA, S. M. Abdelbaky M, Garcia-Granda S, Maurya A, Pal M, Siddiqui Z, Shukla R, Pathak SK, Srivastava R, Shukla VK, Prasad O, Sinha L. Structural Characterization, Spectroscopic Profile, Molecular Docking, ADMET Properties, Molecular Dynamics Simulation Studies, and Molecular Mechanics Generalized Born Surface Area Analysis of 5-(Adamantan-1-yl)-4-butyl-2,4-dihydro-3 H-1,2,4-triazole-3-thione as a Potential COX Inhibitor. ACS OMEGA 2024; 9:26651-26672. [PMID: 38911725 PMCID: PMC11191079 DOI: 10.1021/acsomega.4c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Employing a synergistic combination of theoretical density functional theory (DFT) and experimental techniques, we conducted a comprehensive analysis elucidating the structural and pharmacological attributes of 5-(adamantan-1-yl)-4-butyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (5A4BT) as a potent COX inhibitor. The X-ray crystallographic data of 5A4BT showed the pivotal role played by weak interactions, notably π-π and C-H-π interactions, alongside hydrogen bonding, in orchestrating the intricate supramolecular architectures within the crystalline lattice. A quantitative analysis of the arrangement of the crystal structure, as well as both inter- and intramolecular interactions, was conducted using Hirshfeld surfaces and 2D fingerprint plots. Additionally, a comprehensive examination of the IR spectra was undertaken, employing both experimental methods and theoretical DFT techniques, to elucidate the vibrational characteristics of the compound. The strength of intermolecular N-H···S hydrogen bonding and charge transfer within the system was assessed through natural bonding orbital analysis. Moreover, Bader's atoms in molecules theory was employed to estimate the strength of intermolecular hydrogen bonds, revealing strong interactions within the 5A4BT dimer. The title compound exhibited binding affinities of -6.4 and -6.5 kcal/mol for COX1 (PDB 3KK6) and COX2 (1CX2) target proteins, respectively. For the first time, predictions regarding ADMET properties, drug-likeness, and toxicity, including favorable bioavailability, along with 100 ns molecular dynamics simulations, binding free energy, and energy decomposition per residue in the binding cavity of the protein from molecular mechanics generalized born surface area approach, collectively indicate the potential of 5A4BT as a nonselective COX inhibitor.
Collapse
Affiliation(s)
- Lamya
H. Al-Wahaibi
- Department
of Chemistry, College of Sciences, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ali A. El-Emam
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed S. M. Abdelbaky
- Department
of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
| | - Santiago Garcia-Granda
- Department
of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
| | - Anushree Maurya
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Mamta Pal
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Zohra Siddiqui
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Raj Shukla
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Shilendra K. Pathak
- Department
of Physics, M. M. M. P. G. College, Deoria 274502, Uttar Pradesh, India
| | - Ruchi Srivastava
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Vikas K. Shukla
- Department
of Physics, Maharishi University of Information
Technology, Lucknow 226013, Uttar Pradesh, India
| | - Onkar Prasad
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Leena Sinha
- Department
of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
3
|
Mallet C, Desmeules J, Pegahi R, Eschalier A. An Updated Review on the Metabolite (AM404)-Mediated Central Mechanism of Action of Paracetamol (Acetaminophen): Experimental Evidence and Potential Clinical Impact. J Pain Res 2023; 16:1081-1094. [PMID: 37016715 PMCID: PMC10066900 DOI: 10.2147/jpr.s393809] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Paracetamol remains the recommended first-line option for mild-to-moderate acute pain in general population and particularly in vulnerable populations. Despite its wide use, debate exists regarding the analgesic mechanism of action (MoA) of paracetamol. A growing body of evidence challenged the notion that paracetamol exerts its analgesic effect through cyclooxygenase (COX)-dependent inhibitory effect. It is now more evident that paracetamol analgesia has multiple pathways and is mediated by the formation of the bioactive AM404 metabolite in the central nervous system (CNS). AM404 is a potent activator of TRPV1, a major contributor to neuronal response to pain in the brain and dorsal horn. In the periaqueductal grey, the bioactive metabolite AM404 activated the TRPV1 channel-mGlu5 receptor-PLC-DAGL-CB1 receptor signaling cascade. The present article provides a comprehensive literature review of the centrally located, COX-independent, analgesic MoA of paracetamol and relates how the current experimental evidence can be translated into clinical practice. The evidence discussed in this review established paracetamol as a central, COX-independent, antinociceptive medication that has a distinct MoA from non-steroidal anti-inflammatory drugs (NSAIDs) and a more tolerable safety profile. With the establishment of the central MoA of paracetamol, we believe that paracetamol remains the preferred first-line option for mild-to-moderate acute pain for healthy adults, children, and patients with health concerns. However, safety concerns remain with the high dose of paracetamol due to the NAPQI-mediated liver necrosis. Centrally acting paracetamol/p-aminophenol derivatives could potentiate the analgesic effect of paracetamol without increasing the risk of hepatoxicity. Moreover, the specific central MoA of paracetamol allows its combination with other analgesics, including NSAIDs, with a different MoA. Future experiments to better explain the central actions of paracetamol could pave the way for discovering new central analgesics with a better benefit-to-risk ratio.
