1
|
Timing Expression of miR203a-3p during OA Disease: Preliminary In Vitro Evidence. Int J Mol Sci 2023; 24:ijms24054316. [PMID: 36901745 PMCID: PMC10002134 DOI: 10.3390/ijms24054316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative bone disease that involves the microenvironment and macroenvironment of joints. Progressive joint tissue degradation and loss of extracellular matrix elements, together with different grades of inflammation, are important hallmarks of OA disease. Therefore, the identification of specific biomarkers to distinguish the stages of disease becomes a primary necessity in clinical practice. To this aim, we investigated the role of miR203a-3p in OA progression starting from the evidence obtained by osteoblasts isolated from joint tissues of OA patients classified according to different Kellgren and Lawrence (KL) grading (KL ≤ 3 and KL > 3) and hMSCs treated with IL-1β. Through qRT-PCR analysis, it was found that osteoblasts (OBs) derived from the KL ≤ 3 group expressed high levels of miR203a-3p and low levels of ILs compared with those of OBs derived from the KL > 3 group. The stimulation with IL-1β improved the expression of miR203a-3p and the methylation of the IL-6 promoter gene, favoring an increase in relative protein expression. The gain and loss of function studies showed that the transfection with miR203a-3p inhibitor alone or in co-treatments with IL-1β was able to induce the expression of CX-43 and SP-1 and to modulate the expression of TAZ, in OBs derived from OA patients with KL ≤ 3 compared with KL > 3. These events, confirmed also by qRT-PCR analysis, Western blot, and ELISA assay performed on hMSCs stimulated with IL-1β, supported our hypothesis about the role of miR203a-3p in OA progression. The results suggested that during the early stage, miR203a-3p displayed a protective role reducing the inflammatory effects on CX-43, SP-1, and TAZ. During the OA progression the downregulation of miR203a-3p and consequently the upregulation of CX-43/SP-1 and TAZ expression improved the inflammatory response and the reorganization of the cytoskeleton. This role led to the subsequent stage of the disease, where the aberrant inflammatory and fibrotic responses determined the destruction of the joint.
Collapse
|
2
|
Qiao X, Lv S, Qiao Y, Wang F, Miao L. Interferon regulatory factor 5‑induced upregulation of zinc‑finger protein 217 promotes pancreatic carcinoma progression. Mol Med Rep 2022; 25:189. [PMID: 35362545 PMCID: PMC8985198 DOI: 10.3892/mmr.2022.12705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/22/2021] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the molecular mechanisms of zinc‑finger protein 217 (ZNF217) in pancreatic carcinoma (PC) progression. ZNF217‑associated expression and survival data from patients with PC were retrieved from the Gene Expression Profiling Interactive Analysis server. The mRNA expression level of ZNF217 was detected by reverse transcription‑quantitative PCR. Cell Counting Kit‑8, colony formation, wound‑healing and Transwell assays were conducted to assess cellular proliferation, migratory and invasive abilities. Proliferation was also examined by immunofluorescence detection of Ki67 expression, and chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to detect the interaction between ZNF217 and interferon regulatory factor 5 (IRF5). ZNF217 was found to be significantly upregulated in tumor tissues and cancer cell lines, which was associated with a poor survival rate in patients with PC. ZNF217 silencing markedly suppressed cellular proliferation and migratory and invasive abilities, as well as decreased the expression of Ki67. IRF5 was also upregulated in PC tumor tissues and was shown to positively regulate the activity of the ZNF217 promoter and its mRNA expression levels. Furthermore, ChIP assays demonstrated that IRF5 bound to the promoter region of ZNF217 in vitro. In conclusion, ZNF217 silencing exerted notable inhibitory effects on the progression of PC. Thus, ZNF217 may serve as a potential target for developing novel therapeutic strategies for PC.
Collapse
Affiliation(s)
- Xiao Qiao
- Department of Gastroenterology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Shengxiang Lv
- Department of Gastroenterology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Yan Qiao
- Department of Radiotherapy, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Fei Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Lin Miao
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
3
|
MicroRNA-135 inhibits initiation of epithelial-mesenchymal transition in breast cancer by targeting ZNF217 and promoting m6A modification of NANOG. Oncogene 2022; 41:1742-1751. [PMID: 35121826 DOI: 10.1038/s41388-022-02211-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
Abstract
MicroRNAs play significant roles in various malignancies, with breast cancer (BC) being no exception. Consequently, we explored the functional mechanism of miR-135 in the progression of BC. In total, 55 pairs of BC and matched adjacent normal tissues were clinically collected from patients, followed by quantification of miR-135 and zinc finger protein 217 (ZNF217) expression patterns in BC tissues and cells. Accordingly, high ZNF217 expression and low miR-135 expression levels were identified in BC tissues and cells. Subsequently, the expressions of miR-135 and ZNF217 were altered to evaluate their effects on BC cell migration, invasion and EMT initiation. It was found that when ZNF217 was silenced or miR-135 was elevated, BC cell malignant behaviors were significantly inhibited, which was reproduced in nude mice for in vivo evidence. Furthermore, dual-luciferase reporter gene assay revealed the presence of direct binding between miR-135 and ZNF217. Subsequent co-immunoprecipitation, methylated-RNA binding protein immunoprecipitation and photoactivatable ribonucleoside enhanced-crosslinking and immunoprecipitation assays further revealed that ZNF217 could upregulate NANOG by reducing N6-methyladenosine levels via methyltransferase-like 13 (METTL3). Collectively, our findings highlighted the role of the miR-135/ZNF217/METTL3/NANOG axis in the progression of BC, emphasizing potential therapeutic targets ZNF217 silencing and miR-135 upregulation in preventing or treating BC.
Collapse
|
4
|
Qiu H, Zhang L, Wang D, Zhang Y, Cai H, Miao H, Chu F. ZNF488 Promotes the Invasion and Migration of Pancreatic Carcinoma Cells through the Akt/mTOR Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4622877. [PMID: 35111235 PMCID: PMC8803468 DOI: 10.1155/2022/4622877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Studies have demonstrated that zinc finger protein 488 (ZNF488) is highly expressed in pancreatic carcinoma (PC), but its effect on PC and its molecular mechanism remains unclear. METHODS Real-time fluorescent quantitative PCR (RT-qPCR) was employed to detect the ZNF488 expression in PC patients' cancer tissues and cell lines. After interfering with or overexpressing ZNF488 in PANC-1 and AsPC-1 cells, respectively, the CCK-8, cell cloning, Transwell, and scratch assays were performed to detect cell proliferation, cell viability, invasion ability, and migration ability. In addition, Western blot was applied to assess the protein expression of Akt, p-Akt, mTOR, and p-mTOR in the Akt-mTOR pathway. RESULTS The ZNF488 expression was evidently raised in PC tissues and cell lines, and the starBase V3.0 database indicated that the higher the ZNF488 expression, the lower the survival rate of PC patients. Furthermore, we discovered that overexpressing ZNF488 can markedly promote the proliferation, invasion, and migration of PC cells. At the same time, highly expressed ZNF488 distinctly increased the p-Akt and p-mTOR expressions and the p-Akt/Akt and p-mTOR/mTOR ratios. However, after knocking down the ZNF488 expression, it had the opposite results. In addition, the Akt agonist SC79 can alleviate the effect of ZNF488 knockdown on Akt/mTOR pathway-related proteins, while Akt inhibitor AZD5363 had the opposite effect. CONCLUSION ZNF488 could promote the proliferation, invasion, and migration of PC cells, and its mechanism may be related to the activation of the Akt/mTOR pathway. This study demonstrated that ZNF488 could be used as a molecular target for diagnosing and treating PC.
