1
|
Abreu TM, Corpe FP, Teles FB, da Conceição Rivanor RL, de Sousa CNS, da Silva Medeiros I, de Queiroz INL, Figueira-Mansur J, Mota ÉF, Mohana-Borges R, Macedo DS, de Vasconcelos SMM, Júnior JERH, Benevides NMB. Lectin isolated from the red marine alga Solieria filiformis (Kützing) P.W. Gabrielson: Secondary structure and antidepressant-like effect in mice submitted to the lipopolysaccharide-induced inflammatory model of depression. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
2
|
Pipattanajaroenkul P, Chotpantarat S, Termsaithong T, Sonthiphand P. Effects of Arsenic and Iron on the Community and Abundance of Arsenite-Oxidizing Bacteria in an Arsenic-Affected Groundwater Aquifer. Curr Microbiol 2021; 78:1324-1334. [PMID: 33638670 DOI: 10.1007/s00284-021-02418-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 02/10/2021] [Indexed: 01/18/2023]
Abstract
Arsenic (As) contamination of groundwater aquifers is a global environmental problem, especially in South and Southeast Asian regions, and poses a risk to human health. Arsenite-oxidizing bacteria that transform As(III) to less toxic As(V) can be potentially used as a groundwater As remediation strategy. This study aimed to examine the community and abundance of arsenite-oxidizing bacteria in groundwater with various As concentrations from Rayong Province, Thailand using PCR-cloning-sequencing and quantitative PCR (qPCR) of catalytic subunit of arsenite oxidase gene (aioA). Key factors influencing their community and abundance were also identified. The results demonstrated that arsenite-oxidizing bacteria retrieved from groundwater were phylogenetically related to Betaproteobacteria and Alphaproteobacteria. The aioA gene abundances ranged from 8.6 × 101 to 1.1 × 104 copies per ng of genomic DNA, accounting for 0.16-1.37% of the total 16S rRNA bacterial gene copies. Although the abundance of arsenite-oxidizing bacteria in groundwater was low, groundwater with As(III) dominance likely promoted their abundance which possibly played an important role in chemolithoautotrophic oxidation of As(III) to As(V). Fe and As(III) were the major environmental factors influencing the community and abundance of arsenite-oxidizing bacteria. The knowledge gained from this study can be used to further contribute to the development of bioremediation strategies for As removal from groundwater resources.
Collapse
Affiliation(s)
- Phurinat Pipattanajaroenkul
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, Bangkok, Thailand
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence On Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.,Research Unit of Green Mining (GMM), Chulalongkorn University, Bangkok, Thailand
| | - Teerasit Termsaithong
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Theoretical and Computational Science Center (TaCS), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Figueira-Mansur J, Aguilera EA, Stoque RM, Ventura GT, Mohana-Borges R. Mutations in the dimer interfaces of the dengue virus capsid protein affect structural stability and impair RNA-capsid interaction. Sci Rep 2019; 9:2829. [PMID: 30808916 PMCID: PMC6391532 DOI: 10.1038/s41598-019-39185-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/08/2019] [Indexed: 11/09/2022] Open
Abstract
The dengue virus 2 capsid protein (DENV2C) plays a primary structural role in the protection of the viral genome and is crucial for nucleocapsid assembly. In this study, we generated single mutants of DENV2C at L50 and L54 residues of the α2 helix, which was shown to interfere with the integration of the capsid into lipid droplets, and at residues L81 and I88 located in the α4 helix, which was shown to affect viral assembly. We demonstrated that the oligomeric states of DENV2C and its mutants exist primarily in the dimeric state in solution. All single-point mutations introduced in DENV2C promoted reduction in protein stability, an effect that was more pronounced for the L81N and I88N mutants, but not protein unfolding. All the single-point mutations affected the ability of DEN2C to interact with RNA. We concluded that mutations in the α2-α2' and α4-α4' dimer interfaces of DENV2C affect the structural stability of the protein and impair RNA-capsid interaction. These effects were more pronounced for mutations at the L81 and I88 residues in the α4 helix. These results indicate the importance of the α4-α4' dimer interface, which could be studied as a potential target for drug design in the future.
