1
|
Tanaka A, Ryder MH, Suzuki T, Uesaka K, Yamaguchi N, Amimoto T, Otani M, Nakayachi O, Arakawa K, Tanaka N, Takemoto D. Production of Agrocinopine A by Ipomoea batatas Agrocinopine Synthase in Transgenic Tobacco and Its Effect on the Rhizosphere Microbial Community. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:73-84. [PMID: 34585955 DOI: 10.1094/mpmi-05-21-0114-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Agrobacterium tumefaciens is a bacterial pathogen that causes crown gall disease on a wide range of eudicot plants by genetic transformation. Besides T-DNA integrated by natural transformation of plant vegetative tissues by pathogenic Agrobacterium spp., previous reports have indicated that T-DNA sequences originating from an ancestral Agrobacterium sp. are present in the genomes of all cultivated sweet potato (Ipomoea batatas) varieties analyzed. Expression of an Agrobacterium-derived agrocinopine synthase (ACS) gene was detected in leaf and root tissues of sweet potato, suggesting that the plant can produce agrocinopine, a sugar-phosphodiester opine considered to be utilized by some strains of Agrobacterium spp. in crown gall. To validate the product synthesized by Ipomoea batatas ACS (IbACS), we introduced IbACS into tobacco under a constitutive promoter. High-voltage paper electrophoresis followed by alkaline silver nitrate staining detected the production of an agrocinopine-like substance in IbACS1-expressing tobacco, and further mass spectrometry and nuclear magnetic resonance analyses of the product confirmed that IbACS can produce agrocinopine A from natural plant substrates. The partially purified compound was biologically active in an agrocinopine A bioassay. A 16S ribosomal RNA amplicon sequencing and meta-transcriptome analysis revealed that the rhizosphere microbial community of tobacco was affected by the expression of IbACS. A new species of Leifsonia (actinobacteria) was isolated as an enriched bacterium in the rhizosphere of IbACS1-expressing tobacco. This Leifsonia sp. can catabolize agrocinopine A produced in tobacco, indicating that the production of agrocinopine A attracts rhizosphere bacteria that can utilize this sugar-phosphodiester. These results suggest a potential role of IbACS conserved among sweet potato cultivars in manipulating their microbial community.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Maarten H Ryder
- School of Agriculture, Food & Wine, The University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 478-8501, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Nobuo Yamaguchi
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tomoko Amimoto
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Motoyasu Otani
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan
| | - Osamu Nakayachi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Nobukazu Tanaka
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
2
|
Matveeva T, Otten L. Opine biosynthesis in naturally transgenic plants: Genes and products. PHYTOCHEMISTRY 2021; 189:112813. [PMID: 34192603 DOI: 10.1016/j.phytochem.2021.112813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/03/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The plant pathogen Agrobacterium transfers DNA into plant cells by a specific transfer mechanism. Expression of this transferred DNA or T-DNA leads to crown gall tumors or abnormal, hairy roots and the synthesis of specific compounds, called opines. Opines are produced from common plant metabolites like sugars, amino acids and α-keto acids, which are combined into different low molecular weight structures by T-DNA-encoded opine synthase enzymes. Opines can be converted back by Agrobacterium into the original metabolites and used for agrobacterial growth. Recently it has been discovered that about 7% of Angiosperms carry T-DNA-like sequences. These result from ancient Agrobacterium transformation events, followed by spontaneous regeneration of transformed cells into natural genetically transformed organisms (nGMOs). Nearly all nGMOs identified up to date carry opine synthesis genes, several of these are intact and potentially encode opine synthesis. So far, only tobacco and cuscuta have been demonstrated to contain opines. Whereas opines from crown gall and hairy root tissues have been studied for over 60 years, those from the nGMOs remain to be explored.
Collapse
Affiliation(s)
- Tatiana Matveeva
- St. Petersburg State University, University Emb., 7/9, Saint Petersburg, Russia.
| | - Léon Otten
- Institute of Plant Molecular Biology, C.N.R.S, 67084, Strasbourg, France.
| |
Collapse
|
3
|
Recent advances in biocatalysis of nitrogen-containing heterocycles. Biotechnol Adv 2021; 54:107813. [PMID: 34450199 DOI: 10.1016/j.biotechadv.2021.107813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022]
Abstract
Nitrogen-containing heterocycles (N-heterocycles) are ubiquitous in both organisms and pharmaceutical products. Biocatalysts are providing green approaches for synthesizing various N-heterocycles under mild reaction conditions. This review summarizes the recent advances in the biocatalysis of N-heterocycles through the discovery and engineering of natural N-heterocycle synthetic pathway, and the design of artificial synthetic routes, with an emphasis on biocatalysts applied in retrosynthetic design for preparing complex N-heterocycles. Furthermore, this review discusses the future prospects and challenges of biocatalysts involved in the synthesis of N-heterocycles.