Collapse
Affiliation(s)
- Hongquan Qiu
- Department of General Surgery, The Sixth People's Hospital of Nantong, Nantong, China
| | - Liang Zhang
- Department of General Surgery, The Sixth People's Hospital of Nantong, Nantong, China
- Department of General Surgery, Tengzhou Central People's Hospital, Tengzhou, China
| | - Dongzhi Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Zhang
- Department of Laboratory Medicine, Haimen People's Hospital, Haimen, Jiangsu, China
| | - Hongyu Cai
- Department of General Surgery, The Nantong Tumor Hospital, Nantong, China
| | - Haiyan Miao
- Department of General Surgery, The Sixth People's Hospital of Nantong, Nantong, China
| | - Feihu Chu
- Department of General Surgery, The Nantong Tumor Hospital, Nantong, China
| |
Collapse
|
5
|
Li Y, Wu H, Wang Q, Xu S. ZNF217: the cerberus who fails to guard the gateway to lethal malignancy. Am J Cancer Res 2021; 11:3378-3405. [PMID: 34354851 PMCID: PMC8332857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023] Open
Abstract
The aberrant expression of the zinc finger protein 217 (ZNF217) promotes multiple malignant phenotypes, such as replicative immortality, maintenance of proliferation, malignant heterogeneity, metastasis, and cell death resistance, via diverse mechanisms, including transcriptional activation, mRNA N6-methyladenosine (m6A) regulation, and protein interactions. The induction of these cellular processes by ZNF217 leads to therapeutic resistance and patients' poor outcomes. However, few ZNF217 related clinical applications or trials, have been reported. Moreover, looming observations about ZNF217 roles in m6A regulation and cancer immune response triggered significant attention while lacking critical evidence. Thus, in this review, we revisit the literature about ZNF217 and emphasize its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yingpu Li
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
| | - Hao Wu
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer HospitalHarbin, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer HospitalHarbin, China
- Heilongjiang Academy of Medical SciencesHarbin, China
| |
Collapse
|
6
|
Northey JJ, Barrett AS, Acerbi I, Hayward MK, Talamantes S, Dean IS, Mouw JK, Ponik SM, Lakins JN, Huang PJ, Wu J, Shi Q, Samson S, Keely PJ, Mukhtar RA, Liphardt JT, Shepherd JA, Hwang ES, Chen YY, Hansen KC, Littlepage LE, Weaver VM. Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. J Clin Invest 2021; 130:5721-5737. [PMID: 32721948 DOI: 10.1172/jci129249] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Women with dense breasts have an increased lifetime risk of malignancy that has been attributed to a higher epithelial density. Quantitative proteomics, collagen analysis, and mechanical measurements in normal tissue revealed that stroma in the high-density breast contains more oriented, fibrillar collagen that is stiffer and correlates with higher epithelial cell density. microRNA (miR) profiling of breast tissue identified miR-203 as a matrix stiffness-repressed transcript that is downregulated by collagen density and reduced in the breast epithelium of women with high mammographic density. Culture studies demonstrated that ZNF217 mediates a matrix stiffness- and collagen density-induced increase in Akt activity and mammary epithelial cell proliferation. Manipulation of the epithelium in a mouse model of mammographic density supported a causal relationship between stromal stiffness, reduced miR-203, higher levels of the murine homolog Zfp217, and increased Akt activity and mammary epithelial proliferation. ZNF217 was also increased in the normal breast epithelium of women with high mammographic density, correlated positively with epithelial proliferation and density, and inversely with miR-203. The findings identify ZNF217 as a potential target toward which preexisting therapies, such as the Akt inhibitor triciribine, could be used as a chemopreventive agent to reduce cancer risk in women with high mammographic density.
Collapse
Affiliation(s)
- Jason J Northey
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Alexander S Barrett
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Irene Acerbi
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Mary-Kate Hayward
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Stephanie Talamantes
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Ivory S Dean
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Janna K Mouw
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jonathon N Lakins
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Po-Jui Huang
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Junmin Wu
- Harper Cancer Research Institute, Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana, USA
| | - Quanming Shi
- Department of Bioengineering, Stanford University, Palo Alto, California, USA
| | - Susan Samson
- Helen Diller Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Patricia J Keely
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Jan T Liphardt
- Department of Bioengineering, Stanford University, Palo Alto, California, USA
| | - John A Shepherd
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii at Manoa, Manoa, Hawaii, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Yunn-Yi Chen
- Department of Pathology, UCSF, San Francisco, California, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laurie E Littlepage
- Harper Cancer Research Institute, Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana, USA
| | - Valerie M Weaver
- Department of Surgery.,Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA.,Helen Diller Comprehensive Cancer Center, UCSF, San Francisco, California, USA.,Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii at Manoa, Manoa, Hawaii, USA.,Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California, USA
| |
Collapse
|
7
|
Bader El Din NG, Farouk S, Abdel-Salam LO, Khairy A. The potential value of miRNA-223 as a diagnostic biomarker for Egyptian colorectal patients. Eur J Gastroenterol Hepatol 2021; 33:25-31. [PMID: 33079781 DOI: 10.1097/meg.0000000000001961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Colorectal cancer (CRC) is the third lethal malignancy worldwide. Dysregulation of microRNAs (miRNAs) mediates several growth factors signaling pathways and induces abnormal genes expression, which leads to colorectal carcinogenesis. We aimed to comprehensively assess the expression of miRNA-200c, miRNA-203a, miRNA-223 in Egyptian CRC tissue and their corresponding serum samples and to explore if they have any potential prognostic or diagnostic value for CRC patients. METHODS A total of 195 subjects (120 CRC patients and 75 healthy controls) participated in exploration and validation sets. The relative expression of miRNA-200c, miRNA-203a, and miRNA-223 was measured in both CRC tissue and serum samples, and the expressed miRNAs were compared in different CRC grades and types and the prognostic value was evaluated. RESULTS The expression levels of miRNA-200c and miRNA-203a were reduced in CRC tissue samples than adjacent noncancerous tissues. miRNA-223 level was significantly upregulated in both CRC tissue and serum samples with a positive association between them (r = 0.85, P = 0.001). The miRNA-223 can effectively discriminate CRC patients from controls and can significantly differentiate between colon and rectal cancer patients. The association between serum miRNA-223 expression and CRC development was validated in the second set and the ROC curve showed highly significant prognostic value with 90.1% sensitivity, 87% specificity, and area under the curve of 0.914 (95% confidence interval: 0.830-0.978, P = 0.0001). These results showed the association between miRNA-223 upregulation and the CRC carcinogenesis. CONCLUSION Circulating miRNA-223 can be a potential noninvasive prognostic biomarker for Egyptian CRC patients.
Collapse
Affiliation(s)
| | - Sally Farouk
- Department of Microbial Biotechnology, National Research Centre, Dokki
| | | | - Ahmed Khairy
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Retraction: MiR-203 Suppresses ZNF217 Upregulation in Colorectal Cancer and Its Oncogenicity. PLoS One 2020; 15:e0244268. [PMID: 33332447 PMCID: PMC7746159 DOI: 10.1371/journal.pone.0244268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Retraction: Hypoxia-Inducible MiR-210 Is an Independent Prognostic Factor and Contributes to Metastasis in Colorectal Cancer. PLoS One 2020; 15:e0244280. [PMID: 33332444 PMCID: PMC7746280 DOI: 10.1371/journal.pone.0244280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Smeester BA, Draper GM, Slipek NJ, Larsson AT, Stratton N, Pomeroy EJ, Becklin KL, Yamamoto K, Williams KB, Laoharawee K, Peterson JJ, Abrahante JE, Rathe SK, Mills LJ, Crosby MR, Hudson WA, Rahrmann EP, Largaespada DA, Moriarity BS. Implication of ZNF217 in Accelerating Tumor Development and Therapeutically Targeting ZNF217-Induced PI3K-AKT Signaling for the Treatment of Metastatic Osteosarcoma. Mol Cancer Ther 2020; 19:2528-2541. [PMID: 32999043 DOI: 10.1158/1535-7163.mct-20-0369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
We previously identified ZNF217 as an oncogenic driver of a subset of osteosarcomas using the Sleeping Beauty (SB) transposon system. Here, we followed up by investigating the genetic role of ZNF217 in osteosarcoma initiation and progression through the establishment of a novel genetically engineered mouse model, in vitro assays, orthotopic mouse studies, and paired these findings with preclinical studies using a small-molecule inhibitor. Throughout, we demonstrate that ZNF217 is coupled to numerous facets of osteosarcoma transformation, including proliferation, cell motility, and anchorage independent growth, and ultimately promoting osteosarcoma growth, progression, and metastasis in part through positive modulation of PI3K-AKT survival signaling. Pharmacologic blockade of AKT signaling with nucleoside analogue triciribine in ZNF217+ orthotopically injected osteosarcoma cell lines reduced tumor growth and metastasis. Our data demonstrate that triciribine treatment may be a relevant and efficacious therapeutic strategy for patients with osteosarcoma with ZNF217+ and p-AKT rich tumors. With the recent revitalization of triciribine for clinical studies in other solid cancers, our study provides a rationale for further evaluation preclinically with the purpose of clinical evaluation in patients with incurable, ZNF217+ osteosarcoma.