Collapse
Affiliation(s)
- Janaina Figueira-Mansur
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Estefania A Aguilera
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael M Stoque
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo T Ventura
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Hanus JS, Ceretta LB, Simões PW, Tuon L. Incidence of hepatitis C in Brazil. Rev Soc Bras Med Trop 2016; 48:665-73. [PMID: 26676490 DOI: 10.1590/0037-8682-0230-2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Hepatitis C is a public health problem of global dimensions, affecting approximately 200 million people worldwide. The main objective of this study was to estimate the incidence rate of hepatitis C in Brazil during the period between 2001 and 2012. METHODS An epidemiological, temporal, and descriptive study was performed using data from the Information System for Reportable Diseases. RESULTS Between 2001 and 2012, a total of 151,056 hepatitis C cases were recorded, accounting for 30.3% of all hepatitis notifications in Brazil. The average gross coefficient for the analysis period was 6.7 new cases per 100,000 inhabitants. The regions with the highest rates were the Southeast region (8.7 new cases/100,000 inhabitants) and the South (13.9 new cases/100,000 inhabitants). There was a predominance of men with respect to the incidence rate (8.0 new cases/100,000 inhabitants) compared to women (5.5 new cases/100,000 inhabitants). Injection drug use was the most common source of infection, and members of the white race, residents of urban areas, and those aged 60 to 64 years had the highest incidences. CONCLUSIONS Over the last 10 years, the incidence of hepatitis C in Brazil has increased, mainly in the South and Southeast. The adoption of fast, accurate diagnostic methods, together with epidemiological awareness, can facilitate early intervention measures for adequate control of the disease.
Collapse
Affiliation(s)
- Juliét Silveira Hanus
- Programa de Residência Multiprofissional em Saúde Coletiva, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Luciane Bisognin Ceretta
- Programa de Residência Multiprofissional em Saúde Coletiva, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Priscyla Waleska Simões
- Programa de Residência Multiprofissional em Saúde Coletiva, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Lisiane Tuon
- Programa de Residência Multiprofissional em Saúde Coletiva, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
5
|
Ledoux S, Guthrie C. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity. J Biol Chem 2016; 291:11954-65. [PMID: 27072132 DOI: 10.1074/jbc.m115.710848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 11/06/2022] Open
Abstract
Brr2 is an RNA-dependent ATPase required to unwind the U4/U6 snRNA duplex during spliceosome assembly. Mutations within the ratchet helix of the Brr2 RNA binding channel result in a form of degenerative human blindness known as retinitis pigmentosa (RP). The biochemical consequences of these mutations on Brr2's RNA binding, helicase, and ATPase activity have not yet been characterized. Therefore, we identified the largest construct of Brr2 that is soluble in vitro, which truncates the first 247 amino acids of the N terminus (Δ247-Brr2), to characterize the effects of the RP mutations on Brr2 activity. The Δ247-Brr2 RP mutants exhibit a gradient of severity of weakened RNA binding, reduced helicase activity, and reduced ATPase activity compared with wild type Δ247-Brr2. The globular C-terminal Jab1/Mpn1-like domain of Prp8 increases the ability of Δ247-Brr2 to bind the U4/U6 snRNA duplex at high pH and increases Δ247-Brr2's RNA-dependent ATPase activity and the extent of RNA unwinding. However, this domain of Prp8 does not differentially affect the Δ247-Brr2 RP mutants compared with the wild type Δ247-Brr2. When stimulated by Prp8, wild type Δ247-Brr2 is able to unwind long stable duplexes in vitro, and even the RP mutants capable of binding RNA with tight affinity are incapable of fully unwinding short duplex RNAs. Our data suggest that the RP mutations within the ratchet helix impair Brr2 translocation through RNA helices.
