1
|
Depaermentier ML, Krause-Kyora B, Hajdas I, Kempf M, Kuhn T, Spichtig N, Schwarz PA, Gerling C. Bioarchaeological analyses reveal long-lasting continuity at the periphery of the Late Antique Roman Empire. iScience 2023; 26:107034. [PMID: 37360687 PMCID: PMC10285633 DOI: 10.1016/j.isci.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The Basel-Waisenhaus burial community (Switzerland) has been traditionally interpreted as immigrated Alamans because of the location and dating of the burial ground - despite the typical late Roman funeral practices. To evaluate this hypothesis, multi-isotope and aDNA analyses were conducted on the eleven individuals buried there. The results show that the burial ground was occupied around AD 400 by people belonging largely to one family, whereas isotope and genetic records most probably point toward a regionally organized and indigenous, instead of an immigrated, community. This strengthens the recently advanced assumption that the withdrawal of the Upper Germanic-Rhaetian limes after the "Crisis of the Third Century AD" was not necessarily related to a replacement of the local population by immigrated Alamannic peoples, suggesting a long-lasting continuity of occupation at the Roman periphery at the Upper and High Rhine region.
Collapse
Affiliation(s)
- Margaux L.C. Depaermentier
- Department of Ancient Civilizations, Prehistoric and Early Historic and Provincial Roman Archaeology, Vindonissa Professorship, University of Basel, Petersgraben 51, 4051 Basel, Switzerland
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Irka Hajdas
- Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5 HPK H31, 8093 Zurich, Switzerland
| | - Michael Kempf
- Department of Geography, Physical Geography, Landscape Ecology and Geoinformation, Kiel University, Ludewig-Meyn-Str. 8, 24098 Kiel, Germany
| | - Thomas Kuhn
- Aquatic and Isotope Biogeochemistry, Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Norbert Spichtig
- Archäologische Bodenforschung Basel-Stadt, Petersgraben 11, 4001 Basel, Switzerland
| | - Peter-Andrew Schwarz
- Department of Ancient Civilizations, Prehistoric and Early Historic and Provincial Roman Archaeology, Vindonissa Professorship, University of Basel, Petersgraben 51, 4051 Basel, Switzerland
| | - Claudia Gerling
- Department of Ancient Civilizations, Prehistoric and Early Historic and Provincial Roman Archaeology, Vindonissa Professorship, University of Basel, Petersgraben 51, 4051 Basel, Switzerland
- Integrative Prehistory and Archaeological Science, Department of Environmental Sciences, University of Basel, Spalenring 145, 4055 Basel, Switzerland
| |
Collapse
|
2
|
Cardinali I, Tancredi D, Lancioni H. The Revolution of Animal Genomics in Forensic Sciences. Int J Mol Sci 2023; 24:ijms24108821. [PMID: 37240167 DOI: 10.3390/ijms24108821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nowadays, the coexistence between humans and domestic animals (especially dogs and cats) has become a common scenario of daily life. Consequently, during a forensic investigation in civil or criminal cases, the biological material from a domestic animal could be considered "evidence" by law enforcement agencies. Animal genomics offers an important contribution in attacks and episodes of property destruction or in a crime scene where the non-human biological material is linked to the victim or perpetrator. However, only a few animal genetics laboratories in the world are able to carry out a valid forensic analysis, adhering to standards and guidelines that ensure the admissibility of data before a court of law. Today, forensic sciences focus on animal genetics considering all domestic species through the analysis of STRs (short tandem repeats) and autosomal and mitochondrial DNA SNPs (single nucleotide polymorphisms). However, the application of these molecular markers to wildlife seems to have gradually gained a strong relevance, aiming to tackle illegal traffic, avoid the loss of biodiversity, and protect endangered species. The development of third-generation sequencing technologies has glimmered new possibilities by bringing "the laboratory into the field", with a reduction of both the enormous cost management of samples and the degradation of the biological material.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Domenico Tancredi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
3
|
Helena's Many Daughters: More Mitogenome Diversity behind the Most Common West Eurasian mtDNA Control Region Haplotype in an Extended Italian Population Sample. Int J Mol Sci 2022; 23:ijms23126725. [PMID: 35743173 PMCID: PMC9223851 DOI: 10.3390/ijms23126725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
The high number of matching haplotypes of the most common mitochondrial (mt)DNA lineages are considered to be the greatest limitation for forensic applications. This study investigates the potential to solve this constraint by massively parallel sequencing a large number of mitogenomes that share the most common West Eurasian mtDNA control region (CR) haplotype motif (263G 315.1C 16519C). We augmented a pilot study on 29 to a total of 216 Italian mitogenomes that represents the largest set of the most common CR haplotype compiled from a single country. The extended population sample confirmed and extended the huge coding region diversity behind the most common CR motif. Complete mitogenome sequencing allowed for the detection of 163 distinct haplotypes, raising the power of discrimination from 0 (CR) to 99.6% (mitogenome). The mtDNAs were clustered into 61 named clades of haplogroup H and did not reveal phylogeographic trends within Italy. Rapid individualization approaches for investigative purposes are limited to the most frequent H clades of the dataset, viz. H1, H3, and H7.