Collapse
Affiliation(s)
- Branden A Smeester
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Garrett M Draper
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Nicholas J Slipek
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Alex T Larsson
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Natalie Stratton
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Kelsie L Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Kenta Yamamoto
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Kyle B Williams
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Joseph J Peterson
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | | | - Susan K Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Lauren J Mills
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Margaret R Crosby
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Wendy A Hudson
- AHCSH Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Eric P Rahrmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England
| | | | | |
Collapse
|
11
|
Li G, Qi HW, Dong HG, Bai P, Sun M, Liu HY. Targeting deubiquitinating enzyme USP26 by microRNA-203 regulates Snail1's pro-metastatic functions in esophageal cancer. Cancer Cell Int 2020; 20:355. [PMID: 32760222 PMCID: PMC7393868 DOI: 10.1186/s12935-020-01441-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background Esophageal cancer is one of the most common cancers worldwide with poor prognosis and high mortality. The transcription factor SNAI1, encoding Snail1, is important for metastatic progression in esophageal cancer whereas the microRNA (miRNA)-203 has been shown to function as an inhibitor of metastasis in EC. The Snail1 protein is stabilized in EC partially by the deubiquitinating enzyme USP26; however, how USP26 is regulated is not completely known. Methods Expression of SNAI1 and USP26 messenger RNA (mRNA) and miR-203 was performed in datasets within The Cancer Genome Atlas and Gene Expression Omnibus, respectively. Expression of Snail1 and USP26 protein and miR-203 was determined in the normal esophageal cell line HET-1A and EC cell lines Kyse150 and TE-1 using western blot and quantitative polymerase chain reaction, respectively. TargetScan was used for in situ prediction of miR-203 targets and in vitro heterologous reporter assays using the wild-type and miR-203 seed mutant of the 3′ Untranslated region (UTR) of USP26 were used to investigate whether USP26 is a target of miR-203. Effects of increasing miR-203 using MIR203A/5P mimic on USP26 and Snail1 in the HET-1A, Kyse150 and TE-1 cell lines were performed using western blot and cycloheximide-based protein stability analysis. Effects of modulating miR-203 in Kyse150 and TE-1 cell lines on in vitro pro-metastatic effects were analyzed by invasion assay, scratch wound-healing assay, and chemosensitivity to 5-fluoruracil (5-FU). In vivo lung metastasis assay was used to study the effect of modulating miR-203 in Kyse150 cells. Results SNAI1 mRNA and HSA/MIR203 was higher and lower, respectively, in EC patients compared to tumor-adjacent normal tissues. No changes in expression of USP26 mRNA were observed in these datasets. MIR/203 expression was downregulated whereas protein expression of both Snail1 and USP26 were higher in EC cell lines Kyse150 and TE-1 compared to normal esophageal cell line HET-1A. USP26 was predicted as a potential target of miR-203 by TargetScan Release 2.0. Reporter assays confirmed USP26 as a target of miR-203 in the EC cell lines. Transfection of EC cell lines with MIR203 mimic decreased USP26 protein expression and Snail1 protein stability indicating the ability of miR-203 to regulate Snail1 protein levels via USP26. Exogenous increase in miR-203 in the EC cell lines significantly inhibited Snail-1 mediated in vitro pro-metastatic function of invasion, wound-healing, and increased chemosensitivity to 5-FU. Finally, overexpression of miR-203 inhibited in vivo lung metastasis of Kyse150 cells, which was reversed following overexpression of USP26, indicating a direct role of miR-203-mediated regulation of USP26 in metastatic progression of EC. Conclusions Cumulatively, these results establish an important mechanism by which decrease in miR-203 expression potentiates metastatic progression in EC via USP26-mediated stabilization of Snail1. Hence, miR-203 can serve as a biomarker of metastasis in EC and is a potential target for therapeutic intervention in EC.
Collapse
Affiliation(s)
- Gang Li
- Department of Surgical Oncology, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Hong-Wei Qi
- Department of Medicine, Taian City Central Hospital, Taian, 271000 Shandong China
| | - He-Gui Dong
- Department of Outpatient, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Ping Bai
- Department of Surgical Oncology, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Ming Sun
- Department of Surgical Oncology, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Hai-Yan Liu
- Department of Oncology, The Second Affiliate Hospital of Shandong First Medical University, No.706, Taishan Street, Taian, 271000 Shandong China
| |
Collapse
|
12
|
Yang S, Shi F, Du Y, Wang Z, Feng Y, Song J, Liu Y, Xiao M. Long non-coding RNA CTBP1-AS2 enhances cervical cancer progression via up-regulation of ZNF217 through sponging miR-3163. Cancer Cell Int 2020; 20:343. [PMID: 32742190 PMCID: PMC7388209 DOI: 10.1186/s12935-020-01430-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) play significant roles in tumorigenesis and can contribute to identification of novel therapeutic targets for cancers. This paper was aimed at exploring the role of CTBP1 divergent transcript (CTBP1-AS2) in cervical cancer (CC) progression. Methods qRT-PCR and western blot assays were used to detect relevant RNA and protein expressions. In vitro functional assays, including CCK8, EdU, TUNEL and transwell assays were applied to explore the functions of CTBP1-AS2 in CC cell proliferation, apoptosis and migration. In vivo animal study was utilized to investigate the role of CTBP1-AS2 in tumor growth. Luciferase reporter, RNA pull down and RIP assays were performed to determine the specific mechanical relationship between CTBP1-AS2, miR-3163 and ZNF217. Results CTBP1-AS2 was significantly overexpressed in CC cell lines. Knockdown of CTBP1-AS2 curbed cell proliferation, migration and invasion, while stimulated cell apoptosis in vitro. CTBP1-AS2 facilitated xenograft tumor growth in vivo. Cytoplasmic CTBP1-AS2 was found to be a miR-3163 sponge in CC cells. MiR-3163 inhibition abolished the anti-tumor effects of CTBP1-AS2 knockdown. Additionally, Zinc finger protein 217 (ZNF217) was identified as a direct target of miR-3163. CTBP1-AS2 acted as a miR-3163 sponge to elevate ZNF217 expression. ZNF217 up-regulation abrogated the tumor suppressing effects of CTBP1-AS2 knockdown. Conclusion CTBP1-AS2 regulates CC progression via sponging miR-3163 to up-regulate ZNF217.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang China
| | - Feng Shi
- Department of Obstetrics and Gynecology, Daqing Longnan Hospital, Daqing, 163453 Heilongjiang China
| | - Yuting Du
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang China
| | - Zhao Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang China
| | - Yue Feng
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang China
| | - Jiayu Song
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang China
| | - Yunduo Liu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang China
| | - Min Xiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang China
| |
Collapse
|
13
|
Mehrgou A, Ebadollahi S, Seidi K, Ayoubi-Joshaghani MH, Ahmadieh Yazdi A, Zare P, Jaymand M, Jahanban-Esfahlan R. Roles of miRNAs in Colorectal Cancer: Therapeutic Implications and Clinical Opportunities. Adv Pharm Bull 2020; 11:233-247. [PMID: 33880345 PMCID: PMC8046386 DOI: 10.34172/apb.2021.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most disseminated diseases across the globe engaging the digestive system. Various therapeutic methods from traditional to the state-of-the-art ones have been applied in CRC patients, however, the attempts have been unfortunate to lead to a definite cure. MiRNAs are a smart group of non-coding RNAs having the capabilities of regulating and controlling coding genes. By utilizing this stock-in-trade biomolecules, not only disease’s symptoms can be eliminated, there may also be a good chance for the complete cure of the disease in the near future. Herein, we provide a comprehensive review delineating the therapeutic relationship between miRNAs and CRC. To this, various clinical aspects of miRNAs which act as a tumor suppressor and/or an oncogene, their underlying cellular processes and clinical outcomes, and, in particular, their effects and expression level changes in patients treated with chemo- and radiotherapy are discussed. Finally, based on the results deducted from scientific research studies, therapeutic opportunities based on targeting/utilizing miRNAs in the preclinical as well as clinical settings are highlighted.
