1
|
Ismail A, Kennedy L, Francis H. Sex-Dependent Differences in Cholestasis: Why Estrogen Signaling May Be a Key Pathophysiological Driver. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1355-1362. [PMID: 37422150 PMCID: PMC10548272 DOI: 10.1016/j.ajpath.2023.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are cholestatic liver diseases that have significant clinical impact with debilitating symptoms and mortality. While PBC is predominantly seen in perimenopausal and postmenopausal women, men who are diagnosed with PBC have worse clinical outcomes and all-cause mortality. In contrast, 60% to 70% of patients with PSC are men; the data indicate that female sex may be an independent factor against PSC-related complications. These findings suggest a sex-dependent biological basis for these differences. Estrogen has been implicated in the pathogenesis of intrahepatic cholestasis of pregnancy and may induce cholestasis through a variety of interactions. However, it is unclear why some sexual dimorphic features may provide a protective effect despite known estrogen models that induce cholestasis. This article provides a brief introductory background and discusses the sexual dimorphism in clinical presentation in PSC and PBC. It also explores the role of estrogen signaling in pathogenesis and how it relates to intrahepatic cholestasis of pregnancy. Studies have already targeted certain molecules involved in estrogen signaling, and this review discusses these studies that identify estrogen-related receptor, estrogen receptor-α, estrogen receptor-β, farnesoid X receptor, and mast cells as possible targets, in addition to long noncoding RNA H19-induced cholestasis and sexual dimorphism. It also explores these interactions and their role in the pathogenesis of PBC and PSC.
Collapse
Affiliation(s)
- AbdiGhani Ismail
- Division of Internal Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
2
|
Mack CL. HLA Associations in pediatric autoimmune liver diseases: Current state and future research initiatives. Front Immunol 2022; 13:1019339. [PMID: 36311765 PMCID: PMC9609783 DOI: 10.3389/fimmu.2022.1019339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2024] Open
Abstract
The strongest genetic association with autoimmunity is within chromosome 6p21, where the human leukocyte antigen (HLA) complex resides. This review will focus on the HLA associations within pediatric autoimmune hepatitis, autoimmune sclerosing cholangitis and primary sclerosing cholangitis. In general, there is considerable overlap in HLA genotypes conferring susceptibility to pediatric autoimmune liver diseases, however unique HLA associations and protective HLA genotypes exist. There are numerous areas for future research initiatives in pediatric autoimmune liver diseases and HLA associations with clinical outcomes, autoantigen discovery and novel therapeutics targeting the HLA- autoantigen- T cell pathway will be highlighted.
Collapse
Affiliation(s)
- Cara L. Mack
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology & Nutrition Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Buness JG, Ali AH, Tabibian JH, Buness CW, Cox KL, Lindor KD. Potential Association of Doxycycline With the Onset of Primary Sclerosing Cholangitis: A Case Series. Am J Ther 2022; 29:e437-e443. [PMID: 31567143 DOI: 10.1097/mjt.0000000000001065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is linked to inflammatory bowel diseases (IBD). Evidence suggests an association between the gut microbiome and PSC. However, the putative relationship between exposure to antibiotics and onset of PSC has never been reported. We observed 3 cases in which patients without antecedent liver or bowel issues developed symptoms leading to diagnosis of IBD and subsequently PSC after being exposed to doxycycline. We aimed to identify, through the PSC Partners national patient registry, additional cases of PSC in which there is a temporal relationship between exposure to doxycycline and onset of PSC or PSC-IBD. AREAS OF UNCERTAINTY The etiopathogenesis of PSC remains an enigma. DATA SOURCES We collected data from patients with PSC and PSC-IBD in which there seemed to be a temporal relationship between exposure to doxycycline and PSC. Time from doxycycline exposure to: (1) onset of PSC or PSC-IBD symptoms and (2) diagnosis of PSC were documented for each patient. Descriptive statistical analyses were performed. RESULTS We identified 6 additional patients with PSC or PSC-IBD in whom there was a temporal relationship between exposure to doxycycline and onset of PSC or PSC-IBD. The median age of these 9 patients was 20 years, 6 were female, and 7 had ulcerative colitis. The median time from doxycycline exposure to onset of first symptoms was 3 months, and median time from doxycycline exposure to diagnosis of PSC was 15 months. THERAPEUTIC HYPOTHESIS We describe 9 cases of PSC and PSC-IBD in which there seem to be a temporal relationship between exposure to doxycycline and onset of PSC.
