1
|
Bosbach C, Gatzemeier LM, Bloch von Blottnitz KI, König A, Diederichsen U, Steinem C, Outeiro TF. Chemical synthesis of site-selective advanced glycation end products in α-synuclein and its fragments. Org Biomol Chem 2024; 22:2670-2676. [PMID: 38483440 DOI: 10.1039/d4ob00225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Advanced glycation end products (AGEs) arise from the Maillard reaction between dicarbonyls and proteins, nucleic acids, or specific lipids. Notably, AGEs are linked to aging and implicated in various disorders, spanning from cancer to neurodegenerative diseases. While dicarbonyls like methylglyoxal preferentially target arginine residues, lysine-derived AGEs, such as N(6)-(1-carboxymethyl)lysine (CML) and N(6)-(1-carboxyethyl)lysine (CEL), are also abundant. Predicting protein glycation in vivo proves challenging due to the intricate nature of glycation reactions. In vitro, glycation is difficult to control, especially in proteins that harbor multiple glycation-prone amino acids. α-Synuclein (aSyn), pivotal in Parkinson's disease and synucleinopathies, has 15 lysine residues and is known to become glycated at multiple lysine sites. To understand the influence of glycation in specific regions of aSyn on its behavior, a strategy for site-specific glycated protein production is imperative. To fulfill this demand, we devised a synthetic route integrating solid-phase peptide synthesis, orthogonal protection of amino acid side-chain functionalities, and reductive amination strategies. This methodology yielded two disease-related N-terminal peptide fragments, each featuring five and six CML and CEL modifications, alongside a full-length aSyn protein containing a site-selective E46CEL modification. Our synthetic approach facilitates the broad introduction of glycation motifs at specific sites, providing a foundation for generating glycated forms of synucleinopathy-related and other disease-relevant proteins.
Collapse
Affiliation(s)
- Clara Bosbach
- Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | - Luisa Maria Gatzemeier
- Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | - Katja Ilme Bloch von Blottnitz
- Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Kim M, Son J, Kim Y. NMR Studies of the Ion Channel-Forming Human Amyloid-β with Zinc Ion Concentrations. MEMBRANES 2021; 11:membranes11110799. [PMID: 34832029 PMCID: PMC8620595 DOI: 10.3390/membranes11110799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer’s disease (AD) is classified as an amyloid-related disease. Amyloid beta (Aβ) is a transmembrane protein known to play a major role in the pathogenesis of AD. These Aβ proteins can form ion channels or pores in the cell membrane. Studies have elucidated the structure of the transmembrane domain of Aβ ion channels. In addition, various studies have investigated substances that block or inhibit the formation of Aβ ion channels. Zinc ions are considered as potential inhibitors of AD. In this study, we focused on the transmembrane domain and some external domains of the Aβ protein (hAPP-TM), and solution-state NMR was used to confirm the effect on residues of the protein in the presence of zinc ions. In addition, we sought to confirm the structure and orientation of the protein in the presence of the bicelle using solid-state NMR.
Collapse
Affiliation(s)
| | | | - Yongae Kim
- Correspondence: ; Tel.: +82-31-330-4604; Fax: +82-31-330-4566
| |
Collapse
|
3
|
Klatt S, Roberts A, Lothian A, Masters CL, Cappai R, Fowler C, Roberts BR. Optimizing red blood cell protein extraction for biomarker quantitation with mass spectrometry. Anal Bioanal Chem 2020; 412:1879-1892. [PMID: 32030493 DOI: 10.1007/s00216-020-02439-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
Red blood cells (RBC) are the most common cell type found in blood. They might serve as reservoir for biomarker research as they are anuclear and lack the ability to synthesize proteins. Not many biomarker assays, however, have been conducted on RBC because of their large dynamic range of proteins, high abundance of lipids, and hemoglobin interferences. Here, we developed a semiquantitative mass spectrometry-based assay that targeted 144 proteins and compared the efficiency of urea, sodium deoxycholate, acetonitrile, and HemoVoid™ in their extraction of the RBC proteome. Our results indicate that protein extraction with HemoVoid™ led to hemoglobin reduction and increased detection of low abundance proteins. Although hemoglobin interference after deoxycholate and urea extraction was high, there were adequate amounts of low abundance proteins for quantitation. Extraction with acetonitrile led to an overall decrease in protein abundances probably as a result of precipitation. Overall, the best compromise in sensitivity and sample processing time was achieved with the urea-trypsin digestion protocol. This provided the basis for large-scale evaluations of protein targets as potential blood-based biomarkers. As a proof of concept, we applied this assay to determine that alpha-synuclein, a prominent marker in Parkinson's disease, has an average concentration of approximately 40 μg mL-1 in RBC. This is important to know as the concentration of alpha-synuclein in plasma, typically in the picogram per milliliter range, might be partially derived from lysed RBC. Utilization of this assay will prove useful for future biomarker studies and provide a more complete analytical toolbox for the measurement of blood-derived proteins. Graphical abstract.