Collapse
Affiliation(s)
- Amir Mehrgou
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Ebadollahi
- Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, 9841 Tabriz, Iran
| | - Mohammad Hosein Ayoubi-Joshaghani
- Drug Applied Research Center, Tabriz University of Medical Sciences, 9841 Tabriz, Iran.,Student Research Committees, Tabriz University of Medical Sciences, 9841 Tabriz, Iran
| | | | - Peyman Zare
- Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rana Jahanban-Esfahlan
- Stem Cell Research Center, Tabriz University of Medical Sciences, 9841 Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Jing L, Feng L, Zhou Z, Shi S, Deng R, Wang Z, Liu Y. Limonoid compounds from Xylocarpus granatum and their anticancer activity against esophageal cancer cells. Thorac Cancer 2020; 11:1817-1826. [PMID: 32449599 PMCID: PMC7327699 DOI: 10.1111/1759-7714.13455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022] Open
Abstract
Background To investigate the anticancer effects of limonoid compounds that were isolated and purified from Xylocarpus granatum fruits on human esophageal cancer (EC) cells. A structure‐activity relationship experiment was designed to identify the functional moiety of limonoid compounds identified as being critical for its anticancer activity. Methods Eca109 cells were cultured in RPMI1640 medium and treated with limonoid compounds. Cell proliferation was determined by the MTT assay in vitro. Eca109 cells apoptosis was analyzed by by flow cytometry after being treated with xylogranatin C. The expression of p53, Bax, bcl‐2, caspase‐3 and GRP78 in Eca109 cells after xylogranatin C treatment was examined by western blot assay. Results Four linonoid compounds strongly inhibited the cellular proliferation of Eca109 cells. Xylogranatin C was the strongest inhibitor, whose inhibitory effect was comparable to that of the well‐known chemotherapeutic agent, cisplatin. Furthermore, xylogranatin C might induce Eca109 cell apoptosis through joint effects on multiple pathways, including the death receptor and endoplasmic reticulum pathways. Additionally, xylogranatin C suppressed tumor cell proliferation by upregulating miR‐203a expression in Eca109 cells. Conclusions Xylogranatin C induced Eca109 cellular apoptosis and exerted antitumor activity. Xylogranatin C suppressed tumor cell proliferation by upregulating miR‐203a expression in Eca109 cells.
Collapse
Affiliation(s)
- Li Jing
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Li Feng
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhiguo Zhou
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shuai Shi
- Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ruoying Deng
- Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhicong Wang
- Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yibing Liu
- Department of Medical Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
15
|
Yang Z, An Y, Wang N, Dong X, Kang H. LINC02595 promotes tumor progression in colorectal cancer by inhibiting miR-203b-3p activity and facilitating BCL2L1 expression. J Cell Physiol 2020; 235:7449-7464. [PMID: 32064615 PMCID: PMC7496558 DOI: 10.1002/jcp.29650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent tumors worldwide. Recently, long noncoding RNAs (lncRNAs) have been recognized as key regulators in postgenomic biology. Numerous lncRNAs have been identified as diagnostic biomarkers and therapeutic targets. However, the molecular mechanisms underlying the role of lncRNAs in CRC progression are not fully understood. Differentially expressed lncRNAs and messenger RNAs were investigated using a microarray approach in five paired primary CRC tumor tissues and the corresponding nontumor tissues and confirmed in an additional 116 paired tissues and 21 inflammatory bowel disease tissues and 15 adjacent normal tissues by a quantitative real‐time polymerase chain reaction. We also performed comprehensive transcriptome profiling analysis on Gene Expression Omnibus and The Cancer Genome Atlas datasets. We identified LINC02595 and evaluated its clinical significance as a plasma biomarker. The function of LINC02595 was evaluated using a panel of in vivo and vitro assays, including cell counting kit‐8, colony formation, cell cycle, apoptosis, RNA fluorescence in situ hybridization, luciferase reporter, immunohistochemistry, and CRC xenografts. We found that LINC02595 is upregulated in tumor tissues and blood samples of patients with CRC and CRC cell lines. Functional research found that LINC02595 promotes CRC cell growth, influences the cell cycle, and reduces apoptosis in vitro and vivo. Mechanistically, LINC02595 promoted BCL2‐like 1 (BCL2L1) expression through miR‐203b‐3p sponging. Our research demonstrated that LINC02595 is an oncogene in CRC and established the presence of a LINC02595‐miR‐203b‐BCL2L1 axis in CRC, which might provide a new diagnostic biomarker and therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Zhidong Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue An
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ningning Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xihua Dong
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Kang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
He R, Wang J, Ye K, Du J, Chen J, Liu W. Reduced miR-203 predicts metastasis and poor survival in esophageal carcinoma. Aging (Albany NY) 2019; 11:12114-12130. [PMID: 31844033 PMCID: PMC6949080 DOI: 10.18632/aging.102543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
Abstract
We analyzed data from two non-coding RNA profiling arrays made available by the Gene Expression Omnibus (GEO) and found 17 miRNAs with remarkable differential expression between malignant and normal esophageal tissue. Correlation analysis between expression of these 17 miRNAs and patients’ clinicopathological characteristics showed that miR-203 was down-regulated in esophageal carcinoma (EC) tissues and was significantly associated with lymph node metastasis and poor overall survival. Overexpression of miR-203 significantly attenuated cellular proliferation, migration and invasion by EC cells in culture. Additionally, gene expression profiles and bioinformatics analysis revealed KIF5C to be a direct target of miR-203, and KIF5C overexpression partially counteracted the tumor inhibitory effects of miR-203 on EC cells. We also observed that miR-203, reduced KIFC5 protein levels, promoted cytoplasmic accumulation of Axin2, and reversed the invasive phenotype of EC cells. Taken together, these data demonstrate that miR-203 is a tumor suppressor in EC cells and its expression level could potentially be used as a prognostic indicator for EC patient outcomes.
Collapse
Affiliation(s)
- Rongqi He
- First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, P.R. China
| | - Jintian Wang
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Kai Ye
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Jiabin Du
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Junxing Chen
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Weinan Liu
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| |
Collapse
|
17
|
Fan L, Wu Y, Wang J, He J, Han X. Sevoflurane inhibits the migration and invasion of colorectal cancer cells through regulating ERK/MMP-9 pathway by up-regulating miR-203. Eur J Pharmacol 2019; 850:43-52. [PMID: 30685432 DOI: 10.1016/j.ejphar.2019.01.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 02/08/2023]
Abstract
Surgery resection is the primary treatment for colorectal cancer (CRC) patients with the risk of cancer dissemination and metastasis. Sevoflurane is one inhalational anesthesia which regulates migration and invasion in varying cancers. However, the effect of sevoflurane on CRC cells and its mechanism remain poorly understood. In this study, SW620 and HCT116 cells were treated with different concentrations of sevoflurane for 6 h in vitro. We measured the effect of sevoflurane on cell survival, migration and invasion by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide or trans-well assays. Moreover, we explored the interaction between sevoflurane and miR-203 and Roundabout1 (Robo1) as well as the extracellular signal-regulated kinase (ERK) and matrix metalloproteinase-9 (MMP-9) pathway. Results showed that sevoflurane inhibited cell migration and invasion in SW620 and HCT116 cells in a concentration dependent manner. Moreover, different concentrations of sevoflurane suppressed the phosphorylation of ERK. miR-203 expression was impaired while sevoflurane reversed the expression of miR-203 in CRC cells. In addition, inhibition of miR-203 attenuated the inhibitory effect of sevoflurane on cell migration, invasion and phosphorylated ERK level. Notably, MMP-9, as a downstream of ERK, was involved in sevoflurane-mediated processes in CRC cells. Besides, Robo1 was indicated as a target of miR-203 and inhibited by sevoflurane treatment. These results indicated that sevoflurane suppressed cell migration and invasion through regulating ERK/MMP-9 pathway via miR-203/Robo1 in CRC cells, indicating important clinical implications for anesthetic agents to prevent metastasis in CRC.
