1
|
Jang JH, Janker F, De Meester I, Arni S, Borgeaud N, Yamada Y, Gil Bazo I, Weder W, Jungraithmayr W. The CD26/DPP4-inhibitor vildagliptin suppresses lung cancer growth via macrophage-mediated NK cell activity. Carcinogenesis 2019; 40:324-334. [PMID: 30698677 DOI: 10.1093/carcin/bgz009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
CD26/dipeptidyl peptidase 4 (DPP4) is a transmembrane protein which is expressed by various malignant cells. We found that the expression of CD26/DPP4 was significantly higher in lung adenocarcinoma samples in our own patient cohort compared to normal lung tissue. We therefore hypothesize that the inhibition of CD26/DPP4 can potentially suppress lung cancer growth. The CD26/DPP4 inhibitor vildagliptin was employed on Lewis Lung Carcinoma (LLC) cell line and a human lung adenocarcinoma (H460) cell line. Two weeks after subcutaneous injection of tumor cells into C57BL/6 and CD1/nude mice, the size of LLC and H460 tumors was significantly reduced by vildagliptin. Immunohistochemically, the number of macrophages (F4/80+) and NK cells (NKp46+) was significantly increased in vildagliptin-treated tumor samples. Mechanistically, we found in vitro that lung cancer cell lines expressed increased levels of surfactant protein upon vildagliptin treatment thereby promoting the pro-inflammatory activity of macrophages. By the depletion of macrophages with clodronate and by using NK cell deficient (IL-15-/-) mice, tumors reversed to the size of controls, suggesting that indeed macrophages and NK cells were responsible for the observed tumor-suppressing effect upon vildagliptin treatment. FACS analysis showed tumor-infiltrating NK cells to express tumor necrosis-related apoptosis-inducing ligand (TRAIL) which induced the intra-cellular stress marker γH2AX. Accordingly, we found upregulated γH2AX in vildagliptin-treated tumors and TRAIL-treated cell lines. Moreover, the effect of vildagliptin-mediated enhanced NK cell cytotoxicity could be reversed by antagonizing the TRAIL receptor. Our data provide evidence that the CD26/DPP4-inhibitor vildagliptin reduces lung cancer growth. We could demonstrate that this effect is exerted by surfactant-activated macrophages and NK cells that act against the tumor via TRAIL-mediated cytotoxicity.
Collapse
Affiliation(s)
- Jae-Hwi Jang
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Florian Janker
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ingrid De Meester
- Department of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Stephan Arni
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nathalie Borgeaud
- Department of Visceral Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Yoshito Yamada
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ignacio Gil Bazo
- Department of Oncology, University Hospital Navarra, Pamplona, Spain
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland.,Department of Thoracic Surgery, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
2
|
Lin SR, Chang CH, Tsai MJ, Cheng H, Chen JC, Leong MK, Weng CF. The perceptions of natural compounds against dipeptidyl peptidase 4 in diabetes: from in silico to in vivo. Ther Adv Chronic Dis 2019; 10:2040622319875305. [PMID: 31555430 PMCID: PMC6753520 DOI: 10.1177/2040622319875305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-4), an incretin glucagon-like peptide-1 (GLP-1) degrading enzyme, contains two forms and it can exert various physiological functions particular in controlling blood glucose through the action of GLP-1. In diabetic use, the DPP-4 inhibitor can block the DDP-4 to attenuate GLP-1 degradation and prolong GLP-1 its action and sensitize insulin activity for the purpose of lowering blood glucose. Nonetheless the adverse effects of DPP-4 inhibitors severely hinder their clinical applications, and notably there is a clinical demand for novel DPP-4 inhibitors from various sources including chemical synthesis, herbs, and plants with fewer side effects. In this review, we highlight various strategies, namely computational biology (in silico), in vitro enzymatic and cell assays, and in vivo animal tests, for seeking natural DPP-4 inhibitors from botanic sources including herbs and plants. The pros and cons of all approaches for new inhibitor candidates or hits will be under discussion.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Department of Life Science and Institute of
Biotechnology, National Dong Hwa University, Hualien
| | - Chia-Hsiang Chang
- Department of Life Science and Institute of
Biotechnology, National Dong Hwa University, Hualien
| | - May-Jwan Tsai
- Neural Regeneration Laboratory, Neurological
Institute, Taipei Veterans General Hospital, Beitou, Taipei
| | - Henrich Cheng
- Neural Regeneration Laboratory, Neurological
Institute, Taipei Veterans General Hospital, Beitou, Taipei
| | - Jian-Chyi Chen
- Department of Biotechnology, Southern Taiwan
University of Science and Technology, Yungkang, Tainan
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa
University, No.1, Sec.2, Da-Hsueh Road, Shoufeng, Hualien, 97401,
Taiwan
| | - Ching-Feng Weng
- Department of Basic Medical Science, Center for
Transitional Medicine, Xiamen Medical College, Xiamen, 361023, China
| |
Collapse
|
3
|
Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther 2019; 198:135-159. [PMID: 30822465 DOI: 10.1016/j.pharmthera.2019.02.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD26/dipeptidyl peptidase (DPP)4 is a membrane-bound protein found in many cell types of the body, and a soluble form is present in body fluids. There is longstanding evidence that various primary tumors and also metastases express CD26/DPP4 to a variable extent. By cleaving dipeptides from peptides with a proline or alanine in the penultimate position at the N-terminus, it regulates the activity of incretin hormones, chemokines and many other peptides. Due to these effects and interactions with other molecules, a tumor promoting or suppressing role can be attributed to CD26/DPP4. In this review, we discuss the existing evidence on the expression of soluble or membrane-bound CD26/DPP4 in malignant diseases, along with the most recent findings on CD26/DPP4 as a therapeutic target in specific malignancies. The expression and possible involvement of the related DPP8 and DPP9 in cancer are also reviewed. A higher expression of CD26/DPP4 is found in a wide variety of tumor entities, however more research on CD26/DPP4 in the tumor microenvironment is needed to fully explore its use as a tumor biomarker. Circulating soluble CD26/DPP4 has also been studied as a cancer biomarker, however, the observed decrease in most cancer patients does not seem to be cancer specific. Encouraging results from experimental work and a recently reported first phase clinical trial targeting CD26/DPP4 in mesothelioma, renal and urological tumors pave the way for follow-up clinical studies, also in other tumor entities, possibly leading to the development of more effective complementary therapies against cancer.
Collapse
Affiliation(s)
- Njanja Enz
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Rostock, Schillingallee 35, 18057 Rostock, Germany.
| |
Collapse
|
4
|
Cristaudo A, Bonotti A, Guglielmi G, Fallahi P, Foddis R. Serum mesothelin and other biomarkers: what have we learned in the last decade? J Thorac Dis 2018; 10:S353-S359. [PMID: 29507805 DOI: 10.21037/jtd.2017.10.132] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the last decade there is been much interest in noninvasive, economic and well-accepted diagnostic tests for screening of subjects exposed to asbestos, and in patients with malignant pleuric mesothelioma (MPM) for diagnosis or monitoring response to treatment. Several biomarkers have been suggested as tools for screening and early diagnosis of MPM. Currently, in patients with MPM, have been reported high levels of soluble mesothelin-related peptides (SMRP), plasmatic osteopontin (pOPN), vimentin, fibulin-3 and many others as promising marker for diagnosis, even their use in prevention monitoring is still discussed. In this type of disease, a key role could be played by miRNAs, which expression has been investigated in a large series of MPM to examine new pathways useful in diagnosis, prognosis and therapy. An altered expression of some proteins has been reported, useful as biomarkers, in comparative proteomic analysis of malignant pleural mesothelioma. New promising markers are nowadays under study and alone or better in combination, they'll be very helpful in diagnosing, monitoring mesothelioma patients or for screening of risk groups.
Collapse
Affiliation(s)
- Alfonso Cristaudo
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Bonotti
- Operative Unit of Preventive and Occupational Medicine, University Hospital of Pisa, Pisa, Italy
| | - Giovanni Guglielmi
- Operative Unit of Preventive and Occupational Medicine, University Hospital of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rudy Foddis
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Vliegen G, Raju TK, Adriaensen D, Lambeir AM, De Meester I. The expression of proline-specific enzymes in the human lung. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:130. [PMID: 28462210 DOI: 10.21037/atm.2017.03.36] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pathophysiology of lung diseases is very complex and proteolytic enzymes may play a role or could be used as biomarkers. In this review, the literature was searched to make an overview of what is known on the expression of the proline-specific peptidases dipeptidyl peptidase (DPP) 4, 8, 9, prolyl oligopeptidase (PREP) and fibroblast activation protein α (FAP) in the healthy and diseased lung. Search terms included asthma, chronic obstructive pulmonary disease (COPD), lung cancer, fibrosis, ischemia reperfusion injury and pneumonia. Knowledge on the loss or gain of protein expression and activity during disease might tie these enzymes to certain cell types, substrates or interaction partners that are involved in the pathophysiology of the disease, ultimately leading to the elucidation of their functional roles and a potential therapeutic target. Most data could be found on DPP4, while the other enzymes are less explored. Published data however often appear to be conflicting, the applied methods divers and the specificity of the assays used questionable. In conclusion, information on the expression of the proline-specific peptidases in the healthy and diseased lung is lacking, begging for further well-designed research.