Collapse
Affiliation(s)
- Christophe Mallet
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
| | - Jules Desmeules
- Faculty of Medicine and The School of Pharmaceutical Sciences, Faculty of Sciences, Geneva University, Geneva, Switzerland
| | | | - Alain Eschalier
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
- Correspondence: Alain Eschalier, Faculté de Médecine, UMR Neuro-Dol, 49 Bd François Mitterrand, Clermont-Ferrand, 63000, France, Email
| |
Collapse
|
4
|
Ivleva EA, Zaborskaya MS, Shiryaev VA, Klimochkin YN. One pot synthesis of bridgehead amino alcohols from diamantoid hydrocarbons. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2177173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Elena A. Ivleva
- Department of Organic Chemistry, Samara State Technical University, Samara, Russian Federation
| | - Maria S. Zaborskaya
- Department of Organic Chemistry, Samara State Technical University, Samara, Russian Federation
| | - Vadim A. Shiryaev
- Department of Organic Chemistry, Samara State Technical University, Samara, Russian Federation
| | - Yuri N. Klimochkin
- Department of Organic Chemistry, Samara State Technical University, Samara, Russian Federation
| |
Collapse
|
5
|
Spectroscopic, reactivity analysis and docking studies of 3-(adamantan-1-yl)-4-(4-fluorophenyl)-1-[(4-phenylpiperazin-1-yl)methyl]-4,5-dihdyro-1H-1,2,4-triazole—5-thione: DFT and MD simulations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Al-Mutairi AA, Mary YS, Mary YS, Soman S, Hassan HM, Al-Alshaikh MA, El-Emam AA. Spectroscopic, Docking and MD Simulation Analysis of an Adamantane Derivative with Solvation Effects in Different Solvents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2086274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aamal A. Al-Mutairi
- Department of Chemistry, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | | | | - Sreejit Soman
- Stemskills Research and Education Lab Private Limited, Faridabad, Hariyana, India
| | - Hanan M. Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Monirah A. Al-Alshaikh
- Department of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Fan H, Tong Z, Ren Z, Mishra K, Morita S, Edouarzin E, Gorla L, Averkiev B, Day VW, Hua DH. Synthesis and Characterization of Bimetallic Nanoclusters Stabilized by Chiral and Achiral Polyvinylpyrrolidinones. Catalytic C(sp 3)-H Oxidation. J Org Chem 2022; 87:6742-6759. [PMID: 35511477 DOI: 10.1021/acs.joc.2c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Second-generation chiral-substituted poly-N-vinylpyrrolidinones (CSPVPs) (-)-1R and (+)-1S were synthesized by free-radical polymerization of (3aR,6aR)- and (3aS,6aS)-5-ethenyl-tetrahydro-2,2-dimethyl-4H-1,3-dioxolo[4,5-c]pyrrol-4-one, respectively, using thermal and photochemical reactions. They were produced from respective d-isoascorbic acid and d-ribose. In addition, chiral polymer (-)-2 was also synthesized from the polymerization of (S)-3-(methoxymethoxy)-1-vinylpyrrolidin-2-one. Molecular weights of these chiral polymers were measured using HRMS, and the polymer chain tacticity was studied using 13C NMR spectroscopy. Chiral polymers (-)-1R, (+)-1S, and (-)-2 along with poly-N-vinylpyrrolidinone (PVP, MW 40K) were separately used in the stabilization of Cu/Au or Pd/Au nanoclusters. CD spectra of the bimetallic nanoclusters stabilized by (-)-1R and (+)-1S showed close to mirror-imaged CD absorption bands at wavelengths 200-300 nm, revealing that bimetallic nanoclusters' chiroptical responses are derived from chiral polymer-encapsulated