Collapse
Affiliation(s)
- Lihua Fan
- Department of Anesthesiology, Wenzhou Medical University, The Sixth Affiliated Hospital, Lishui, Zhejiang 323000, China.
| | - Yini Wu
- Department of Anesthesiology, Wenzhou Medical University, The Sixth Affiliated Hospital, Lishui, Zhejiang 323000, China
| | - Jianping Wang
- Department of Anorectal Surgery, Wenzhou Medical University, The Fifth Affiliated Hospital, Lishui, Zhejiang 323000, China.
| | - Jiaqun He
- Department of Anesthesiology, Wenzhou Medical University, The Sixth Affiliated Hospital, Lishui, Zhejiang 323000, China
| | - Xin Han
- Department of Anesthesiology, Wenzhou Medical University, The Sixth Affiliated Hospital, Lishui, Zhejiang 323000, China
| |
Collapse
|
18
|
Sahranavardfard P, Firouzi J, Azimi M, Khosravani P, Heydari R, Emami Razavi A, Dorraj M, Keighobadi F, Ebrahimi M. MicroRNA-203 reinforces stemness properties in melanoma and augments tumorigenesis in vivo. J Cell Physiol 2019; 234:20193-20205. [PMID: 31016725 DOI: 10.1002/jcp.28619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
Abstract
One of the challenges encountered in microRNA (miRNA) studies is to observe their dual role in different conditions and cells. This leads to a tougher prediction of their behavior as gene expression regulators. miR-203 has been identified to play a negative role in the progression of malignant melanoma; however, it has been reported, with dual effect, as both an oncomiR and tumor suppressor miRNA in some malignancies, such as breast cancer, meanwhile, the role of miR-203 in melanoma stem cells or even metastatic cells is unclear. In the present study, after observation of upregulation of miR-203 in melanoma patient's serum and also melanospheres as cancer stem cells model, we examined its overexpression on the stemness potential and migration ability of melanoma cells. Our data demonstrated that the increased miR-203 level was significantly associated with significant increase in the ability of proliferation, colony and spheres formation, migration, and tumorigenesis in A375 and NA8 cells. All of these changes were associated with enhancement of BRAF, several epithelial to mesenchymal transition factors, and stemness genes. In conclusion, our results clearly determined that miR-203 could be down-regulateddownregulated in melanoma tissues but be overexpressed in melanoma stem cells. It has an important role as oncomiR and promote repopulation, tumorigenicity, self-renewal, and migration. Therefore, we suggested overexpression of miR-203 as biomarker for early detection of metastasis. However, more studies are needed to validate our data.
Collapse
Affiliation(s)
- Parisa Sahranavardfard
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pardis Khosravani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, The cancer institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Dorraj
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Keighobadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
19
|
Simile MM, Peitta G, Tomasi ML, Brozzetti S, Feo CF, Porcu A, Cigliano A, Calvisi DF, Feo F, Pascale RM. MicroRNA-203 impacts on the growth, aggressiveness and prognosis of hepatocellular carcinoma by targeting MAT2A and MAT2B genes. Oncotarget 2019; 10:2835-2854. [PMID: 31073374 PMCID: PMC6497462 DOI: 10.18632/oncotarget.26838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/04/2019] [Indexed: 01/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by the down-regulation of the liver-specific methyladenosyltransferase 1A (MAT1A) gene, encoding the S-adenosylmethionine synthesizing isozymes MATI/III, and the up-regulation of the widely expressed methyladenosyltransferase 2A (MAT2A), encoding MATII isozyme, and methyladenosyltransferase 2B (MAT2B), encoding a β-subunit without catalytic action that regulates MATII enzymatic activity. Different observations showed hepatocarcinogenesis inhibition by miR-203. We found that miR-203 expression in HCCs is inversely correlated with HCC proliferation and aggressiveness markers, and with MAT2A and MAT2B levels. MiR-203 transfection in HepG2 and Huh7 liver cancer cells targeted the 3'-UTR of MAT2A and MAT2B, inhibiting MAT2A and MAT2B mRNA levels and MATα2 and MATβ2 protein expression. These molecular events were paralleled by an increase in SAM content and were associated with growth restraint and apoptosis, inhibition of cell migration and invasiveness, and suppression of the expression of CD133 and LIN28B stemness markers. In contrast, MAT2B transfection in the same cell lines led to a rise of both MATβ2 and MATα2 expression, associated with increases in cell growth, migration, invasion and overexpression of stemness markers and p-AKT. Altogether, our results indicate that the miR-203 oncosuppressor activity may at least partially depend on its inhibition of MAT2A and MAT2B and show, for the first time, an oncogenic activity of MAT2B linked to AKT activation.
Collapse
Affiliation(s)
- Maria M Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Graziella Peitta
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Maria L Tomasi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefania Brozzetti
- Department of Surgery "Pietro Valdoni", University of Rome "La Sapienza", Rome, Italy
| | - Claudio F Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, Sassari, Italy
| | - Alberto Porcu
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, Sassari, Italy
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa M Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|
20
|
Jiang X, Zhang C, Qi S, Guo S, Chen Y, Du E, Zhang H, Wang X, Liu R, Qiao B, Yang K, Zhang Z, Xu Y. Elevated expression of ZNF217 promotes prostate cancer growth by restraining ferroportin-conducted iron egress. Oncotarget 2018; 7:84893-84906. [PMID: 27768596 PMCID: PMC5356707 DOI: 10.18632/oncotarget.12753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023] Open
Abstract
Although we and other studies indicated ZNF217 expression was increased in prostate cancer (PCa), the factors mediating its misregulated expression and their oncogenic activity remain largely unexplored. Recent evidence demonstrated that ferroportin (FPN) reduction lead to decreased iron export and increased intercellular iron that consequently aggravates the oncogenic effects of iron. In the present study, ZNF217 was identified as a transcriptional repressor that inhibits FPN expression. Increased of ZNF217 expression led to decreased FPN concentration, coupled with resultant intracellular iron retention, increased iron-related cellular activities and enhanced tumor cell growth. In contrast, decreased of ZNF217 expression restrained tumor cell growth by promoting FPN-driven iron egress. Mechanistic investigation manifested that ZNF217 facilitated the H3K27me3 levels of FPN promoter by interacting with EZH2. Besides, we also found that MAZ increased the transcription level of ZNF217, and subsequently inhibited the FPN expression and their iron–related activities. Strikingly, the expression of MAZ, EZH2 and ZNF217 were concurrently upregulated in PCa, leading to decreased expression of FPN, which induce disordered iron metabolism. Collectively, this study underscored that elevated expression of ZNF217 promotes prostate cancer growth by restraining FPN-conducted iron egress.
Collapse
Affiliation(s)
- Xingkang Jiang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Changwen Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shanqi Guo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300112, China
| | - Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - E Du
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Hongtuan Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Xiaoming Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Ranlu Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Baomin Qiao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Kuo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| |
Collapse
|
21
|
Tian X, Tao F, Zhang B, Dong JT, Zhang Z. The miR-203/SNAI2 axis regulates prostate tumor growth, migration, angiogenesis and stemness potentially by modulating GSK-3β/β-CATENIN signal pathway. IUBMB Life 2018; 70:224-236. [PMID: 29389061 DOI: 10.1002/iub.1720] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Dysregulation of microRNA expression plays a pivotal role in the initiation and progression of a variety of human carcinomas including prostate cancer. Our previous studies have demonstrated that the silence of miR-203 contributes to the invasiveness of malignant breast cancer cells by targeting SNAI2. However, the effects and underlying mechanisms of miR-203/SNAI2 axis in prostate cancer have not been elucidated. The aim of this study is to explore the effects of miR-203/SNAI2 axis on the biological characteristics of prostate carcinomas both in vitro and in vivo. We found that miR-203 was significantly downregulated in prostate cancer cell lines compared with immortalized prostate epithelial cells using semi-quantitative PCR and real-time PCR, as well as in clinical prostate cancer tissues compared to normal tissues using TCGA analysis. Functionally, miR-203 inhibited prostate cancer cell proliferation, migration, endothelial cell tube formation and cancer stemness in vitro. Meanwhile, overexpression of miR-203 suppressed SNAI2 expression both in DU145 and PC3 cells. In addition, the in vivo study showed that miR-203 suppressed tumorigenicity, metastasis and angiogenesis of DU145 cells. Ectopic expression of SNAI2 rescued the inhibitory effects of miR-203 both in vitro and in vivo. Importantly, the EMT markers CDH1 and VIMENTIN were modulated by the miR-203/SNAI2 axis. Furthermore, the GSK-3β/β-CATENIN signal pathway was suppressed by miR-203 and could be reactivated by SNAI2. Taken together, this research unveiled the function of miR-203/SNAI2 axis in tumorigenesis, angiogenesis, stemness, metastasis and GSK-3β/β-CATENIN signal pathway in prostate cancer and gave insights into miR-203/SNAI2-targeting therapy for prostate cancer patients. © 2018 IUBMB Life, 70(3):224-236, 2018.