Collapse
Affiliation(s)
- James Gage Buness
- Arizona College of Osteopathic Medicine, Midwestern University, Downers Grove, IL
| | - Ahmad Hassan Ali
- Division of Hepatology, Mayo Clinic, Phoenix, AZ
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO
| | - James H Tabibian
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Los Angeles, CA
| | - Cynthia W Buness
- National Patient Advocate Foundation, Arizona State University, Phoenix, AZ; and
| | - Kenneth L Cox
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Stanford University, Palo Alto, CA
| | - Keith D Lindor
- Arizona College of Osteopathic Medicine, Midwestern University, Downers Grove, IL
- Division of Hepatology, Mayo Clinic, Phoenix, AZ
| |
Collapse
|
4
|
Beheshti-Maal A, Tamimi A, Iravani S, Memarnejadian A, Sorouri M, Aghdaei HA, Zali MR, Hossein Khannazer N, Vosough M. PSC associated inflammatory bowel disease: a distinct entity. Expert Rev Gastroenterol Hepatol 2022; 16:129-139. [PMID: 35078376 DOI: 10.1080/17474124.2022.2031979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a rare, chronic, and progressive cholestatic disease involving intra- and/or extrahepatic bile ducts. PSC in many patients results in end-stage liver diseases. Nearly 60% of the PSC patients suffer from concomitant inflammatory bowel diseases (IBDs). Classically, IBDs are divided into two principle types: Crohn's disease (CD) and ulcerative colitis (UC). However, with growing knowledge, PSC-associated IBD (PSC-IBD) seems to be a rather distinct entity with specific genetics, clinical, and microbiota characteristics. AREAS COVERED In this article, we aim to review the unique characteristics of PSC-IBD from clinical, genetic, and microbiota point of view. EXPERT OPINION PSC-IBD's unique characteristics contribute to the notion that it could be a distinct entity. Acknowledgment of PSC-IBD as a novel entity necessitates designing new clinical guidelines for diagnosis and developing novel therapies.
Collapse
Affiliation(s)
- Alireza Beheshti-Maal
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Acecr, Tehran, Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Acecr, Tehran, Iran
| | - Shahrokh Iravani
- Gastroenterology and Hepatobiliary Research Center, Imam Reza Hospital, Tehran, Iran
| | | | - Majid Sorouri
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Acecr, Tehran, Iran
| |
Collapse
|
5
|
Iravani S, Dooghaie-Moghadam A, Razavi-Khorasani N, Moazzami B, Dowlati Beirami A, Mansour-Ghanaei A, Majidzadeh-A K, Mehrvar A, Khoshdel A, Nasiri Toosi M, Sadeghi A. An update on treatment options for primary sclerosing cholangitis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2020; 13:115-124. [PMID: 32308932 PMCID: PMC7149806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/18/2020] [Indexed: 10/25/2022]
Abstract
Primary sclerosing cholangitis is a chronic cholestatic liver disease defined by strictures of the biliary tree which could ultimately lead to liver cirrhosis and cholangiocarcinoma. Although the exact underlying etiology of this disorder is not fully understood, the pathology is believed to be caused by immune mediated mechanisms. Growing body of evidence suggests several treatment modalities mainly focusing on the inflammation aspect of this disorder. However, there is still no consensus regarding the best treatment option for these patients. Thus, the present study aimed to review the current treatment options for patients with primary sclerosing cholangitis.