nanomaterials. Chemo-, regio-, and stereo-selectivity was found in the catalytic C-H group oxidation reactions of complex bioactive natural products, such as ambroxide, menthofuran, boldine, estrone, dehydroabietylamine, 9-allogibberic acid, and sclareolide, and substituted adamantane molecules, when catalyst Cu/Au (3:1) or Pd/Au (3:1) stabilized by CSPVPs or PVP and oxidant H2O2 or t-BuOOH were applied. Oxidation of (+)-boldine N-oxide 23 using NMO as an oxidant yielded 4,5-dehydroboldine 27, and oxidation of (-)-9-allogibberic acid yielded C6,15 lactone 47 and C6-ketone 48.
Collapse
Affiliation(s)
- Huafang Fan
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zongbo Tong
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zhaoyang Ren
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kanchan Mishra
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Shunya Morita
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Edruce Edouarzin
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Lingaraju Gorla
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Boris Averkiev
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Victor W Day
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Duy H Hua
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
8
|
Hoshijima H, Hunt M, Nagasaka H, Yaksh T. Systematic Review of Systemic and Neuraxial Effects of Acetaminophen in Preclinical Models of Nociceptive Processing. J Pain Res 2021; 14:3521-3552. [PMID: 34795520 PMCID: PMC8594782 DOI: 10.2147/jpr.s308028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/11/2021] [Indexed: 12/29/2022] Open
Abstract
Acetaminophen (APAP) in humans has robust effects with a high therapeutic index in altering postoperative and inflammatory pain states in clinical and experimental pain paradigms with no known abuse potential. This review considers the literature reflecting the preclinical actions of acetaminophen in a variety of pain models. Significant observations arising from this review are as follows: 1) acetaminophen has little effect upon acute nociceptive thresholds; 2) acetaminophen robustly reduces facilitated states as generated by mechanical and thermal hyperalgesic end points in mouse and rat models of carrageenan and complete Freund’s adjuvant evoked inflammation; 3) an antihyperalgesic effect is observed in models of facilitated processing with minimal inflammation (eg, phase II intraplantar formalin); and 4) potent anti-hyperpathic effects on the thermal hyperalgesia, mechanical and cold allodynia, allodynic thresholds in rat and mouse models of polyneuropathy and mononeuropathies and bone cancer pain. These results reflect a surprisingly robust drug effect upon a variety of facilitated states that clearly translate into a wide range of efficacy in preclinical models and to important end points in human therapy. The specific systems upon which acetaminophen may act based on targeted delivery suggest both a spinal and a supraspinal action. Review of current targets for this molecule excludes a role of cyclooxygenase inhibitor but includes effects that may be mediated through metabolites acting on the TRPV1 channel, or by effect upon cannabinoid and serotonin signaling. These findings suggest that the mode of action of acetaminophen, a drug with a long therapeutic history of utilization, has surprisingly robust effects on a variety of pain states in clinical patients and in preclinical models with a good therapeutic index, but in spite of its extensive use, its mechanisms of action are yet poorly understood.