Collapse
Affiliation(s)
- Stephan Klatt
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,Cooperative Research Centre for Mental Health, Parkville, Victoria, 3052, Australia
| | - Anne Roberts
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,Cooperative Research Centre for Mental Health, Parkville, Victoria, 3052, Australia
| | - Amber Lothian
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,Cooperative Research Centre for Mental Health, Parkville, Victoria, 3052, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,Cooperative Research Centre for Mental Health, Parkville, Victoria, 3052, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,Cooperative Research Centre for Mental Health, Parkville, Victoria, 3052, Australia
| | - Blaine R Roberts
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia. .,Cooperative Research Centre for Mental Health, Parkville, Victoria, 3052, Australia. .,Department of Biochemistry, Department of Neurology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Zamoon J, Madhu D, Ahmed I. Dynamic oligomerization of hRAGE's transmembrane and cytoplasmic domains within SDS micelles. Int J Biol Macromol 2019; 130:10-18. [PMID: 30794903 DOI: 10.1016/j.ijbiomac.2019.02.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023]
Abstract
The human Receptor for Advanced Glycation End Products (hRAGE) is a pattern recognition receptor implicated in inflammation and adhesion. It is involved in both innate and adaptive immunity. Its aberrant signaling is tied to the pathogenesis of diabetic complications, neurodegenerative disorders, and chronic inflammatory responses. Previous structural studies have focused on its extracellular domains with their canonical constant and variable Ig folds, and to a much lesser extent, the intrinsically disorder cytoplasmic domain. No experimental data are reported on the transmembrane domain, which is integral to signaling. We have constructed, expressed and purified the transmembrane domain attached to the cytoplasmic domain of hRAGE in E. coli. Multiple self-associated forms of these domains were observed in vitro. This pattern of mixed oligomers resembled previously reported in vivo forms of the complete receptor. The self-association of these two domains was further characterized using: SDS-PAGE, intrinsic tryptophan fluorescence and heteronuclear NMR spectroscopy. NMR conditions were assessed across time and temperature within micelles. Our data show that the transmembrane and cytoplasmic domains of hRAGE undergo dynamic oligomerizations that can occur in the absence of its extracellular domains or ligand binding. And, such associations are only partially disrupted even with prolonged incubation in strong detergents.
Collapse
Affiliation(s)
- Jamillah Zamoon
- Department of Biological Sciences (Biochemistry Program), Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Kuwait.
| | - Dhanya Madhu
- Department of Biological Sciences (Biochemistry Program), Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Kuwait
| | - Ikhlas Ahmed
- Department of Biological Sciences (Biochemistry Program), Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Kuwait
| |
Collapse
|
5
|
Ganguly U, Ganguly A, Sen O, Ganguly G, Cappai R, Sahoo A, Chakrabarti S. Dopamine Cytotoxicity on SH-SY5Y Cells: Involvement of α-Synuclein and Relevance in the Neurodegeneration of Sporadic Parkinson’s Disease. Neurotox Res 2019; 35:898-907. [DOI: 10.1007/s12640-019-0001-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
6
|
Schuman B, Won A, Brand-Arzamendi K, Koprich JB, Wen XY, Howson PA, Brotchie JM, Yip CM. Non-steric-zipper models for pathogenic α-synuclein conformers. APL Bioeng 2018; 2:026105. [PMID: 31069302 PMCID: PMC6481714 DOI: 10.1063/1.5023460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/17/2018] [Indexed: 11/14/2022] Open
Abstract
Parkinson's disease neurodegenerative brain tissue exhibits two biophysically distinct α-synuclein fiber isoforms—single stranded fibers that appear to be steric-zippers and double-stranded fibers with an undetermined structure. Herein, we describe a β-helical homology model of α-synuclein that exhibits stability in probabilistic and Monte Carlo simulations as a candidate for stable prional dimer conformers in equilibrium with double-stranded fibers and cytotoxic pore assemblies. Molecular models of β-helical pore assemblies are consistent with α-synucleinA53T transfected rat immunofluorescence epitope maps. Atomic force microscopy reveals that α-synuclein peptides aggregate into anisotropic fibrils lacking the density or circumference of a steric-zipper. Moreover, fibrillation was blocked by mutations designed to hinder β-helical but not steric-zipper conformations. β-helical species provide a structural basis for previously described biophysical properties that are incompatible with a steric-zipper, provide pathogenic mechanisms for familial human α-synuclein mutations, and offer a direct cytotoxic target for therapeutic development.
