1
|
Kisiala M, Copelas A, Czapinska H, Xu SY, Bochtler M. Crystal structure of the modification-dependent SRA-HNH endonuclease TagI. Nucleic Acids Res 2019; 46:10489-10503. [PMID: 30202937 PMCID: PMC6212794 DOI: 10.1093/nar/gky781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
TagI belongs to the recently characterized SRA-HNH family of modification-dependent restriction endonucleases (REases) that also includes ScoA3IV (Sco5333) and TbiR51I (Tbis1). Here, we present a crystal structure of dimeric TagI, which exhibits a DNA binding site formed jointly by the nuclease domains, and separate binding sites for modified DNA bases in the two protomers. The nuclease domains have characteristic features of HNH/ββα-Me REases, and catalyze nicks or double strand breaks, with preference for /RY and RYN/RY sites, respectively. The SRA domains have the canonical fold. Their pockets for the flipped bases are spacious enough to accommodate 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC), but not glucosyl-5-hydroxymethylcytosine (g5hmC). Such preference is in agreement with the biochemical determination of the TagI modification dependence and the results of phage restriction assays. The ability of TagI to digest plasmids methylated by Dcm (C5mCWGG), M.Fnu4HI (G5mCNGC) or M.HpyCH4IV (A5mCGT) suggests that the SRA domains of the enzyme are tolerant to different sequence contexts of the modified base.
Collapse
Affiliation(s)
- Marlena Kisiala
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland.,Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Alyssa Copelas
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Zagorskaitė E, Manakova E, Sasnauskas G. Recognition of modified cytosine variants by the DNA-binding domain of methyl-directed endonuclease McrBC. FEBS Lett 2018; 592:3335-3345. [PMID: 30194838 DOI: 10.1002/1873-3468.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/10/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023]
Abstract
Cytosine modifications expand the information content of genomic DNA in both eukaryotes and prokaryotes, providing means for epigenetic regulation and self versus nonself discrimination. For example, the methyl-directed restriction endonuclease, McrBC, recognizes and cuts invading bacteriophage DNA containing 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), and N4-methylcytosine (4mC), leaving the unmodified host DNA intact. Here, we present cocrystal structures of McrB-N bound to DNA oligoduplexes containing 5hmC, 5-formylcytosine (5fC), and 4mC, and characterize the relative affinity of McrB-N to various cytosine variants. We find that McrB-N flips out modified bases into a protein pocket and binds cytosine derivatives in the order of descending affinity: 4mC > 5mC > 5hmC ≫ 5fC. We also show that pocket mutations alter the relative preference of McrB-N to 5mC, 5hmC, and 4mC.
Collapse
Affiliation(s)
| | - Elena Manakova
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | |
Collapse
|
3
|
Bull GD, Thompson KC. Proton Transfer and Tautomerism in 2-Aminopurine-Thymine and Pyrrolocytosine-Guanine Base Pairs. Biochemistry 2018; 57:4547-4561. [PMID: 30024730 DOI: 10.1021/acs.biochem.8b00521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pyrrolocytosine (PC) and 2-aminopurine (2AP) are fluorescent nucleobase analogues of the DNA nucleobases cytosine and adenine, respectively, and form base pairs with guanine and thymine. Both fluorescent nucleobases are used extensively as probes for local structure in nucleic acids as the fluorescence properties of PC and 2AP are very sensitive to changes such as helix formation, although the reasons for this sensitivity are not clear. To address this question, ab initio calculations have been used to calculate energies, at the MP2 and CIS level, of three different tautomer pairings of PC-G, and two of 2AP-T, which can potentially be interconverted by double proton transfer between the bases. Potential energy curves linking the different tautomer pairs have been calculated. For both PC-G and 2AP-T, the most stable tautomer pair in the electronic ground state is that analogous to the natural C-G and A-T base pair. In the case of 2AP-T, an alternative, stable, tautomer base pair was located in the first electronically excited state; however, it lies higher in energy than the tautomer pair analogous to A-T, making conversion to the alternative form unlikely. In contrast, in the case of PC-G, an alternative tautomer base pair is found to be the most stable form in the first electronically excited state, and this form is accessible following initial excitation from the ground state tautomer pair, thus suggesting an alternative deactivation route via double proton transfer may be possible when PC is involved in hydrogen bonding, such as occurs in helical conformations.