Collapse
Affiliation(s)
- Hiroshi Hoshijima
- Department of Anesthesiology, Saitama Medical University Hospital, Saitama, Japan
| | - Matthew Hunt
- Departments of Anesthesiology and Pharmacology, University of California, San Diego Anesthesia Research Laboratory, La Jolla, CA, USA
| | - Hiroshi Nagasaka
- Department of Anesthesiology, Saitama Medical University Hospital, Saitama, Japan
| | - Tony Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego Anesthesia Research Laboratory, La Jolla, CA, USA
| |
Collapse
|
9
|
Bousquet J, Czarlewski W, Zuberbier T, Mullol J, Blain H, Cristol JP, De La Torre R, Pizarro Lozano N, Le Moing V, Bedbrook A, Agache I, Akdis CA, Canonica GW, Cruz AA, Fiocchi A, Fonseca JA, Fonseca S, Gemicioğlu B, Haahtela T, Iaccarino G, Ivancevich JC, Jutel M, Klimek L, Kraxner H, Kuna P, Larenas-Linnemann DE, Martineau A, Melén E, Okamoto Y, Papadopoulos NG, Pfaar O, Regateiro FS, Reynes J, Rolland Y, Rouadi PW, Samolinski B, Sheikh A, Toppila-Salmi S, Valiulis A, Choi HJ, Kim HJ, Anto JM. Potential Interplay between Nrf2, TRPA1, and TRPV1 in Nutrients for the Control of COVID-19. Int Arch Allergy Immunol 2021; 182:324-338. [PMID: 33567446 PMCID: PMC8018185 DOI: 10.1159/000514204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
In this article, we propose that differences in COVID-19 morbidity may be associated with transient receptor potential ankyrin 1 (TRPA1) and/or transient receptor potential vanilloid 1 (TRPV1) activation as well as desensitization. TRPA1 and TRPV1 induce inflammation and play a key role in the physiology of almost all organs. They may augment sensory or vagal nerve discharges to evoke pain and several symptoms of COVID-19, including cough, nasal obstruction, vomiting, diarrhea, and, at least partly, sudden and severe loss of smell and taste. TRPA1 can be activated by reactive oxygen species and may therefore be up-regulated in COVID-19. TRPA1 and TRPV1 channels can be activated by pungent compounds including many nuclear factor (erythroid-derived 2) (Nrf2)-interacting foods leading to channel desensitization. Interactions between Nrf2-associated nutrients and TRPA1/TRPV1 may be partly responsible for the severity of some of the COVID-19 symptoms. The regulation by Nrf2 of TRPA1/TRPV1 is still unclear, but suggested from very limited clinical evidence. In COVID-19, it is proposed that rapid desensitization of TRAP1/TRPV1 by some ingredients in foods could reduce symptom severity and provide new therapeutic strategies.
Collapse
Affiliation(s)
- Jean Bousquet
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Charité, and Berlin Institute of Health, Comprehensive Allergy Center, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany, .,University Hospital and MACVIA France, Montpellier, France,
| | | | - Torsten Zuberbier
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Charité, and Berlin Institute of Health, Comprehensive Allergy Center, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic - Clinical & Experimental Respiratory Immunoallergy, IDIBAPS, CIBERES, Universitat de Barcelona, Barcelona, Spain
| | - Hubert Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
| | - Jean-Paul Cristol
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de, Montpellier, France
| | - Rafael De La Torre
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.,IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut Toxicologia, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | | | - Anna Bedbrook
- University Hospital and MACVIA France, Montpellier, France.,MASK-air, Montpellier, France
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
| | - G Walter Canonica
- Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS and Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Alvaro A Cruz
- Fundação ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Brazil
| | - Alessandro Fiocchi
- Division of Allergy, The Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Joao A Fonseca
- CINTESIS, Center for Research in Health Technologies and Information Systems, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,MEDIDA, Lda, Porto, Portugal
| | - Susana Fonseca
- GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, Faculty of Sciences, University of Porto, Vila do Conde, Portugal