Collapse
Affiliation(s)
- Sarah Ledoux
- From the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Christine Guthrie
- From the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
6
|
Pérez-Villa A, Darvas M, Bussi G. ATP dependent NS3 helicase interaction with RNA: insights from molecular simulations. Nucleic Acids Res 2015; 43:8725-34. [PMID: 26358809 PMCID: PMC4605317 DOI: 10.1093/nar/gkv872] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/18/2015] [Indexed: 01/05/2023] Open
Abstract
Non-structural protein 3 (NS3) helicase from hepatitis C virus is an enzyme that unwinds and translocates along nucleic acids with an ATP-dependent mechanism and has a key role in the replication of the viral RNA. An inchworm-like mechanism for translocation has been proposed based on crystal structures and single molecule experiments. We here perform atomistic molecular dynamics in explicit solvent on the microsecond time scale of the available experimental structures. We also construct and simulate putative intermediates for the translocation process, and we perform non-equilibrium targeted simulations to estimate their relative stability. For each of the simulated structures we carefully characterize the available conformational space, the ligand binding pocket, and the RNA binding cleft. The analysis of the hydrogen bond network and of the non-equilibrium trajectories indicates an ATP-dependent stabilization of one of the protein conformers. Additionally, enthalpy calculations suggest that entropic effects might be crucial for the stabilization of the experimentally observed structures.
Collapse
Affiliation(s)
- Andrea Pérez-Villa
- Scuola Internazionale Superiore di Studi Avanzati, International School for Advanced Studies, 265, Via Bonomea, I-34136 Trieste, Italy
| | - Maria Darvas
- Scuola Internazionale Superiore di Studi Avanzati, International School for Advanced Studies, 265, Via Bonomea, I-34136 Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, International School for Advanced Studies, 265, Via Bonomea, I-34136 Trieste, Italy
| |
Collapse
|
7
|
Sweeney NL, Hanson AM, Mukherjee S, Ndjomou J, Geiss BJ, Steel JJ, Frankowski KJ, Li K, Schoenen FJ, Frick DN. Benzothiazole and Pyrrolone Flavivirus Inhibitors Targeting the Viral Helicase. ACS Infect Dis 2015; 1:140-148. [PMID: 26029739 DOI: 10.1021/id5000458] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The flavivirus nonstructural protein 3 (NS3) is a protease and helicase, and on the basis of its similarity to its homologue encoded by the hepatitis C virus (HCV), the flavivirus NS3 might be a promising drug target. Few flavivirus helicase inhibitors have been reported, in part, because few specific inhibitors have been identified when nucleic acid unwinding assays have been used to screen for helicase inhibitors. To explore the possibility that compounds inhibiting NS3-catalyzed ATP hydrolysis might function as antivirals even if they do not inhibit RNA unwinding in vitro, we designed a robust dengue virus (DENV) NS3 ATPase assay suitable for high-throughput screening. Members of two classes of inhibitory compounds were further tested in DENV helicase-catalyzed RNA unwinding assays, assays monitoring HCV helicase action, subgenomic DENV replicon assays, and cell viability assays and for their ability to inhibit West Nile virus (Kunjin subtype) replication in cells. The first class contained analogues of NIH molecular probe ML283, a benzothiazole oligomer derived from the dye primuline, and they also inhibited HCV helicase and DENV NS3-catalyzed RNA unwinding. The most intriguing ML283 analogue inhibited DENV NS3 with an IC50 value of 500 nM and was active against the DENV replicon. The second class contained specific DENV ATPase inhibitors that did not inhibit DENV RNA unwinding or reactions catalyzed by HCV helicase. Members of this class contained a 4-hydroxy-3-(5-methylfuran-2-carbonyl)-2H-pyrrol-5-one scaffold, and about 20 μM of the most potent pyrrolone inhibited both DENV replicons and West Nile virus replication in cells by 50%.
Collapse
Affiliation(s)
- Noreena L. Sweeney
- Department of Chemistry and Biochemistry, University of Wisconsin—Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Alicia M. Hanson
- Department of Chemistry and Biochemistry, University of Wisconsin—Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Sourav Mukherjee
- Department of Chemistry and Biochemistry, University of Wisconsin—Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Jean Ndjomou
- Department of Chemistry and Biochemistry, University of Wisconsin—Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Brian J. Geiss
- Department
of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Colorado State University, Fort Collins, Colorado 80523, United States
| | - J. Jordan Steel
- Department
of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Kevin J. Frankowski
- Specialized
Chemistry Center, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Kelin Li
- Specialized
Chemistry Center, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Frank J. Schoenen
- Specialized
Chemistry Center, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - David N. Frick
- Department of Chemistry and Biochemistry, University of Wisconsin—Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|