Collapse
Affiliation(s)
- Shahrokh Iravani
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
- Gastroenterology and Hepatobiliary Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | | | - Bobak Moazzami
- Liver Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Dowlati Beirami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mansour-Ghanaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keivan Majidzadeh-A
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Azim Mehrvar
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Khoshdel
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Mohssen Nasiri Toosi
- Liver Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Langeneckert AE, Lunemann S, Martrus G, Salzberger W, Hess LU, Ziegler AE, Poch T, Ravichandran G, Matschl U, Bosse JB, Tiegs G, Fischer L, Koch M, Herkel J, Oldhafer KJ, Schramm C, Altfeld M. CCL21-expression and accumulation of CCR7 + NK cells in livers of patients with primary sclerosing cholangitis. Eur J Immunol 2019; 49:758-769. [PMID: 30785638 DOI: 10.1002/eji.201847965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/22/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
Abstract
The pathogenesis of primary sclerosing cholangitis (PSC), an autoimmune liver disease, remains unknown. The aim of this study was to characterize peripheral blood and intrahepatic NK cells from patients with PSC. Peripheral blood samples from patients with PSC, other autoimmune liver diseases, and from healthy control individuals were used, as well as liver tissues from PSC patients undergoing liver transplantation. Multiparameter flow cytometry showed that peripheral blood NK cells from PSC patients were significantly enriched for CCR7+ and CXCR3+ cells, and CCR7+ but not CXCR3+ cells were also significantly increased within intrahepatic NK cells. PSC patients undergoing liver transplantation furthermore had significantly higher plasma levels of the CCR7-ligand CCL21, and the CXCR3-ligands CXCL10 and CXCL11, and significantly higher levels of CCL21, but not CXCL10, were detected in liver tissues. CCR7+ and CXCR3+ NK cells from PSC patients exhibited significantly higher functional capacity in peripheral blood, but not liver tissues, consistent with chronic activation of these NK cells in the inflamed liver. These data show that PSC is characterized by intrahepatic CCL21 expression and accumulation of CCR7+ NK cells in the inflamed liver tissue.
Collapse
Affiliation(s)
| | - Sebastian Lunemann
- Research Department of Virus Immunology, Heinrich Pette Institute, Hamburg, Germany
| | - Glòria Martrus
- Research Department of Virus Immunology, Heinrich Pette Institute, Hamburg, Germany
| | - Wilhelm Salzberger
- Research Department of Virus Immunology, Heinrich Pette Institute, Hamburg, Germany
| | - Leonard U Hess
- Research Department of Virus Immunology, Heinrich Pette Institute, Hamburg, Germany
| | - Annerose E Ziegler
- Research Department of Virus Immunology, Heinrich Pette Institute, Hamburg, Germany
| | - Tobias Poch
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gevitha Ravichandran
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Urte Matschl
- Research Department of Virus Immunology, Heinrich Pette Institute, Hamburg, Germany
| | - Jens B Bosse
- Research Department of Structural Cell Biology of Viruses, Heinrich Pette Institute, Hamburg, Germany
| | - Gisa Tiegs
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lutz Fischer
- Department of Hepatobiliary Surgery and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Koch
- Department for General, Visceral and Transplant Surgery, University Hospital Mainz, Germany
| | - Johannes Herkel
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl J Oldhafer
- Department of General and Abdominal Surgery, Asklepios Hospital Barmbek, Semmelweis University of Medicine Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Research Department of Virus Immunology, Heinrich Pette Institute, Hamburg, Germany
| |
Collapse
|
7
|
Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis - a comprehensive review. J Hepatol 2017; 67:1298-1323. [PMID: 28802875 DOI: 10.1016/j.jhep.2017.07.022] [Citation(s) in RCA: 550] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/15/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a rare disorder characterised by multi-focal bile duct strictures and progressive liver disease. Inflammatory bowel disease is usually present and there is a high risk of cholangiocarcinoma and colorectal cancer. Most patients ultimately require liver transplantation, after which disease recurrence may occur. With limited therapeutic options and a lack of proven surveillance strategies, patients currently have significant unmet needs. In the present seminar, we provide a comprehensive review of the status of the field. We emphasise developments related to patient stratification and disease behaviour, and provide an overview of management options from a practical, patient-centered perspective. We survey advances made in the understanding of PSC pathogenesis and summarise the ongoing efforts to develop an effective therapy based on these insights.