Collapse
Affiliation(s)
- Brock Schuman
- St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Amy Won
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | - James B. Koprich
- Krembil Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Xiao-Yan Wen
- St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Patrick A. Howson
- Krembil Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Jonathan M. Brotchie
- Krembil Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Christopher M. Yip
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
7
|
Sierecki E, Giles N, Bowden Q, Polinkovsky ME, Steinbeck J, Arrioti N, Rahman D, Bhumkar A, Nicovich PR, Ross I, Parton RG, Böcking T, Gambin Y. Nanomolar oligomerization and selective co-aggregation of α-synuclein pathogenic mutants revealed by single-molecule fluorescence. Sci Rep 2016; 6:37630. [PMID: 27892477 PMCID: PMC5385372 DOI: 10.1038/srep37630] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/28/2016] [Indexed: 02/08/2023] Open
Abstract
Protein aggregation is a hallmark of many neurodegenerative diseases, notably Alzheimer's and Parkinson's disease. Parkinson's disease is characterized by the presence of Lewy bodies, abnormal aggregates mainly composed of α-synuclein. Moreover, cases of familial Parkinson's disease have been linked to mutations in α-synuclein. In this study, we compared the behavior of wild-type (WT) α-synuclein and five of its pathological mutants (A30P, E46K, H50Q, G51D and A53T). To this end, single-molecule fluorescence detection was coupled to cell-free protein expression to measure precisely the oligomerization of proteins without purification, denaturation or labelling steps. In these conditions, we could detect the formation of oligomeric and pre-fibrillar species at very short time scale and low micromolar concentrations. The pathogenic mutants surprisingly segregated into two classes: one group forming large aggregates and fibrils while the other tending to form mostly oligomers. Strikingly, co-expression experiments reveal that members from the different groups do not generally interact with each other, both at the fibril and monomer levels. Together, this data paints a completely different picture of α-synuclein aggregation, with two possible pathways leading to the development of fibrils.
Collapse
Affiliation(s)
- Emma Sierecki
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Nichole Giles
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Quill Bowden
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Mark E. Polinkovsky
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Janina Steinbeck
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Nicholas Arrioti
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Diya Rahman
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Philip R. Nicovich
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Ian Ross
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| |
Collapse
|
8
|
Siddiqui IJ, Pervaiz N, Abbasi AA. The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. Sci Rep 2016; 6:24475. [PMID: 27080380 PMCID: PMC4832246 DOI: 10.1038/srep24475] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/30/2016] [Indexed: 01/01/2023] Open
Abstract
After Alzheimer, Parkinson's disease (PD) is the second most common neurodegenerative disorder. Alpha synuclein (SNCA) is deemed as a major component of Lewy bodies, a neuropathological feature of PD. Five point mutations in SNCA have been reported so far, responsible for autosomal dominant PD. This study aims to decipher evolutionary and structural insights of SNCA by revealing its sequence and structural evolutionary patterns among sarcopterygians and its paralogous counterparts (SNCB and SNCG). Rate analysis detected strong purifying selection on entire synuclein family. Structural dynamics divulges that during the course of sarcopterygian evolutionary history, the region encompassed 32 to 58 of N-terminal domain of SNCA has acquired its critical functional significance through the epistatic influence of the lineage specific substitutions. In sum, these findings provide an evidence that the region from 32 to 58 of N-terminal lipid binding alpha helix domain of SNCA is the most critical region, not only from the evolutionary perspective but also for the stability and the proper conformation of the protein as well as crucial for the disease pathogenesis, harboring critical interaction sites.
Collapse
Affiliation(s)
- Irum Javaid Siddiqui
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nashaiman Pervaiz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
9
|
Breydo L, Newland B, Zhang H, Rosser A, Werner C, Uversky VN, Wang W. A hyperbranched dopamine-containing PEG-based polymer for the inhibition of α-synuclein fibrillation. Biochem Biophys Res Commun 2016; 469:830-5. [PMID: 26707645 PMCID: PMC4727786 DOI: 10.1016/j.bbrc.2015.12.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
Abstract
Aggregation of α-synuclein is believed to play an important role in Parkinson's disease and in other neurodegenerative maladies. Small molecule inhibitors of this process are among the most promising drug candidates for neurodegenerative diseases. Dendrimers have also been studied for anti-fibrillation applications but they can be difficult and expensive to synthetize. Here we show that RAFT polymerization can be used to produce a hyperbranched polyethylene glycol structure via a one-pot reaction. This polymer included a dopamine moiety, a known inhibitor of α-synuclein fibril formation. Dopamine within the polymer structure was capable of aggregation inhibition, although not to the same degree as free dopamine. This result opens up new avenues for the use of controlled radical polymerizations as a means of preparing hyperbranched polymers for anti-fibrillation activity, but shows that the incorporation of functional groups from known small molecules within polymers may alter their biological activity.
Collapse
Affiliation(s)
- Leonid Breydo
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 33612 Tampa, FL, USA.
| | - Ben Newland
- Leibniz-Institute für Polymerforschung, Dresden, Germany; Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Hong Zhang
- The Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Anne Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Carsten Werner
- Leibniz-Institute für Polymerforschung, Dresden, Germany
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 33612 Tampa, FL, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, PO Box 80203, 21589 Jeddah, Saudi Arabia
| | - Wenxin Wang
- The Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; School of Materials Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
McDowall JS, Brown DR. Alpha-synuclein: relating metals to structure, function and inhibition. Metallomics 2016; 8:385-97. [DOI: 10.1039/c6mt00026f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|