Collapse
Affiliation(s)
- Graham D Bull
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck , University of London , Malet Street , Bloomsbury, London WC1E 7HX , U.K
| | - Katherine C Thompson
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck , University of London , Malet Street , Bloomsbury, London WC1E 7HX , U.K
| |
Collapse
|
4
|
Zhang P, Hastert FD, Ludwig AK, Breitwieser K, Hofstätter M, Cardoso MC. DNA base flipping analytical pipeline. Biol Methods Protoc 2017; 2:bpx010. [PMID: 32161792 PMCID: PMC6994035 DOI: 10.1093/biomethods/bpx010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
DNA base modifications and mutations are observed in all genomes throughout the kingdoms of life. Proteins involved in their establishment and removal were shown to use a base flipping mechanism to access their substrates. To better understand how proteins flip DNA bases to modify or remove them, we optimized and developed a pipeline of methods to step-by-step detect the process starting with protein–DNA interaction, base flipping itself and the ensuing DNA base modification or excision. As methylcytosine is the best-studied DNA modification, here we focus on the process of writing, modifying and reading this DNA base. Using multicolor electrophoretic mobility shift assays, we show that the methylcytosine modifier Tet1 exhibits little DNA sequence specificity with only a slight preference for methylated CpG containing DNA. A combination of chloroacetaldehyde treatment and high-resolution melting temperature analysis allowed us to detect base flipping induced by the methylcytosine modifier Tet1 as well as the methylcytosine writer M.HpaII. Finally, we show that high-resolution melting temperature analysis can be used to detect the activity of glycosylases, methyltransferases and dioxigenases on DNA substrates. Taken together, this DNA base flipping analytical pipeline (BaFAP) provide a complete toolbox for the fast and sensitive analysis of proteins that bind, flip and modify or excise DNA bases.
Collapse
Affiliation(s)
- Peng Zhang
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Germany
| | - Florian D Hastert
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Germany
| | - Anne K Ludwig
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Germany
| | - Kai Breitwieser
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Germany
| | | | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Germany
| |
Collapse
|
5
|
Sasnauskas G, Zagorskaitė E, Kauneckaitė K, Tamulaitiene G, Siksnys V. Structure-guided sequence specificity engineering of the modification-dependent restriction endonuclease LpnPI. Nucleic Acids Res 2015; 43:6144-55. [PMID: 26001968 PMCID: PMC4499157 DOI: 10.1093/nar/gkv548] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022] Open
Abstract
The eukaryotic Set and Ring Associated (SRA) domains and structurally similar DNA recognition domains of prokaryotic cytosine modification-dependent restriction endonucleases recognize methylated, hydroxymethylated or glucosylated cytosine in various sequence contexts. Here, we report the apo-structure of the N-terminal SRA-like domain of the cytosine modification-dependent restriction enzyme LpnPI that recognizes modified cytosine in the 5'-C(mC)DG-3' target sequence (where mC is 5-methylcytosine or 5-hydroxymethylcytosine and D = A/T/G). Structure-guided mutational analysis revealed LpnPI residues involved in base-specific interactions and demonstrated binding site plasticity that allowed limited target sequence degeneracy. Furthermore, modular exchange of the LpnPI specificity loops by structural equivalents of related enzymes AspBHI and SgrTI altered sequence specificity of LpnPI. Taken together, our results pave the way for specificity engineering of the cytosine modification-dependent restriction enzymes.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Evelina Zagorskaitė
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Kotryna Kauneckaitė
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Virginijus Siksnys
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| |
Collapse
|