| | - Bilun Gemicioğlu
- Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Guido Iaccarino
- Interdepartmental Center of Research on Hypertension and Related Conditions CIRIAPA, Federico II University, Napoli, Italy
| | | | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University and ALL-MED Medical Research Institute, Wrocław, Poland
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Helga Kraxner
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Piotr Kuna
- Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | - Désirée E Larenas-Linnemann
- Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, Mexico City, Mexico
| | - Adrian Martineau
- Institute for Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital, University of Manchester, Manchester, United Kingdom.,Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou," University of Athens, Athens, Greece
| | - Oliver Pfaar
- Section of Rhinology and Allergy, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Frederico S Regateiro
- Allergy and Clinical Immunology Unit, Centro Hospitalar e Universitário de Coimbra, Faculty of Medicine, Institute of Immunology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, ICBR - Institute for Clinical and Biomedical Research, CIBB, University of Coimbra, Coimbra, Portugal
| | - Jacques Reynes
- Maladies Infectieuses et Tropicales, CHU, Montpellier, France
| | | | - Philip W Rouadi
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Boleslaw Samolinski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Aziz Sheikh
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Arunas Valiulis
- Vilnius University Faculty of Medicine, Institute of Clinical Medicine & Institute of Health Sciences, Vilnius, Lithuania
| | - Hak-Jong Choi
- Research and Development Division, Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hyun Ju Kim
- Strategy and Planning Division, SME Service Department, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Josep M Anto
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut Toxicologia, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,ISGlobAL, Barcelona, Centre for Research in Environmental Epidemiology, Barcelona, Spain
| |
Collapse
|
10
|
Bousquet J, Le Moing V, Blain H, Czarlewski W, Zuberbier T, de la Torre R, Pizarro Lozano N, Reynes J, Bedbrook A, Cristol JP, Cruz AA, Fiocchi A, Haahtela T, Iaccarino G, Klimek L, Kuna P, Melén E, Mullol J, Samolinski B, Valiulis A, Anto JM. Efficacy of broccoli and glucoraphanin in COVID-19: From hypothesis to proof-of-concept with three experimental clinical cases. World Allergy Organ J 2021; 14:100498. [PMID: 33425204 PMCID: PMC7770975 DOI: 10.1016/j.waojou.2020.100498] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is described in a clinical case involving a patient who proposed the hypothesis that Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-interacting nutrients may help to prevent severe COVID-19 symptoms. Capsules of broccoli seeds containing glucoraphanin were being taken before the onset of SARS-CoV-2 infection and were continued daily for over a month after the first COVID-19 symptoms. They were found to reduce many of the symptoms rapidly and for a duration of 6-12 h by repeated dosing. When the patient was stable but still suffering from cough and nasal obstruction when not taking the broccoli capsules, a double-blind induced cough challenge confirmed the speed of onset of the capsules (less than 10 min). A second clinical case with lower broccoli doses carried out during the cytokine storm confirmed the clinical benefits already observed. A third clinical case showed similar effects at the onset of symptoms. In the first clinical trial, we used a dose of under 600 μmol per day of glucoraphanin. However, such a high dose may induce pharmacologic effects that require careful examination before the performance of any study. It is likely that the fast onset of action is mediated through the TRPA1 channel. These experimental clinical cases represent a proof-of-concept confirming the hypothesis that Nrf2-interacting nutrients are effective in COVID-19. However, this cannot be used in practice before the availability of further safety data, and confirmation is necessary through proper trials on efficacy and safety.