Collapse
Affiliation(s)
- Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Douglas Thorburn
- UCL Institute for Liver and Digestive Health, Division of Medicine, University College London, UK; Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London, UK
| | - Mette Vesterhus
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
8
|
Henriksen EKK, Viken MK, Wittig M, Holm K, Folseraas T, Mucha S, Melum E, Hov JR, Lazaridis KN, Juran BD, Chazouillères O, Färkkilä M, Gotthardt DN, Invernizzi P, Carbone M, Hirschfield GM, Rushbrook SM, Goode E, Ponsioen CY, Weersma RK, Eksteen B, Yimam KK, Gordon SC, Goldberg D, Yu L, Bowlus CL, Franke A, Lie BA, Karlsen TH. HLA haplotypes in primary sclerosing cholangitis patients of admixed and non-European ancestry. HLA 2017; 90:228-233. [PMID: 28695657 DOI: 10.1111/tan.13076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/26/2017] [Accepted: 06/12/2017] [Indexed: 12/19/2022]
Abstract
Primary sclerosing cholangitis (PSC) is strongly associated with several human leukocyte antigen (HLA) haplotypes. Due to extensive linkage disequilibrium and multiple polymorphic candidate genes in the HLA complex, identifying the alleles responsible for these associations has proven difficult. We aimed to evaluate whether studying populations of admixed or non-European descent could help in defining the causative HLA alleles. When assessing haplotypes carrying HLA-DRB1*13:01 (hypothesized to specifically increase the susceptibility to chronic cholangitis), we observed that every haplotype in the Scandinavian PSC population carried HLA-DQB1*06:03. In contrast, only 65% of HLA-DRB1*13:01 haplotypes in an admixed/non-European PSC population carried this allele, suggesting that further assessments of the PSC-associated haplotype HLA-DRB1*13:01-DQA1*01:03-DQB1*06:03 in admixed or multi-ethnic populations could aid in identifying the causative allele.
Collapse
Affiliation(s)
- E K K Henriksen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - M K Viken
- K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - M Wittig
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - K Holm
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - T Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - S Mucha
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - E Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - J R Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - K N Lazaridis
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - B D Juran
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - O Chazouillères
- Hôpital Saint-Antoine, Service d'Hépatologie, INSERM, UMR_S 938, CDR Saint-Antoine, and Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - M Färkkilä
- Helsinki University and Clinic of Gastroenterology, Helsinki University Hospital, Helsinki, Finland
| | - D N Gotthardt
- Department of Gastroenterology, Infectious Diseases and Intoxications, University Hospital of Heidelberg, Heidelberg, Germany
| | - P Invernizzi
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - M Carbone
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - G M Hirschfield
- Centre for Liver Research and NIHR Birmingham Liver Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - S M Rushbrook
- The Department of Gastroenterology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - E Goode
- Wellcome Trust Sanger Institute, Hinxton and Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - C Y Ponsioen
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| | - R K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - B Eksteen
- Snyder Institute for Chronic Diseases, Division of Gastroenterology, University of Calgary, Calgary, Canada
| | - K K Yimam
- Division of Hepatology and Liver Transplantation, California Pacific Medical Center, San Francisco, California
| | - S C Gordon
- Division of Gastroenterology and Hepatology, Henry Ford Health System, Detroit, Michigan
| | - D Goldberg
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - L Yu
- Department of Medicine, University of Washington, Seattle, Washington
| | - C L Bowlus
- Division of Gastroenterology and Hepatology, University of California Davis School of Medicine, Sacramento, California
| | - A Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - B A Lie
- K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Medical Genetics, University of Oslo and Oslo University Hospital Ullevål, Oslo, Norway