Collapse
|
4
|
Maternal Lineages of Gepids from Transylvania. Genes (Basel) 2022; 13:genes13040563. [PMID: 35456371 PMCID: PMC9032604 DOI: 10.3390/genes13040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
According to the written historical sources, the Gepids were a Germanic tribe that settled in the Carpathian Basin during the Migration Period. They were allies of the Huns, and an independent Gepid Kingdom arose after the collapse of the Hun Empire. In this period, the Carpathian Basin was characterized by so-called row-grave cemeteries. Due to the scarcity of historical and archaeological data, we have a poor knowledge of the origin and composition of these barbarian populations, and this is still a subject of debate. To better understand the genetic legacy of migration period societies, we obtained 46 full mitogenome sequences from three Gepid cemeteries located in Transylvania, Romania. The studied samples represent the Classical Gepidic period and illustrate the genetic make-up of this group from the late 5th and early 6th centuries AD, which is characterized by cultural markers associated with the Gepid culture in Transylvania. The genetic structure of the Gepid people is explored for the first time, providing new insights into the genetic makeup of this archaic group. The retrieved genetic data showed mainly the presence of Northwestern European mitochondrial ancient lineages in the Gepid group and all population genetic analyses reiterated the same genetic structure, showing that early ancient mitogenomes from Europe were the major contributors to the Gepid maternal genetic pool.
Collapse
|
5
|
Smetana J, Brož P. National Genome Initiatives in Europe and the United Kingdom in the Era of Whole-Genome Sequencing: A Comprehensive Review. Genes (Basel) 2022; 13:556. [PMID: 35328109 PMCID: PMC8953625 DOI: 10.3390/genes13030556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Identification of genomic variability in population plays an important role in the clinical diagnostics of human genetic diseases. Thanks to rapid technological development in the field of massive parallel sequencing technologies, also known as next-generation sequencing (NGS), complex genomic analyses are now easier and cheaper than ever before, which consequently leads to more effective utilization of these techniques in clinical practice. However, interpretation of data from NGS is still challenging due to several issues caused by natural variability of DNA sequences in human populations. Therefore, development and realization of projects focused on description of genetic variability of local population (often called "national or digital genome") with a NGS technique is one of the best approaches to address this problem. The next step of the process is to share such data via publicly available databases. Such databases are important for the interpretation of variants with unknown significance or (likely) pathogenic variants in rare diseases or cancer or generally for identification of pathological variants in a patient's genome. In this paper, we have compiled an overview of published results of local genome sequencing projects from United Kingdom and Europe together with future plans and perspectives for newly announced ones.
Collapse
Affiliation(s)
- Jan Smetana
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Petr Brož
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| |
Collapse
|
6
|
Mitochondrial DNA Profiles of Individuals from a 12th Century Necropolis in Feldioara (Transylvania). Genes (Basel) 2021; 12:genes12030436. [PMID: 33808521 PMCID: PMC8003334 DOI: 10.3390/genes12030436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
The genetic signature of modern Europeans is the cumulated result of millennia of discrete small-scale exchanges between multiple distinct population groups that performed a repeated cycle of movement, settlement, and interactions with each other. In this study we aimed to highlight one such minute genetic cycle in a sea of genetic interactions by reconstructing part of the genetic story of the migration, settlement, interaction, and legacy of what is today the Transylvanian Saxon. The analysis of the mitochondrial DNA control region of 13 medieval individuals from Feldioara necropolis (Transylvania region, Romania) reveals a genetically heterogeneous group where all identified haplotypes are different. Most of the perceived maternal lineages are of Western Eurasian origin, except for the Central Asiatic haplogroup C seen in only one sample. Comparisons with historical and modern populations describe the contribution of the investigated Saxon settlers to the genetic history of this part of Europe.