Collapse
Affiliation(s)
- Xinxin Tian
- Tianjin International Joint Academy of Biomedicine (TJAB), Tianjin, People's Republic of China.,Department of Biochemistry and Biophysics, Texas A&M University and Texas AgriLife Research, College Station, TX, USA
| | - Fangfang Tao
- Department of Immunology and Microbiology, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Baotong Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Emory Winship Cancer Institute, Atlanta, GA, USA
| | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Emory Winship Cancer Institute, Atlanta, GA, USA.,Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhiqian Zhang
- Tianjin International Joint Academy of Biomedicine (TJAB), Tianjin, People's Republic of China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
22
|
Ferrer-Torres D, Nancarrow DJ, Kuick R, Thomas DG, Nadal E, Lin J, Chang AC, Reddy RM, Orringer MB, Taylor JMG, Wang TD, Beer DG. Genomic similarity between gastroesophageal junction and esophageal Barrett's adenocarcinomas. Oncotarget 2018; 7:54867-54882. [PMID: 27363029 PMCID: PMC5342387 DOI: 10.18632/oncotarget.10253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
The current high mortality rate of esophageal adenocarcinoma (EAC) reflects frequent presentation at an advanced stage. Recent efforts utilizing fluorescent peptides have identified overexpressed cell surface targets for endoscopic detection of early stage Barrett's-derived EAC. Unfortunately, 30% of EAC patients present with gastroesophageal junction adenocarcinomas (GEJAC) and lack premalignant Barrett's metaplasia, limiting this early detection strategy. We compared mRNA profiles from 52 EACs (tubular EAC; tEAC) collected above the gastroesophageal junction with 70 GEJACs, 8 normal esophageal and 5 normal gastric mucosa samples. We also analyzed our previously published whole-exome sequencing data in a large cohort of these tumors. Principal component analysis, hierarchical clustering and survival-based analyses demonstrated that GEJAC and tEAC were highly similar, with only modest differences in expression and mutation profiles. The combined expression cohort allowed identification of 49 genes coding cell surface targets overexpressed in both GEJAC and tEAC. We confirmed that three of these candidates (CDH11, ICAM1 and CLDN3) were overexpressed in tumors when compared to normal esophagus, normal gastric and non-dysplastic Barrett's, and localized to the surface of tumor cells. Molecular profiling of tEAC and GEJAC tumors indicated extensive similarity and related molecular processes. Identified genes that encode cell surface proteins overexpressed in both Barrett's-derived EAC and those that arise without Barrett's metaplasia will allow simultaneous detection strategies.
Collapse
Affiliation(s)
- Daysha Ferrer-Torres
- Cancer Biology, Program in Biomedical Science, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Derek J Nancarrow
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rork Kuick
- Center for Cancer Biostatistics, Department of Biostatistics, School of Public Health, Ann Arbor, Michigan, USA
| | - Dafydd G Thomas
- Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ernest Nadal
- Medical Oncology Department, Catalan Institute of Oncology, Barcelona, Spain
| | - Jules Lin
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew C Chang
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rishindra M Reddy
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mark B Orringer
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeremy M G Taylor
- Center for Cancer Biostatistics, Department of Biostatistics, School of Public Health, Ann Arbor, Michigan, USA
| | - Thomas D Wang
- Department of Medicine and Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David G Beer
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Cheng J, Gao J, Shuai X, Tao K. Oncogenic protein SALL4 and ZNF217 as prognostic indicators in solid cancers: a meta‑analysis of individual studies. Oncotarget 2018; 7:24314-25. [PMID: 27007163 PMCID: PMC5029703 DOI: 10.18632/oncotarget.8237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/21/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND SALL4 and ZNF217 have been widely acknowledged as pivotal effectors stimulating embryonic immortalization as well as oncogenicity. Nevertheless, their prognostic worthiness towards solid tumors remains obscure. Hence we performed this comprehensive meta-analysis aiming to unveil the survival significance of both aberrantly expressed proteins. RESULTS Overall we included 22 eligible entries comprising of 3093 participants. Over-expression of SALL4 and ZNF217 were negatively correlated with clinical prognosis of 3-year, 5-year, 10-year and disease-free survival in solid malignancies, irrespective of cancer types, source regions, mean-age and sex predominance. Results of sensitivity analysis additionally verified the stability of the pooled outcomes. No publication bias was observed on the basis of Egger's test and Begg's test. METHODS Studies were eventually included via database searching and rigorous eligibility appraisal. Data extraction and methodological assessment were implemented under a standard manner. Review Manager 5.3 and STATA 12.0 were utilized as statistical platforms following the recommendations by Cochrane Collaboration protocols. CONCLUSIONS Aberrant amplification of SALL4 and ZNF217 serve as unfavorable predictors of survival expectancy among cancer sufferers, revealing great potential as targeted spots in future therapeutics.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Shuai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Rammer M, Webersinke G, Haitchi-Petnehazy S, Maier E, Hackl H, Charoentong P, Malli T, Steinmair M, Petzer AL, Rumpold H. MicroRNAs and their role for T stage determination and lymph node metastasis in early colon carcinoma. Clin Exp Metastasis 2017; 34:431-440. [PMID: 29134398 DOI: 10.1007/s10585-017-9863-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022]
Abstract
Worldwide, colon cancer is among the most common cancer entities. Understanding the molecular background is the key to enable accurate stage determination, which is crucial to assess optimal therapy options. The search for preoperative biomarkers is ongoing. In recent years, several studies have proposed a diagnostic and prognostic role for miRNAs in cancer. Aim of this study was to evaluate miRNA expression patterns correlating with tumor stage, especially lymph node metastasis, in primary colon carcinoma tissue. Screening was accomplished using GeneChip® miRNA v3.0 arrays (Thermo Fisher Scientific, Waltham, MA, USA) and validated via TaqMan® qPCR assays (Thermo Fisher Scientific, Waltham, MA, USA) to investigate miRNA expressions in 168 FFPE and 83 fresh frozen colon carcinoma samples. Regarding lymph node status, analyses displayed no significantly differential miRNA expression. Interestingly, divergent expression of miR-18a-5p, miR-20a-5p, miR-21-5p, miR-152-3p and miR-1973 was detected in stage pT1. Although miRNAs might not represent reliable biomarkers regarding lymph node metastasis status, they could support risk assessment in stage T1 tumors.
Collapse
Affiliation(s)
- Melanie Rammer
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I: Medical Oncology, Hematology and Gastroenterology, Ordensklinikum Linz, Barmherzige Schwestern, Linz, Austria
| | - Gerald Webersinke
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I: Medical Oncology, Hematology and Gastroenterology, Ordensklinikum Linz, Barmherzige Schwestern, Linz, Austria
| | | | - Eva Maier
- Department of Pathology, Ordensklinikum Linz, Barmherzige Schwestern, Linz, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Pornpimol Charoentong
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Theodora Malli
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I: Medical Oncology, Hematology and Gastroenterology, Ordensklinikum Linz, Barmherzige Schwestern, Linz, Austria
| | - Maria Steinmair
- Department of Pathology, Ordensklinikum Linz, Barmherzige Schwestern, Linz, Austria
| | - Andreas L Petzer
- Department of Internal Medicine I: Medical Oncology, Hematology and Gastroenterology, Ordensklinikum Linz, Barmherzige Schwestern, Linz, Austria
| | - Holger Rumpold
- Department of Internal Medicine I: Medical Oncology, Hematology and Gastroenterology, Ordensklinikum Linz, Barmherzige Schwestern, Linz, Austria.