| | - T H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
9
|
Abstract
Primary sclerosing cholangitis (PSC) is a chronic disease leading to fibrotic scarring of the intrahepatic and extrahepatic bile ducts, causing considerable morbidity and mortality via the development of cholestatic liver cirrhosis, concurrent IBD and a high risk of bile duct cancer. Expectations have been high that genetic studies would determine key factors in PSC pathogenesis to support the development of effective medical therapies. Through the application of genome-wide association studies, a large number of disease susceptibility genes have been identified. The overall genetic architecture of PSC shares features with both autoimmune diseases and IBD. Strong human leukocyte antigen gene associations, along with several susceptibility genes that are critically involved in T-cell function, support the involvement of adaptive immune responses in disease pathogenesis, and position PSC as an autoimmune disease. In this Review, we survey the developments that have led to these gene discoveries. We also elaborate relevant interpretations of individual gene findings in the context of established disease models in PSC, and propose relevant translational research efforts to pursue novel insights.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Primary sclerosing cholangitis (PSC) is a progressive biliary liver disorder strongly associated with inflammatory bowel disease (PSC-IBD). We summarize the genetics of PSC-IBD and highlight recent findings that further differentiate PSC-IBD as a unique disease. RECENT FINDINGS To date, genome-wide studies have uncovered 23 susceptibility loci for PSC-IBD, the majority of which have been previously reported as risk factors in other immune-mediated disorders. For most candidates, the pathological relationship to PSC-IBD remains largely unknown. Several candidate genes appear to be liver related but the large majority relate to immunity and reaffirm that alterations to immune function, trafficking, and tolerance are likely to influence susceptibility and presentation of PSC-IBD. Similar to most immune-mediated diseases, the strongest association in PSC-IBD resides within the human leukocyte antigen complex and suggests that disease-specific antigens drive pathogenic immune responses. Although genetic predisposition influences disease, genetic determinants account for less than 10% of total disease liability in PSC-IBD, clearly emphasizing the predominant role of environmental factors on disease susceptibility. SUMMARY Genetic studies define PSC-IBD as a unique disease to IBD mirroring clinical observations. Most risk loci harbour immune-related genes and disease variants are likely to perturb immune function, tolerance, and/or trafficking. Additional studies in patients and novel experimental systems are needed to identify the origin and impact of environmental factors in relation to genetic predisposition in PSC-IBD.
Collapse
|
11
|
The Presence, Persistence and Functional Properties of Plasmodium vivax Duffy Binding Protein II Antibodies Are Influenced by HLA Class II Allelic Variants. PLoS Negl Trop Dis 2016; 10:e0005177. [PMID: 27959918 PMCID: PMC5154503 DOI: 10.1371/journal.pntd.0005177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/09/2016] [Indexed: 11/21/2022] Open
Abstract
Background The human malaria parasite Plasmodium vivax infects red blood cells through a key pathway that requires interaction between Duffy binding protein II (DBPII) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). A high proportion of P. vivax-exposed individuals fail to develop antibodies that inhibit DBPII-DARC interaction, and genetic factors that modulate this humoral immune response are poorly characterized. Here, we investigate if DBPII responsiveness could be HLA class II-linked. Methodology/Principal Findings A community-based open cohort study was carried out in an agricultural settlement of the Brazilian Amazon, in which 336 unrelated volunteers were genotyped for HLA class II (DRB1, DQA1 and DQB1 loci), and their DBPII immune responses were monitored over time (baseline, 6 and 12 months) by conventional serology (DBPII IgG ELISA-detected) and functional assays (inhibition of DBPII–erythrocyte binding). The results demonstrated an increased susceptibility of the DRB1*13:01 carriers to develop and sustain an anti-DBPII