Collapse
|
7
|
Modi A, Lancioni H, Cardinali I, Capodiferro MR, Rambaldi Migliore N, Hussein A, Strobl C, Bodner M, Schnaller L, Xavier C, Rizzi E, Bonomi Ponzi L, Vai S, Raveane A, Cavadas B, Semino O, Torroni A, Olivieri A, Lari M, Pereira L, Parson W, Caramelli D, Achilli A. The mitogenome portrait of Umbria in Central Italy as depicted by contemporary inhabitants and pre-Roman remains. Sci Rep 2020; 10:10700. [PMID: 32612271 PMCID: PMC7329865 DOI: 10.1038/s41598-020-67445-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Umbria is located in Central Italy and took the name from its ancient inhabitants, the Umbri, whose origins are still debated. Here, we investigated the mitochondrial DNA (mtDNA) variation of 545 present-day Umbrians (with 198 entire mitogenomes) and 28 pre-Roman individuals (obtaining 19 ancient mtDNAs) excavated from the necropolis of Plestia. We found a rather homogeneous distribution of western Eurasian lineages across the region, with few notable exceptions. Contemporary inhabitants of the eastern part, delimited by the Tiber River and the Apennine Mountains, manifest a peculiar mitochondrial proximity to central-eastern Europeans, mainly due to haplogroups U4 and U5a, and an overrepresentation of J (30%) similar to the pre-Roman remains, also excavated in East Umbria. Local genetic continuities are further attested to by six terminal branches (H1e1, J1c3, J2b1, U2e2a, U8b1b1 and K1a4a) shared between ancient and modern mitogenomes. Eventually, we identified multiple inputs from various population sources that likely shaped the mitochondrial gene pool of ancient Umbri over time, since early Neolithic, including gene flows with central-eastern Europe. This diachronic mtDNA portrait of Umbria fits well with the genome-wide population structure identified on the entire peninsula and with historical sources that list the Umbri among the most ancient Italic populations.
Collapse
Affiliation(s)
- Alessandra Modi
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Marco R Capodiferro
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Abir Hussein
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Lisa Schnaller
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ermanno Rizzi
- Istituto di Tecnologie Biomediche, CNR, Segrate, 20090, Milan, Italy
| | | | - Stefania Vai
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Bruno Cavadas
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal.,i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200-135, Porto, Portugal
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Martina Lari
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Luisa Pereira
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal.,i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200-135, Porto, Portugal
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, University Park, PA, 16801, USA
| | - David Caramelli
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
8
|
Poma A, Cesare P, Bonfigli A, Vecchiotti G, Colafarina S, Savini F, Redi F, Zarivi O. Analysis of ancient mtDNA from the medieval archeological site of Amiternum (L'Aquila), central Italy. Heliyon 2019; 5:e02586. [PMID: 31646208 PMCID: PMC6804371 DOI: 10.1016/j.heliyon.2019.e02586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/11/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022] Open
Abstract
Study of ancient DNA makes it possible to analyze genetic relationships between individuals and populations of past and present. In this paper we have analyzed remains of human bones, dating back to the 8th-10th century AD, from the burials found in the Cathedral of Santa Maria in Civitate, archaeological site of Amiternum, L'Aquila, Italy. As a genetic marker, the hypervariable region 1 of mitochondrial DNA (HVR1) was selected. To obtain reliable sequences from the hypervariable region 1 of mtDNA (HVR1) were performed: multiple extractions, template quantification and cloning of PCR products. The sequences obtained were compared with Anderson's sequence for the identification of polymorphisms (SNP) and haplogroups. The data obtained were analyzed with various software and phylogenetic methods. For the comparison between populations, ancient and modern sequences found in databases and literature have been used. This work provides preliminary information on the correlation between the population of Amiternum, the migrant populations transited and/or established in the territory of Amiternum such as Byzantines, Longobards (Lombards), which dominated the Italian peninsula between 568 and 774 AD, and the current populations of Italy. The study of haplogroups, the analysis of genetic variability and phylogenesis studies on the sequences considered show a genetic closeness between the individuals of Amiternum, the current population of central-northern Italy and the Germanic tribe of Longobards, however, also highlights genetic traits of Byzantines in some samples of Amiternum. Using the analysis of amelogenin gene fragments, we successfully determined the sex of the bone remains on all samples.