Collapse
Key Words
- ACE, Angiotensin converting enzyme
- AT1R, Angiotensin II receptor type 1
- BMI, Body mass index
- Broccoli
- Broccoli, Broccoli seed capsules
- COVID-19
- COVID-19, Coronavirus 19 disease
- Cough challenge
- NAPQI, N-acetyl-p-benzoquinone imine
- Nrf2
- Nrf2, Nuclear factor (erythroid-derived 2)-like 2
- SARS, Severe acute respiratory syndrome
- SARS-Cov-2, Severe acute respiratory syndrome coronavirus 2
- TRP, Transient receptor potential
- TRPA1
- TRPA1, Transient receptor potential ankyrin 1
- TRPV1
- TRPV1, Transient receptor potential vanillin 1
- VAS, Visual analogue scale
Collapse
Affiliation(s)
- Jean Bousquet
- Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, Berlin, Germany
- MACVIA France, University Hospital, Montpellier, France
| | | | - Hubert Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
| | | | - Torsten Zuberbier
- Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, Berlin, Germany
| | - Rafael de la Torre
- CIBER Fisiopatologia de La Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Jacques Reynes
- Maladies Infectiouses et Tropicales, CHU Montpellier, France
| | - Anna Bedbrook
- MACVIA France, University Hospital, Montpellier, France
- MASK-air, Montpellier, France
| | - Jean-Paul Cristol
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, France
| | - Alvaro A. Cruz
- Fundação ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Brazil
| | - Alessandro Fiocchi
- Division of Allergy, Department of Pediatric Medicine - The Bambino Gesù Children's Research Hospital Holy see, Rome, Italy
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, And University of Helsinki, Helsinki, Finland
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Napoli, Italy
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Piotr Kuna
- Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Poland
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic - Clinical & Experimental Respiratory Immunoallergy, IDIBAPS, CIBERES, Universitat de Barcelona, Barcelona, Spain
| | - Boleslaw Samolinski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland
| | - Arunas Valiulis
- Vilnius University Faculty of Medicine, Institute of Clinical Medicine & Institute of Health Sciences, Vilnius, Lithuania
| | - Josep M. Anto
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- ISGlobal. ISGlobAL, Barcelona, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| |
Collapse
|
11
|
Farooq S, Mazhar A, Ihsan-Ul-Haq, Ullah N. One-pot multicomponent synthesis of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives and their biological evaluation as potential antioxidants, enzyme inhibitors, antimicrobials, cytotoxic and anti-inflammatory agents. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
13
|
McCrae JC, Morrison EE, MacIntyre IM, Dear JW, Webb DJ. Long-term adverse effects of paracetamol - a review. Br J Clin Pharmacol 2018; 84:2218-2230. [PMID: 29863746 PMCID: PMC6138494 DOI: 10.1111/bcp.13656] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Paracetamol (acetaminophen) is the most commonly used drug in the world, with a long record of use in acute and chronic pain. In recent years, the benefits of paracetamol use in chronic conditions has been questioned, notably in the areas of osteoarthritis and lower back pain. Over the same period, concerns over the long-term adverse effects of paracetamol use have increased, initially in the field of hypertension, but more recently in other areas as well. The evidence base for the adverse effects of chronic paracetamol use consists of many cohort and observational studies, with few randomized controlled trials, many of which contradict each other, so these studies must be interpreted with caution. Nevertheless, there are some areas where the evidence for harm is more robust, and if a clinician is starting paracetamol with the expectation of chronic use it might be advisable to discuss these side effects with patients beforehand. In particular, an increased risk of gastrointestinal bleeding and a small (~4 mmHg) increase in systolic blood pressure are adverse effects for which the evidence is particularly strong, and which show a degree of dose dependence. As our estimation of the benefits decreases, an accurate assessment of the harms is ever more important. The present review summarizes the current evidence on the harms associated with chronic paracetamol use, focusing on cardiovascular disease, asthma and renal injury, and the effects of in utero exposure.
Collapse
Affiliation(s)
- J. C. McCrae
- BHF Centre of Research Excellence (CoRE)Queen's Medical Research Institute, Pharmacology, Toxicology & TherapeuticsEdinburghUK
| | - E. E. Morrison
- BHF Centre of Research Excellence (CoRE)Queen's Medical Research Institute, Pharmacology, Toxicology & TherapeuticsEdinburghUK
| | - I. M. MacIntyre
- BHF Centre of Research Excellence (CoRE)Queen's Medical Research Institute, Pharmacology, Toxicology & TherapeuticsEdinburghUK
| | - J. W. Dear
- BHF Centre of Research Excellence (CoRE)Queen's Medical Research Institute, Pharmacology, Toxicology & TherapeuticsEdinburghUK
| | - D. J. Webb
- BHF Centre of Research Excellence (CoRE)Queen's Medical Research Institute, Pharmacology, Toxicology & TherapeuticsEdinburghUK
| |
Collapse
|
14
|
Spasov AA, Vasil’ev PM, Babkov DA, Prokhorova TY, Sturova EA, Klimochkin YN, Leonova MV, Baimuratov MR. New dipeptidyl peptidase 4 inhibitors among adamantane derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017040124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|