IgG response, while individuals with the haplotype DRB1*14:02-DQA1*05:03-DQB1*03:01 were persistent non-responders. HLA class II gene polymorphisms also influenced the functional properties of DBPII antibodies (BIAbs, binding inhibitory antibodies), with three alleles (DRB1*07:01, DQA1*02:01 and DQB1*02:02) comprising a single haplotype linked with the presence and persistence of the BIAbs response. Modelling the structural effects of the HLA-DRB1 variants revealed a number of differences in the peptide-binding groove, which is likely to lead to altered antigen binding and presentation profiles, and hence may explain the differences in subject responses. Conclusions/Significance The current study confirms the heritability of the DBPII antibody response, with genetic variation in HLA class II genes influencing both the development and persistence of IgG antibody responses. Cellular studies to increase knowledge of the binding affinities of DBPII peptides for class II molecules linked with good or poor antibody responses might lead to the development of strategies for controlling the type of helper T cells activated in response to DBPII. Vaccines are a crucial component of the current efforts to eliminate malaria, and much of the vaccine-related research on P. vivax has been focused on the Duffy binding protein II (DBPII), a ligand for human blood stage infection. A high proportion of individuals who are naturally exposed to P. vivax fail to develop neutralizing antibodies, but the host genetic factors modulating this immune response are poorly characterized. We investigated whether DBPII responsiveness was dependent on the variability of human leucocyte antigen (HLA) class II cell surface proteins involved in the regulation of immune responses. To obtain a reliable estimate of DBPII antibodies, we carried out a longitudinal study, collecting serum from the same individuals over a period of 12-months. The results confirmed the heritability of the DBPII immune response, with genetic variation in HLA class II genes influencing both the development and persistence of the antibody response. HLA class II genotype also influenced the ability of DBPII antibodies to block the ligand-receptor interaction in vitro. Computational approaches identified structural specificity between HLA variants, which we propose as an explanation for differences between a good or poor antibody responder. These results may have implications for vaccine development, and might lead to strategies for controlling the type of immune response activated in response to DBPII.
Collapse
|
12
|
Ferri PM, Simões e Silva AC, Campos Silva SL, de Aquino DJQ, Fagundes EDT, Marques de Miranda D, Ferreira AR. The Role of Genetic and Immune Factors for the Pathogenesis of Primary Sclerosing Cholangitis in Childhood. Gastroenterol Res Pract 2016; 2016:3905240. [PMID: 27882046 PMCID: PMC5110890 DOI: 10.1155/2016/3905240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/16/2016] [Indexed: 12/18/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease characterized by chronic inflammation of the biliary tree resulting in liver fibrosis. PSC is more common in male less than 40 years of age. The diagnosis of PSC is based on clinical, laboratory, image, and histological findings. A biochemical profile of mild to severe chronic cholestasis can be observed. Endoscopic retrograde cholangiography is the golden standard method for diagnosis, but magnetic resonance cholangiography is currently also considered a first-line method of investigation. Differences in clinical and laboratory findings were observed in young patients, including higher incidence of overlap syndromes, mostly with autoimmune hepatitis, higher serum levels of aminotransferases and gamma-glutamyl transferase, and lower incidence of serious complications as cholangiocarcinoma. In spite of the detection of several HLA variants as associated factors in large multicenter cohorts of adult patients, the exact role and pathways of these susceptibility genes remain to be determined in pediatric population. In addition, the literature supports a role for an altered immune response to pathogens in the pathogenesis of PSC. This phenomenon contributes to abnormal immune system activation and perpetuation of the inflammatory process. In this article, we review the role of immune and genetic factors in the pathogenesis of PSC in pediatric patients.