Collapse
Affiliation(s)
- Anna Poma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Corresponding author.
| | - Patrizia Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Bonfigli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giulia Vecchiotti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Savini
- Department of Human Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fabio Redi
- Department of Human Sciences, University of L'Aquila, L'Aquila, Italy
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
9
|
Vai S, Brunelli A, Modi A, Tassi F, Vergata C, Pilli E, Lari M, Susca RR, Giostra C, Baricco LP, Bedini E, Koncz I, Vida T, Mende BG, Winger D, Loskotová Z, Veeramah K, Geary P, Barbujani G, Caramelli D, Ghirotto S. A genetic perspective on Longobard-Era migrations. Eur J Hum Genet 2019; 27:647-656. [PMID: 30651584 DOI: 10.1038/s41431-018-0319-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022] Open
Abstract
From the first century AD, Europe has been interested by population movements, commonly known as Barbarian migrations. Among these processes, the one involving the Longobard culture interested a vast region, but its dynamics and demographic impact remains largely unknown. Here we report 87 new complete mitochondrial sequences coming from nine early-medieval cemeteries located along the area interested by the Longobard migration (Czech Republic, Hungary and Italy). From the same areas, we sampled necropoleis characterized by cultural markers associated with the Longobard culture (LC) and coeval burials where no such markers were found, or with a chronology slightly preceding the presumed arrival of the Longobards in that region (NLC). Population genetics analysis and demographic modeling highlighted a similarity between LC individuals, as reflected by the sharing of quite rare haplogroups and by the degree of genetic resemblance between Hungarian and Italian LC necropoleis estimated via a Bayesian approach, ABC. The demographic model receiving the strongest statistical support also postulates a contact between LC and NLC communities, thus indicating a complex dynamics of admixture in medieval Europe.
Collapse
Affiliation(s)
- Stefania Vai
- Dipartimento di Biologia, Università di Firenze, 50122, Florence, Italy
| | - Andrea Brunelli
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121, Ferrara, Italy.,Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Alessandra Modi
- Dipartimento di Biologia, Università di Firenze, 50122, Florence, Italy
| | - Francesca Tassi
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121, Ferrara, Italy
| | - Chiara Vergata
- Dipartimento di Biologia, Università di Firenze, 50122, Florence, Italy
| | - Elena Pilli
- Dipartimento di Biologia, Università di Firenze, 50122, Florence, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università di Firenze, 50122, Florence, Italy
| | - Roberta Rosa Susca
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121, Ferrara, Italy
| | - Caterina Giostra
- Dipartimento di Storia, Archeologia e Storia dell'arte, Università Cattolica del Sacro Cuore, 20123, Milano, Italy
| | | | - Elena Bedini
- Dipartimento di Storia, Archeologia e Storia dell'arte, Università Cattolica del Sacro Cuore, 20123, Milano, Italy
| | - István Koncz
- Institute of Archaeological Sciences, Eötvös Loránd University, Múzeum körút 4/B, Budapest, 1088, Hungary
| | - Tivadar Vida
- Institute of Archaeological Sciences, Eötvös Loránd University, Múzeum körút 4/B, Budapest, 1088, Hungary.,Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Gusztáv Mende
- Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest, Hungary
| | - Daniel Winger
- Heinrich Schliemann Institut für Altertumswissenschaften Universität Rostock, Rostock, 18055, Germany
| | - Zuzana Loskotová
- Institute of Archaeology of the Czech Academy of Sciences, Brno, Czechia
| | - Krishna Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Patrick Geary
- School of Historical Studies, Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - Guido Barbujani
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121, Ferrara, Italy
| | - David Caramelli
- Dipartimento di Biologia, Università di Firenze, 50122, Florence, Italy.