Collapse
|
4
|
Aubin E, El Baidouri M, Panaud O. Horizontal Gene Transfers in Plants. Life (Basel) 2021; 11:life11080857. [PMID: 34440601 PMCID: PMC8401529 DOI: 10.3390/life11080857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
In plants, as in all eukaryotes, the vertical transmission of genetic information through reproduction ensures the maintenance of the integrity of species. However, many reports over the past few years have clearly shown that horizontal gene transfers, referred to as HGTs (the interspecific transmission of genetic information across reproductive barriers) are very common in nature and concern all living organisms including plants. The advent of next-generation sequencing technologies (NGS) has opened new perspectives for the study of HGTs through comparative genomic approaches. In this review, we provide an up-to-date view of our current knowledge of HGTs in plants.
Collapse
|
5
|
Lachner LA, Galstyan LG, Krause K. A highly efficient protocol for transforming Cuscuta reflexa based on artificially induced infection sites. PLANT DIRECT 2020; 4:e00254. [PMID: 32789286 PMCID: PMC7417715 DOI: 10.1002/pld3.254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/17/2020] [Indexed: 05/02/2023]
Abstract
The parasitic plant genus Cuscuta is notoriously difficult to transform and to propagate or regenerate in vitro. With it being a substantial threat to many agroecosystems, techniques allowing functional analysis of gene products involved in host interaction and infection mechanisms are, however, in high demand. We set out to explore whether Agrobacterium-mediated transformation of different plant parts can provide efficient alternatives to the currently scarce and inefficient protocols for transgene expression in Cuscuta. We used fluorescent protein genes on the T-DNA as markers for transformation efficiency and transformation stability. As a result, we present a novel highly efficient transformation protocol for Cuscuta reflexa cells that exploits the propensity of the infection organ to take up and express transgenes with the T-DNA. Both, Agrobacterium rhizogenes and Agrobacterium tumefaciens carrying binary transformation vectors with reporter fluorochromes yielded high numbers of transformation events. An overwhelming majority of transformed cells were observed in the cell layer below the adhesive disk's epidermis, suggesting that these cells are particularly susceptible to infection. Cotransformation of these cells happens frequently when Agrobacterium strains carrying different constructs are applied together. Explants containing transformed tissue expressed the fluorescent markers in in vitro culture for several weeks, offering a future possibility for development of transformed cells into callus. These results are discussed with respect to the future potential of this technique and with respect to the special characteristics of the infection organ that may explain its competence to take up the foreign DNA.
Collapse
Affiliation(s)
| | - Levon Galstyan Galstyan
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
- Present address:
Faculty of Food TechnologiesArmenian National Agrarian UniversityYerevanArmenia
| | - Kirsten Krause
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
6
|
Rhizogenic agrobacteria as an innovative tool for plant breeding: current achievements and limitations. Appl Microbiol Biotechnol 2020; 104:2435-2451. [PMID: 32002599 DOI: 10.1007/s00253-020-10403-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Compact plant growth is an economically important trait for many crops. In practice, compactness is frequently obtained by applying chemical plant growth regulators. In view of sustainable and environmental-friendly plant production, the search for viable alternatives is a priority for breeders. Co-cultivation and natural transformation using rhizogenic agrobacteria result in morphological alterations which together compose the Ri phenotype. This phenotype is known to exhibit a more compact plant habit, besides other features. In this review, we highlight the use of rhizogenic agrobacteria and the Ri phenotype with regard to sustainable plant production and plant breeding. An overview of described Ri lines and current breeding applications is presented. The potential of Ri lines as pre-breeding material is discussed from both a practical and legal point of view.
Collapse
|
7
|
Roddan R, Ward JM, Keep NH, Hailes HC. Pictet-Spenglerases in alkaloid biosynthesis: Future applications in biocatalysis. Curr Opin Chem Biol 2020; 55:69-76. [PMID: 31978651 DOI: 10.1016/j.cbpa.2019.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Pictet-Spenglerases provide a key role in the biosynthesis of many biologically active alkaloids. There is increasing use of these biocatalysts as an alternative to traditional organic synthetic methods as they provide stereoselective and regioselective control under mild conditions. Products from these enzymes also contain privileged drug scaffolds (such as tetrahydroisoquinoline or β-carboline moieties), so there is interest in the characterization and use of these enzymes as versatile biocatalysts to synthesize analogs of the corresponding natural products for drug discovery. This review discusses all known Pictet-Spenglerase enzymes and their applications as biocatalysts.