Collapse
Affiliation(s)
- Gwendolyn Vliegen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom K Raju
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
6
|
Prognostication and monitoring of mesothelioma using biomarkers: a systematic review. Br J Cancer 2017; 116:731-741. [PMID: 28170372 PMCID: PMC5355927 DOI: 10.1038/bjc.2017.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/02/2017] [Accepted: 01/11/2017] [Indexed: 12/29/2022] Open
Abstract
Background: Radiological markers of treatment response and prognostication in malignant pleural mesothelioma have limitations due to the morphology of the disease. Serum or pleural fluid biomarkers that could act as an adjunct to radiological assessment would be of significant value. The aim of this review was to collate and summarise the literature relating to this topic. Methods: A systematic review was performed on the databases Pubmed and EMBASE to identify relevant studies. Two independent researchers read the abstracts and used the Quality in Prognostic Studies tool to assess the quality of the evidence. Results: Forty-five studies were identified from the current literature. Twenty studies investigated the role of serum soluble mesothelin with majority suggesting that it has variable utility as a baseline test but when measured serially correlates with treatment response and prognosis. Several studies demonstrated that serum osteopontin correlated with survival at baseline. Other biomarkers have shown prognostic utility in individual studies but are yet to be reproduced in large cohort studies. Conclusions: From the available literature no serum or pleural fluid biomarker was identified that could be recommended currently for routine clinical practice. However, a falling serum soluble mesothelin might correlate with treatment response and improved survival.
Collapse
|
7
|
Beckenkamp A, Davies S, Willig JB, Buffon A. DPPIV/CD26: a tumor suppressor or a marker of malignancy? Tumour Biol 2016; 37:7059-73. [DOI: 10.1007/s13277-016-5005-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
|
8
|
Wagner L, Klemann C, Stephan M, von Hörsten S. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin Exp Immunol 2016; 184:265-83. [PMID: 26671446 DOI: 10.1111/cei.12757] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
Dipeptidyl peptidase (DPP) 4 (CD26, DPP4) is a multi-functional protein involved in T cell activation by co-stimulation via its association with adenosine deaminase (ADA), caveolin-1, CARMA-1, CD45, mannose-6-phosphate/insulin growth factor-II receptor (M6P/IGFII-R) and C-X-C motif receptor 4 (CXC-R4). The proline-specific dipeptidyl peptidase also modulates the bioactivity of several chemokines. However, a number of enzymes displaying either DPP4-like activities or representing structural homologues have been discovered in the past two decades and are referred to as DPP4 activity and/or structure homologue (DASH) proteins. Apart from DPP4, DASH proteins include fibroblast activation protein alpha (FAP), DPP8, DPP9, DPP4-like protein 1 (DPL1, DPP6, DPPX L, DPPX S), DPP4-like protein 2 (DPL2, DPP10) from the DPP4-gene family S9b and structurally unrelated enzyme DPP2, displaying DPP4-like activity. In contrast, DPP6 and DPP10 lack enzymatic DPP4-like activity. These DASH proteins play important roles in the immune system involving quiescence (DPP2), proliferation (DPP8/DPP9), antigen-presenting (DPP9), co-stimulation (DPP4), T cell activation (DPP4), signal transduction (DPP4, DPP8 and DPP9), differentiation (DPP4, DPP8) and tissue remodelling (DPP4, FAP). Thus, they are involved in many pathophysiological processes and have therefore been proposed for potential biomarkers or even drug targets in various cancers (DPP4 and FAP) and inflammatory diseases (DPP4, DPP8/DPP9). However, they also pose the challenge of drug selectivity concerning other DASH members for better efficacy and/or avoidance of unwanted side effects. Therefore, this review unravels the complex roles of DASH proteins in immunology.
Collapse
Affiliation(s)
- L Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V, Stuttgart.,Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - C Klemann
- Centre of Paediatric Surgery.,Centre for Paediatrics and Adolescent Medicine
| | - M Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, Hannover
| | - S von Hörsten
- Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|