| | - Silvia Ghirotto
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
10
|
Leonardi M, Sandionigi A, Conzato A, Vai S, Lari M, Tassi F, Ghirotto S, Caramelli D, Barbujani G. The female ancestor's tale: Long-term matrilineal continuity in a nonisolated region of Tuscany. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:497-506. [PMID: 30187463 DOI: 10.1002/ajpa.23679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/14/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES With the advent of ancient DNA analyses, it has been possible to disentangle the contribution of ancient populations to the genetic pool of the modern inhabitants of many regions. Reconstructing the maternal ancestry has often highlighted genetic continuity over several millennia, but almost always in isolated areas. Here we analyze North-western Tuscany, a region that was a corridor of exchanges between Central Italy and the Western Mediterranean coast. MATERIALS AND METHODS We newly obtained mitochondrial HVRI sequences from 28 individuals, and after gathering published data, we collected genetic information for 119 individuals from the region. Those span five periods during the last 5,000 years: Prehistory, Etruscan age, Roman age, Renaissance, and Present-day. We used serial coalescent simulations in an approximate Bayesian computation framework to test for continuity between the mentioned groups. RESULTS Our analyses always favor continuity over discontinuity for all groups considered, with the Etruscans being part of the genealogy. Moreover, the posterior distributions of the parameters support very small female effective population sizes. CONCLUSIONS The observed signals of long-term genetic continuity and isolation are in contrast with the history of the region, conquered several times (Etruscans, Romans, Lombards, and French). While the Etruscans appear as a local population, intermediate between the prehistoric and the other samples, we suggest that the other conquerors-arriving from far-had a consistent social or sex bias, hence only marginally affecting the maternal lineages. At the same time, our results show that long-term genealogical continuity is not necessarily linked to geographical isolation.
Collapse
Affiliation(s)
- Michela Leonardi
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Anna Sandionigi
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Annalisa Conzato
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Stefania Vai
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Martina Lari
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Francesca Tassi
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Silvia Ghirotto
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - David Caramelli
- Dipartimento di Biologia, Università di Firenze, Florence, Italy
| | - Guido Barbujani
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Serventi P, Panicucci C, Bodega R, De Fanti S, Sarno S, Fondevila Alvarez M, Brisighelli F, Trombetta B, Anagnostou P, Ferri G, Vazzana A, Delpino C, Gruppioni G, Luiselli D, Cilli E. Iron Age Italic population genetics: the Piceni from Novilara (8th-7th century BC). Ann Hum Biol 2018; 45:34-43. [PMID: 29216758 DOI: 10.1080/03014460.2017.1414876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Archaeological data provide evidence that Italy, during the Iron Age, witnessed the appearance of the first communities with well defined cultural identities. To date, only a few studies report genetic data about these populations and, in particular, the Piceni have never been analysed. AIMS To provide new data about mitochondrial DNA (mtDNA) variability of an Iron Age Italic population, to understand the contribution of the Piceni in shaping the modern Italian gene pool and to ascertain the kinship between some individuals buried in the same grave within the Novilara necropolis. SUBJECTS AND METHODS In a first set of 10 individuals from Novilara, we performed deep sequencing of the HVS-I region of the mtDNA, combined with the genotyping of 22 SNPs in the coding region and the analysis of several autosomal markers. RESULTS The results show a low nucleotide diversity for the inhabitants of Novilara and highlight a genetic affinity of this ancient population with the current inhabitants of central Italy. No family relationship was observed between the individuals analysed here. CONCLUSIONS This study provides a preliminary characterisation of the mtDNA variability of the Piceni of Novilara, as well as a kinship assessment of two peculiar burials.