Collapse
Affiliation(s)
- Rebecca Roddan
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 8HX, UK; Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT, UK
| | - Nicholas H Keep
- Institute for Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 8HX, UK
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
8
|
Zhang Y, Wang D, Wang Y, Dong H, Yuan Y, Yang W, Lai D, Zhang M, Jiang L, Li Z. Parasitic plant dodder (Cuscuta spp.): A new natural Agrobacterium-to-plant horizontal gene transfer species. SCIENCE CHINA-LIFE SCIENCES 2020; 63:312-316. [PMID: 31902033 DOI: 10.1007/s11427-019-1588-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Yuexia Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Delin Wang
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yubin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huirong Dong
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuge Yuan
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wei Yang
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daowan Lai
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Linjian Jiang
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Agrobacterium-Mediated Transformation in the Evolution of Plants. Curr Top Microbiol Immunol 2018; 418:421-441. [PMID: 29500560 DOI: 10.1007/82_2018_80] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In most cases, the genetic engineering of plants uses Agrobacterium-mediated transformation to introduce novel genes. In nature, insertion of T-DNA into the plant genome and its subsequent transfer via sexual reproduction have been shown for several species in the genera Nicotiana, Ipomoea , and Linaria . A sequence homologous to T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of wild-type Nicotiana glauca (section Noctiflorae) more than 30 years ago and was named "cellular T-DNA" (cT-DNA). It comprises an imperfect inverted repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, Ngorf13, Ngorf14) and an opine synthesis gene (Ngmis). Multiple cT-DNAs have also been found in species of the sections Tomentosae and Nicotiana of the genus Nicotiana. These ancient cT-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. In 2012-2013, cT-DNA was detected and characterized in Linaria vulgaris and L. genistifolia ssp. dalmatica. Their cT-DNA is present in two copies and organized as an imperfect direct tandem repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. In 2015, cT-DNA was found in Ipomoea. Two types of T-DNA-like sequences were described within this genera, and their distribution varied among cultured hexaploid, tetraploid, and wild diploid forms. Thus, several independent T-DNA integration events occurred in the genomes of these three plant genera. We propose that the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this chapter, we focus on the structure and functions of cT-DNA in Linaria, Nicotiana, and Ipomoea and discuss their possible evolutionary role.
Collapse
|
10
|
Peláez P, Hernández-López A, Estrada-Navarrete G, Sanchez F. Small RNAs Derived from the T-DNA of Agrobacterium rhizogenes in Hairy Roots of Phaseolus vulgaris. FRONTIERS IN PLANT SCIENCE 2017; 8:96. [PMID: 28203245 PMCID: PMC5285386 DOI: 10.3389/fpls.2017.00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Agrobacterium rhizogenes is a pathogenic bacteria that causes hairy root disease by transferring bacterial DNA into the plant genome. It is an essential tool for industry and research due to its capacity to produce genetically modified roots and whole organisms. Here, we identified and characterized small RNAs generated from the transfer DNA (T-DNA) of A. rhizogenes in hairy roots of common bean (Phaseolus vulgaris). Distinct abundant A. rhizogenes T-DNA-derived small RNAs (ArT-sRNAs) belonging to several oncogenes were detected in hairy roots using high-throughput sequencing. The most abundant and diverse species of ArT-sRNAs were those of 21- and 22-nucleotides in length. Many T-DNA encoded genes constituted phasiRNA producing loci (PHAS loci). Interestingly, degradome analysis revealed that ArT-sRNAs potentially target genes of P. vulgaris. In addition, we detected low levels of ArT-sRNAs in the A. rhizogenes-induced calli generated at the wound site before hairy root emergence. These results suggest that RNA silencing targets several genes from T-DNA of A. rhizogenes in hairy roots of common bean. Therefore, the role of RNA silencing observed in this study has implications in our understanding and usage of this unique plant-bacteria interaction.
Collapse
Affiliation(s)
- Pablo Peláez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Alejandrina Hernández-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| |
Collapse
|
11
|
Chen K, Otten L. Natural Agrobacterium Transformants: Recent Results and Some Theoretical Considerations. FRONTIERS IN PLANT SCIENCE 2017; 8:1600. [PMID: 28966626 PMCID: PMC5606197 DOI: 10.3389/fpls.2017.01600] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/31/2017] [Indexed: 05/19/2023]
Abstract
Agrobacterium rhizogenes causes hairy root growth on a large number of plant species. It does so by transferring specific DNA fragments (T-DNA) from its root-inducing plasmid (pRi) into plant cells. Expression of T-DNA genes leads to abnormal root growth and production of specific metabolites (opines) which are taken up by the bacterium and used for its growth. Recent work has shown that several Nicotiana, Linaria, and Ipomoea species contain T-DNA genes from A. rhizogenes in their genomes. Plants carrying such T-DNAs (called cellular T-DNA or cT-DNA) can be considered as natural transformants. In the Nicotiana genus, seven different T-DNAs are found originating from different Agrobacterium strains, and in the Tomentosae section no <4 successive insertion events took place. In several cases cT-DNA genes were found to be expressed. In some Nicotiana tabacum cultivars the opine synthesis gene TB-mas2' is expressed in the roots. These cultivars were found to produce opines. Here we review what is known about natural Agrobacterium transformants, develop a theoretical framework to analyze this unusual phenomenon, and provide some outlines for further research.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Léon Otten
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS)Strasbourg, France
- *Correspondence: Léon Otten
| |
Collapse
|