Collapse
Affiliation(s)
| | - Ana Cristina Simões e Silva
- Department of Pediatrics, UFMG, 30130-100 Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, INCT-MM, CNPq-FAPEMIG, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, MG, Brazil
- Laboratório Interdisciplinar de Investigação Médica, Avenida Alfredo Balena 190, 2nd Floor, Room 281, 30130-100 Belo Horizonte, MG, Brazil
| | | | | | | | - Débora Marques de Miranda
- Department of Pediatrics, UFMG, 30130-100 Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, INCT-MM, CNPq-FAPEMIG, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, MG, Brazil
| | | |
Collapse
|
13
|
Affiliation(s)
- Konstantinos N Lazaridis
- From the Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| | - Nicholas F LaRusso
- From the Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
14
|
Liaskou E, Klemsdal Henriksen EK, Holm K, Kaveh F, Hamm D, Fear J, Viken MK, Hov JR, Melum E, Robins H, Olweus J, Karlsen TH, Hirschfield GM. High-throughput T-cell receptor sequencing across chronic liver diseases reveals distinct disease-associated repertoires. Hepatology 2016; 63:1608-19. [PMID: 26257205 DOI: 10.1002/hep.28116] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/05/2015] [Indexed: 12/24/2022]
Abstract
UNLABELLED Hepatic T-cell infiltrates and a strong genetic human leukocyte antigen association represent characteristic features of various immune-mediated liver diseases. Conceptually the presence of disease-associated antigens is predicted to be reflected in T-cell receptor (TCR) repertoires. Here, we aimed to determine if disease-associated TCRs could be identified in the nonviral chronic liver diseases primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), and alcoholic liver disease (ALD). We performed high-throughput sequencing of the TCRβ chain complementarity-determining region 3 of liver-infiltrating T cells from PSC (n = 20), PBC (n = 10), and ALD (n = 10) patients, alongside genomic human leukocyte antigen typing. The frequency of TCRβ nucleotide sequences was significantly higher in PSC samples (2.53 ± 0.80, mean ± standard error of the mean) compared to PBC samples (1.13 ± 0.17, P < 0.0001) and ALD samples (0.62 ± 0.10, P < 0.0001). An average clonotype overlap of 0.85% was detected among PSC samples, significantly higher compared to the average overlap of 0.77% seen within the PBC (P = 0.024) and ALD groups (0.40%, P < 0.0001). From eight to 42 clonotypes were uniquely detected in each of the three disease groups (≥30% of the respective patient samples). Multiple, unique sequences using different variable family genes encoded the same amino acid clonotypes, providing additional support for antigen-driven selection. In PSC and PBC, disease-associated clonotypes were detected among patients with human leukocyte antigen susceptibility alleles. CONCLUSION We demonstrate liver-infiltrating disease-associated clonotypes in all three diseases evaluated, and evidence for antigen-driven clonal expansions. Our findings indicate that differential TCR signatures, as determined by high-throughput sequencing, may represent an imprint of distinctive antigenic repertoires present in the different chronic liver diseases; this thereby opens up the prospect of studying disease-relevant T cells in order to better understand and treat liver disease.
Collapse
Affiliation(s)
- Evaggelia Liaskou
- Centre for Liver Research, National Institute for Health Research Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | - Eva Kristine Klemsdal Henriksen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristian Holm
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fatemeh Kaveh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - David Hamm
- Adaptive Biotechnologies Corp., Seattle, WA
| | - Janine Fear
- Centre for Liver Research, National Institute for Health Research Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| | - Marte K Viken
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Johannes Roksund Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Johanna Olweus
- K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway.,K.G. Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery, and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Gideon M Hirschfield
- Centre for Liver Research, National Institute for Health Research Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Abstract
Coeliac disease is a treatable, gluten-induced disease that often occurs concurrently with other autoimmune diseases. In genetic studies since 2007, a partial genetic overlap between these diseases has been revealed and further insights into the pathophysiology of coeliac disease and autoimmunity have been gained. However, genetic screening is not sensitive and specific enough to accurately predict disease development. The current method to diagnose individuals with coeliac disease is serological testing for the presence of autoantibodies whilst the patient is on a regular, gluten-containing diet, followed by gastroduodenoscopy with duodenal biopsy. Serological test results can also predict the probability of coeliac disease development, even if asymptomatic. In patients with autoimmune diseases known to occur alongside coeliac disease (particularly type 1 diabetes mellitus or thyroid disorders), disease screening-and subsequent treatment if coeliac disease is detected-could have beneficial effects on progression or potential complications of both diseases, owing to the effectiveness of gluten-free dietary interventions in coeliac disease. However, whether diagnosis of coeliac disease and subsequent dietary treatment can prevent autoimmune diseases is debated. In this Review, the genetic and immunological features of coeliac disease, overlap with other autoimmune diseases and implications for current screening strategies will be discussed.