Collapse
Affiliation(s)
- Patrizia Serventi
- a Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy.,b Department of Cultural Heritage , University of Bologna , Ravenna , Italy
| | - Chiara Panicucci
- b Department of Cultural Heritage , University of Bologna , Ravenna , Italy
| | - Roberta Bodega
- a Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Sara De Fanti
- a Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Stefania Sarno
- a Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Manuel Fondevila Alvarez
- c Instituto de Ciencias Forenses 'Luis Concheiro' , University of Santiago de Compostela, Santiago de Compostela , Galicia , Spain
| | - Francesca Brisighelli
- d Sezione di Medicina Legale-Istituto di Sanità Pubblica , Università Cattolica del Sacro Cuore , Roma , Italy
| | - Beniamino Trombetta
- e Department of Biology and Biotechnology 'Charles Darwin' , Sapienza University , Rome , Italy
| | - Paolo Anagnostou
- f Department of Environmental Biology , University of Rome 'La Sapienza' , Rome , Italy.,g ISItA, Istituto Italiano di Antropologia , Rome , Italy
| | - Gianmarco Ferri
- h Department of Diagnostic and Clinical Medicine and Public Health , University of Modena and Reggio Emilia , Modena , Italy
| | - Antonino Vazzana
- b Department of Cultural Heritage , University of Bologna , Ravenna , Italy
| | - Chiara Delpino
- i Superintendence of Archaeological Heritage of Marche Region , Ancona , Italy
| | - Giorgio Gruppioni
- b Department of Cultural Heritage , University of Bologna , Ravenna , Italy
| | - Donata Luiselli
- a Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Elisabetta Cilli
- b Department of Cultural Heritage , University of Bologna , Ravenna , Italy
| |
Collapse
|
12
|
A mosaic genetic structure of the human population living in the South Baltic region during the Iron Age. Sci Rep 2018; 8:2455. [PMID: 29410482 PMCID: PMC5802798 DOI: 10.1038/s41598-018-20705-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 11/24/2022] Open
Abstract
Despite the increase in our knowledge about the factors that shaped the genetic structure of the human population in Europe, the demographic processes that occurred during and after the Early Bronze Age (EBA) in Central-East Europe remain unclear. To fill the gap, we isolated and sequenced DNAs of 60 individuals from Kowalewko, a bi-ritual cemetery of the Iron Age (IA) Wielbark culture, located between the Oder and Vistula rivers (Kow-OVIA population). The collected data revealed high genetic diversity of Kow-OVIA, suggesting that it was not a small isolated population. Analyses of mtDNA haplogroup frequencies and genetic distances performed for Kow-OVIA and other ancient European populations showed that Kow-OVIA was most closely linked to the Jutland Iron Age (JIA) population. However, the relationship of both populations to the preceding Late Neolithic (LN) and EBA populations were different. We found that this phenomenon is most likely the consequence of the distinct genetic history observed for Kow-OVIA women and men. Females were related to the Early-Middle Neolithic farmers, whereas males were related to JIA and LN Bell Beakers. In general, our findings disclose the mechanisms that could underlie the formation of the local genetic substructures in the South Baltic region during the IA.
Collapse
|
13
|
Šebest L, Baldovič M, Frtús A, Bognár C, Kyselicová K, Kádasi Ľ, Beňuš R. Detection of mitochondrial haplogroups in a small avar-slavic population from the eigth-ninth century AD. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:536-553. [PMID: 29345305 DOI: 10.1002/ajpa.23380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 10/31/2017] [Accepted: 12/09/2017] [Indexed: 11/08/2022]
Abstract
OBJECTIVES In the sixth century AD, Avars came to Central Europe from middle Eurasian steppes and founded a strong Empire called the Avar Khagante (568-799/803 AD) in the Pannonian basin. During the existence of this empire, they undertook many military and pugnacious campaigns. In the seventh century, they conquered the northern territory inhabited by Slavs, who were further recruited in Avar military and were commissioned with obtaining food supplies. During almost 200 years of Avar domination, a significant influence by the Avar culture (especially on the burial rite) and assimilation with indigenous population (occurrence of "East Asian"cranial features) could be noticed in this mixed area, which is supported by achaeological and anthropologcal research. Therefore we expected higher incidence of east Eurasian haplogroups (introduced by Avars) than the frequencies detected in present-day central European populations. MATERIALS AND METHODS Mitochondrial DNA from 62 human skeletal remains excavated from the Avar-Slavic burial site Cífer-Pác (Slovakia) dated to the eighth and ninth century was analyzed by the sequencing of hypervariable region I and selected parts of coding region. Obtained haplotypes were compared with other present-day and historical populations and genetic distances were calculated using standard statistical method. RESULTS AND DISCUSSION In total, the detection of mitochondrial haplogroups was possible in 46 individuals. Our results prooved a higher frequency of east Eurasian haplogroups in our analyzed population (6.52%) than in present-day central European populations. However, it is almost three times lower than the frequency of east Eurasian haplogroups detected in other medieval Avar populations. The statistical analysis showed a greater similarity and the lowest genetic distances between the Avar-Slavic burial site Cifer-Pac and medieval European populations than the South Siberian, East and Central Asian populations. CONCLUSION Our results indicate that the transfer of Avar genetic variation through their mtDNA was rather weak in the analyzed mixed population.