- Internal Medicine II: Medical Oncology, Hematology, Gastroenterology and Rheumatology, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6807, Feldkirch, Austria.
| |
Collapse
|
25
|
Kingham TP, Nguyen HCB, Zheng J, Konstantinidis IT, Sadot E, Shia J, Kuk D, Zhang S, Saltz L, D'Angelica MI, Jarnagin WR, Goodarzi H, Tavazoie SF. MicroRNA-203 predicts human survival after resection of colorectal liver metastasis. Oncotarget 2017; 8:18821-18831. [PMID: 27935861 PMCID: PMC5386650 DOI: 10.18632/oncotarget.13816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Resection of colorectal liver metastasis (CRLM) can be curative. Predicting which patients may benefit from resection, however, remains challenging. Some microRNAs (miRNAs) become deregulated in cancers and contribute to cancer progression. We hypothesized that miRNA expression can serve as a prognostic marker of survival after CRLM resection. RESULTS MiR-203 was significantly overexpressed in tumors of short-term survivors compared to long-term survivors. R1/R2 margin status and high clinical risk score (CRS) were also significantly associated with short-term survival (both p = 0.001). After adjusting for these variables, higher miR-203 expression remained an independent predictor of shorter survival (p = 0.010). In the serum cohort, high CRS and KRAS mutation were significantly associated with short-term survival (p = 0.005 and p = 0.026, respectively). After adjusting for CRS and KRAS status, short-term survivors were found to have significantly higher miR-203 levels (p = 0.016 and p = 0.033, respectively). MATERIALS AND METHODS We employed next-generation sequencing of small-RNAs to profile miRNAs in solid tumors obtained from 38 patients who underwent hepatectomy for CRLM. To validate, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was performed on 91 tumor samples and 46 preoperative serum samples. CONCLUSIONS After CRLM resection, short-term survivors exhibited significantly higher miR-203 levels relative to long-term survivors. MiR-203 may serve as a prognostic biomarker and its prognostic capacity warrants further investigation.
Collapse
Affiliation(s)
- T Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hoang C B Nguyen
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Jian Zheng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Eran Sadot
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deborah Kuk
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven Zhang
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Leonard Saltz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael I D'Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
26
|
Ye H, Hao H, Wang J, Chen R, Huang Z. miR-203 as a novel biomarker for the diagnosis and prognosis of colorectal cancer: a systematic review and meta-analysis. Onco Targets Ther 2017; 10:3685-3696. [PMID: 28769572 PMCID: PMC5533489 DOI: 10.2147/ott.s134252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We sought to systematically evaluate the diagnostic and prognostic value of miR-203 in patients with colorectal cancer. To explore the diagnostic performance of miR-203, eligible studies were identified from biomedical databases. Based on these results, 11 studies were pooled and included in this meta-analysis. The pooled sensitivity, specificity, and diagnostic odds ratios of miR-203 were 0.83 (95% confidence interval, CI: 0.78-0.86), 0.80 (95% CI: 0.77-0.83), and 19.27 (95% CI: 7.23-51.36) for the diagnosis of colorectal cancer. The area under the curve for miR-203 for diagnosing colorectal cancer was 0.89. Patients with higher expression of tissue miR-203 had poor overall survival (pooled hazard ratio: 1.63; 95% CI: 1.03-2.57, P=0.04), but serum miR-203 was not predictive (pooled hazard ratio: 1.59; 95% CI: 0.31-8.12, P=0.58). The miR-203 values of tissue and serum merged together may perhaps predict superior overall survival (pooled hazard ratio: 1.62; 95% CI: 0.93-2.82), but the effect was not significant (P=0.09).
Collapse
Affiliation(s)
- Huajun Ye
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang
| | - Haibin Hao
- Department of General Surgery, Medical College of Nanchang University, Nanchang
| | - Jincheng Wang
- Department of Medical Imaging, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Renpin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang
| | - Zhiming Huang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang
| |
Collapse
|
27
|
Liu W, Dong Z, Liang J, Guo X, Guo Y, Shen S, Kuang G, Guo W. Downregulation of Potential Tumor Suppressor miR-203a by Promoter Methylation Contributes to the Invasiveness of Gastric Cardia Adenocarcinoma. Cancer Invest 2016; 34:506-516. [PMID: 27791400 DOI: 10.1080/07357907.2016.1242010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Like many tumor suppressor genes, some miRNA genes harboring CpG islands undergo methylation-mediated silencing. In the study, we found significant downregulation and proximal promoter methylation of miR-203a and miR-203b in gastric cardia adenocarcinoma (GCA) tissues. The methylation status of miR-203a and miR-203b in tumor tissues was negatively correlated with their expression level. GCA patients in stage III and IV with reduced expression or hypermethylation of miR-203a demonstrated poor patient survival. In all, miR-203a and miR-203b may function as tumor suppressive miRNAs, and reactivation of miR-203a may have therapeutic potential and may be used as prognostic marker for GCA patients.
Collapse
Affiliation(s)
- Wei Liu
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China.,b Surgical Oncology Department , Cangzhou Central Hospital , Cangzhou , Hebei , China
| | - Zhiming Dong
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Jia Liang
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Xin Guo
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Yanli Guo
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Supeng Shen
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Gang Kuang
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Wei Guo
- a Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| |
Collapse
|
28
|
Cohen PA, Donini CF, Nguyen NT, Lincet H, Vendrell JA. The dark side of ZNF217, a key regulator of tumorigenesis with powerful biomarker value. Oncotarget 2016; 6:41566-81. [PMID: 26431164 PMCID: PMC4747174 DOI: 10.18632/oncotarget.5893] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/18/2015] [Indexed: 12/31/2022] Open
Abstract
The recently described oncogene ZNF217 belongs to a chromosomal region that is frequently amplified in human cancers. Recent findings have revealed that alternative mechanisms such as epigenetic regulation also govern the expression of the encoded ZNF217 protein. Newly discovered molecular functions of ZNF217 indicate that it orchestrates complex intracellular circuits as a new key regulator of tumorigenesis. In this review, we focus on recent research on ZNF217-driven molecular functions in human cancers, revisiting major hallmarks of cancer and highlighting the downstream molecular targets and signaling pathways of ZNF217. We also discuss the exciting translational medicine investigating ZNF217 expression levels as a new powerful biomarker, and ZNF217 as a candidate target for future anti-cancer therapies.
Collapse
Affiliation(s)
- Pascale A Cohen
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Caterina F Donini
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Nhan T Nguyen
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Julie A Vendrell
- ISPB, Faculté de Pharmacie, Lyon, France.,Université Lyon 1, Lyon, France.,INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
29
|
Li S, Hang L, Ma Y, Wu C. Distinctive microRNA expression in early stage nasopharyngeal carcinoma patients. J Cell Mol Med 2016; 20:2259-2268. [PMID: 27489139 PMCID: PMC5134390 DOI: 10.1111/jcmm.12906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/15/2016] [Indexed: 12/14/2022] Open
Abstract
The goal of this study was to investigate microRNAs (miRs) expression at different stages of nasopharyngeal carcinoma (NPC). MiR expression profiling at various stages of NPC was performed by miR array and further verified using quantitative real-time RT-PCR. Pathway enrichment analysis was carried out to identify the functional pathways regulated by the miRs. The expression of a selected group of identified miRs was verified in stage I NPC by in situ hybridization (ISH). A total of 449 miRs were identified with significantly different expressions between NPC tissues and normal pharyngeal tissues. Eighty-four miRs were dysregulated only in stage I NPC, among which 45 miRs were up-regulated and the other 39 were down-regulated. Pathway enrichment assay revleaed that three significantly down-regulated and three significantly up-regulated miRs involved in 12 pathways associating with tumour formation and progression. Quantitative RT-PCR confirmed the miR array result. In addition, the low expression levels of hsa-miR-4324, hsa-miR-203a and hsa-miR-199b-5p were further validated in stage I NPC by ISH. This present study identifed the miR signature in stage I NPC, providing the basis for early detection and treatment of NPC.