Collapse
|
16
|
Hov JR, Zhong H, Qin B, Anmarkrud JA, Holm K, Franke A, Lie BA, Karlsen TH. The Influence of the Autoimmunity-Associated Ancestral HLA Haplotype AH8.1 on the Human Gut Microbiota: A Cross-Sectional Study. PLoS One 2015. [PMID: 26207384 PMCID: PMC4514645 DOI: 10.1371/journal.pone.0133804] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple immune-related genes are encoded in the HLA complex on chromosome 6p21. The 8.1 ancestral haplotype (AH8.1) include the classical HLA alleles HLA-B*08:01 and HLA-DRB1*03:01, and has been associated with a large number of autoimmune diseases, but the underlying mechanisms for this association are largely unknown. Given the recently established links between the gut microbiota and inflammatory diseases, we hypothesized that the AH8.1 influences the host gut microbial community composition. To study this further, healthy individuals were selected from the Norwegian Bone Marrow Donor Registry and categorized as either I. AH8.1 homozygote (n=34), II. AH8.1 heterozygote (n=38), III. Non AH8.1 heterozygote or IV. HLA-DRB1 homozygote but non AH8.1 (n=15). Bacterial DNA from stool samples were subjected to sequencing of the V3–V5 region of the 16S rRNA gene on the 454 Life Sciences platform and data analyzed using Mothur and QIIME. The results showed that the abundances of different taxa were highly variable within all pre-defined AH8.1 genotype groups. Using univariate non-parametric statistics, there were no differences regarding alpha or beta diversity between AH8.1 carriers (categories I and II) and non-carriers (categories III and IV), however four different taxa (Prevotellaceae, Clostridium XVIII, Coprococcus, Enterorhabdus) had nominally significant lower abundances in AH8.1 carriers than non-carriers. After including possible confounders in a multivariate linear regression, only the two latter genera remained significantly associated. In conclusion, the overall contribution of the AH8.1 haplotype to the variation in gut microbiota profile of stool in the present study was small.
Collapse
Affiliation(s)
- Johannes R. Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine and K.G.Jebsen Inflammation Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- * E-mail:
| | | | - Bingcai Qin
- BGI-Shenzhen, Shenzhen, China
- Shanghai Majorbio Bio-pharm Technology Co. Ltd., Shanghai, China
| | - Jarl Andreas Anmarkrud
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kristian Holm
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Andre Franke
- Christian-Albrechts-University of Kiel, Institute of Clinical Molecular Biology, Kiel, Germany
| | - Benedicte A. Lie
- Institute of Clinical Medicine and K.G.Jebsen Inflammation Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tom H. Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine and K.G.Jebsen Inflammation Research Centre, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Abstract
Research related to primary sclerosing cholangitis (PSC) has since 1980 been a major activity at the Oslo University Hospital Rikshospitalet. The purpose of this publication is to describe the development of this research, the impact of this research on the clinical handling of the patients, and finally to describe what we believe are the most urgent, remaining problems to be solved. During the early years, our research dealt primarily with clinical aspects of the disease. The concomitant inflammatory bowel disease (IBD) seen in most patients with PSC was a major interest and we also started looking into genetic associations of PSC. Prognosis, malignancy development and treatment with special emphasis on transplantation have later been dealt with. These activities has had impact on several aspects of PSC management; when and how to diagnose PSC and variant forms of PSC, how to handle IBD in PSC and how to deal with the increased rate of malignancy? The problems remaining to be solved are many. What is the role of the gut and the gut microbiota in the development of PSC? Do the PSC patients have an underlying disturbance in the bile homeostasis? And how does the characteristic type of fibrosis in PSC develop? The genetic studies have supported a role for the adaptive immune system in the disease development, but how should this be dealt with? Importantly, the development of malignancy in PSC is still not understood, and we lack appropriate medical treatment for our patients.
Collapse
Affiliation(s)
- Erik Schrumpf
- Norwegian PSC research center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet , Oslo , Norway
| | | | | |
Collapse
|