Collapse
Affiliation(s)
- Shuna Li
- Department of Otolaryngology and Head-Neck Surgery, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lihua Hang
- Department of Anesthesia, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongming Ma
- Department of Otolaryngology and Head-Neck Surgery, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chaoyang Wu
- Department of Radiation Oncology, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
30
|
Deng B, Wang B, Fang J, Zhu X, Cao Z, Lin Q, Zhou L, Sun X. MiRNA-203 suppresses cell proliferation, migration and invasion in colorectal cancer via targeting of EIF5A2. Sci Rep 2016; 6:28301. [PMID: 27376958 PMCID: PMC4931903 DOI: 10.1038/srep28301] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 06/02/2016] [Indexed: 02/07/2023] Open
Abstract
While it is known that miR-203 is frequently downregulated in many types of human cancer, little is known regarding its expression and functional role in colorectal cancer (CRC). In this study, we aimed to investigate the expression and the potential mechanisms of miR-203 in colorectal cancer. MiR-203 was significantly downregulated in CRC tissues compared with matched normal adjacent tissues. Our clinical data show that decreased miR-203 was associated with an advanced clinical tumor-node-metastasis stage, lymph node metastasis, and poor survival in CRC patients. Furthermore, externally induced expression of miR-203 significantly inhibited CRC cell proliferation and invasion in vitro and in vivo. Mechanistically, we identified EIF5A2 as a direct and functional target of miR-203. The levels of miR-203 were inversely correlated with levels of the EIF5A2 in the CRC tissues. Restoration of EIF5A2 in the miR-203-overexpressing CRC cells reversed the suppressive effects of miR-203. Our results demonstrate that miR-203 serves as a tumor suppressor gene and may be useful as a new potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Biao Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Bin Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Jiaqing Fang
- Department of Gastroenterology, Tianyou Hospital, TongJi University, 500 Zhennan Road, Shanghai, 200331, China
| | - Xuchao Zhu
- Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, TongJi University, 301 Yanchang Road, Shanghai, 200072, China
| | - Zhongwei Cao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Qi Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Xietu Road, Shanghai, 200032, China
| | - Lisheng Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| |
Collapse
|
31
|
Understanding the CREB1-miRNA feedback loop in human malignancies. Tumour Biol 2016; 37:8487-502. [PMID: 27059735 DOI: 10.1007/s13277-016-5050-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
cAMP response element binding protein 1 (CREB1, CREB) is a key transcription factor that mediates transcriptional responses to a variety of growth factors and stress signals. CREB1 has been shown to play a critical role in development and progression of tumors. MicroRNAs (miRNAs) are a class of non-coding RNAs. They post-transcriptionally regulate gene expression through pairing with the 3'-UTR of their target mRNAs and thus regulate initiation and progression of various types of human cancers. Recent studies have demonstrated that a number of miRNAs can be transcriptionally regulated by CREB1. Interestingly, CREB1 expression can also be modulated by miRNAs, thus forming a feedback loop. This review outlines the functional roles of CREB1, miRNA, and their interactions in human malignancies. This will help to define a relationship between CREB1 and miRNA in human cancer and develop novel therapeutic strategies.
Collapse
|
32
|
MicroRNA-203 Is a Prognostic Indicator in Bladder Cancer and Enhances Chemosensitivity to Cisplatin via Apoptosis by Targeting Bcl-w and Survivin. PLoS One 2015; 10:e0143441. [PMID: 26599571 PMCID: PMC4657877 DOI: 10.1371/journal.pone.0143441] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
Resistance to cisplatin-based chemotherapy is a major cause of treatment failure in advanced bladder cancer (BC) patients. There is increasing evidence that microRNAs are involved in the development and progression of BC. However, little is known about the function of microRNAs in predicting the effect of adjuvant chemotherapy on BC survival and regulating response to cisplatin. To address this issue, we employed RT-qPCR to evaluate the clinical significance of miR-203 expression in 108 tissues of BC patients receiving cisplatin-based adjuvant chemotherapy, and performed in vitro studies to explore chemotherapeutic sensitivity to cisplatin in miR-203 overexpressing BC cells. We found miR-203 levels were significantly lower in BC progression group than non-progression group (P<0.001). ROC curve analysis illustrated miR-203 could significantly distinguish progressed patients from those without progression (P<0.001), yielding an area under the ROC curve of 0.839 (95% CI, 0.756-0.903). Moreover, low miR-203 expression correlated with shortened progression free survival (PFS) and overall survival (OS) of BC patients, and was an independent prognostic factor. Overexpression of miR-203 in 5637 and T24 BC cells could decrease cell viability, enhance cisplatin cytotoxicity, and promote apoptosis. Western blotting and luciferase reporter assay showed Bcl-w and Survivin were direct downstream targets of miR-203. There was also a significant inverse association between miR-203 and Bcl-w or Survivin expression in BC tissues (r = -0.781, -0.740, both P<0.001). In conclusion, decreased miR-203 predicts progression and poor prognosis for BC patients treated with cisplatin-based chemotherapy while miR-203 overexpression can enhance cisplatin sensitization by promoting apoptosis via directly targeting Bcl-w and Survivin.
Collapse
|
33
|
Methylation-mediated repression of potential tumor suppressor miR-203a and miR-203b contributes to esophageal squamous cell carcinoma development. Tumour Biol 2015; 37:5621-32. [PMID: 26577858 DOI: 10.1007/s13277-015-4432-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022] Open
Abstract
MiRNAs regulate gene expression and play pivotal roles in biological processes. MiRNAs can be inactivated by epigenetic mechanisms, such as DNA hypermethylation of CpG sites within CpG islands. Here, we investigated the role and methylation status of miR-203a and miR-203b in esophageal cancer cell lines and primary esophageal squamous cell carcinoma (ESCC) tumors and further elucidate the role of both miRNAs in the prognosis of ESCC. The present study revealed a strong downregulation of miR-203a and miR-203b in esophageal cancer cell lines and primary ESCC samples. Treatment of esophageal cancer cells with demethylating agent 5-Aza-dC led to increased miR-203a and miR-203b expression, confirming the epigenetic regulation of both miRNAs. The inhibition of proliferation and invasiveness in esophageal cancer cells after treated with 5-Aza-dC or transfected with miR-203a or miR-203b mimics, suggesting the tumor suppressor role of both miRNAs in esophageal cancer. Furthermore, the critical CpG sites of miR-203a and miR-203b were found to be located in proximal promoter region, and the proximal promoter hypermethylation of both miRNAs was found to influence transcriptional activity. Downregulation and hypermethylation of miR-203a and miR-203b were associated with TNM stage, pathological differentiation, and lymph node metastasis. ESCC patients in stages III and IV, with reduced expression of miR-203a or hypermethylation of miR-203a or miR-203b, demonstrated poor patient survival. In summary, our results suggest that miR-203a and miR-203b may function as tumor-suppressive miRNAs that are inactivated through proximal promoter hypermethylation and miR-203a expression and methylation may be useful prognostic marker in ESCC patients.
Collapse
|
34
|
miR-203 Acts as a Tumor Suppressor Gene in Osteosarcoma by Regulating RAB22A. PLoS One 2015; 10:e0132225. [PMID: 26382657 PMCID: PMC4575138 DOI: 10.1371/journal.pone.0132225] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/11/2015] [Indexed: 12/25/2022] Open
Abstract
microRNAs (miRNAs), small noncoding RNAs of 19–25 nt, play an important roles in the pathological processes of tumorigenesis. The object of this study was to study the expression and function of miR-203 and to found its target gene in osteosarcoma. In our study, we found the expression level of miR-203 was significantly downregulated in osteosarcoma cell lines and tissues. In addition, overexpression of miR-203 inhibited the osteosarcoma cell proliferation and migration and inhibited Mesenchymal-to-Epithelial reversion Transition (MErT). Moreover, we identified RAB22A as a direct target of miR-203 and RAB22A overexpression blocks the roles of miR-203 in osteosarcoma cell. Furthermore, we demonstrated that RAB22A expression was upregulated in human osteosarcoma cell lines and tissues. Take together, our results demonstrated that miR-203 act as a tumor suppressor miRNA through regulating RAB22A expression and suggested its involvement in osteosarcoma progression and carcinogenesis.
Collapse
|