Collapse
Affiliation(s)
- Lukáš Šebest
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| | - Marian Baldovič
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| | - Adam Frtús
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| | - Csaba Bognár
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| | - Klaudia Kyselicová
- Faculty of Medicine, Institute of Physiology, Comenius University, Sasinkova 2, Bratislava 813 72, Slovak Republic.,Department of Anthropology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| | - Ľudevít Kádasi
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic.,Biomedical Research Center Slovak Academy of Sciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - Radoslav Beňuš
- Department of Anthropology, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Ilkovicova 6, Bratislava 842 15, Slovak Republic
| |
Collapse
|
14
|
Solé-Morata N, Villaescusa P, García-Fernández C, Font-Porterias N, Illescas MJ, Valverde L, Tassi F, Ghirotto S, Férec C, Rouault K, Jiménez-Moreno S, Martínez-Jarreta B, Pinheiro MF, Zarrabeitia MT, Carracedo Á, de Pancorbo MM, Calafell F. Analysis of the R1b-DF27 haplogroup shows that a large fraction of Iberian Y-chromosome lineages originated recently in situ. Sci Rep 2017; 7:7341. [PMID: 28779148 PMCID: PMC5544771 DOI: 10.1038/s41598-017-07710-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/28/2017] [Indexed: 11/28/2022] Open
Abstract
Haplogroup R1b-M269 comprises most Western European Y chromosomes; of its main branches, R1b-DF27 is by far the least known, and it appears to be highly prevalent only in Iberia. We have genotyped 1072 R1b-DF27 chromosomes for six additional SNPs and 17 Y-STRs in population samples from Spain, Portugal and France in order to further characterize this lineage and, in particular, to ascertain the time and place where it originated, as well as its subsequent dynamics. We found that R1b-DF27 is present in frequencies ~40% in Iberian populations and up to 70% in Basques, but it drops quickly to 6–20% in France. Overall, the age of R1b-DF27 is estimated at ~4,200 years ago, at the transition between the Neolithic and the Bronze Age, when the Y chromosome landscape of W Europe was thoroughly remodeled. In spite of its high frequency in Basques, Y-STR internal diversity of R1b-DF27 is lower there, and results in more recent age estimates; NE Iberia is the most likely place of origin of DF27. Subhaplogroup frequencies within R1b-DF27 are geographically structured, and show domains that are reminiscent of the pre-Roman Celtic/Iberian division, or of the medieval Christian kingdoms.
Collapse
Affiliation(s)
- Neus Solé-Morata
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Carla García-Fernández
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Neus Font-Porterias
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - María José Illescas
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Laura Valverde
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesca Tassi
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Silvia Ghirotto
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Claude Férec
- Inserm, UMR 1078, Brest, France.,Laboratoire de Génétique Moléculaire, CHRU Brest, Hôpital Morvan, Brest, France.,Université de Bretagne Occidentale, Brest, France.,Etablissement Français du Sang-Bretagne, Brest, France
| | - Karen Rouault
- Inserm, UMR 1078, Brest, France.,Laboratoire de Génétique Moléculaire, CHRU Brest, Hôpital Morvan, Brest, France
| | - Susana Jiménez-Moreno
- Forensic and Legal Medicine Area, Department of Pathology and Surgery, University Miguel Hernández, Elche, Spain
| | | | - Maria Fátima Pinheiro
- Forensic Genetics Department, National Institute of Legal Medicine and Forensic Sciences, Porto, Portugal
| | | | - Ángel Carracedo
- Genomic Medicine Group, CIBERER- University of Santiago de Compostela, Galician Foundation of Genomic Medicine (SERGAS), Santiago de Compostela, Spain.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesc Calafell
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| |
Collapse
|
15
|
Cattaneo Z, Daini R, Malaspina M, Manai F, Lillo M, Fermi V, Schiavi S, Suchan B, Comincini S. Congenital prosopagnosia is associated with a genetic variation in the oxytocin receptor (OXTR) gene: An exploratory study. Neuroscience 2016; 339:162-173. [PMID: 27693815 DOI: 10.1016/j.neuroscience.2016.09.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
Abstract
Face-recognition deficits, referred to with the term prosopagnosia (i.e., face blindness), may manifest during development in the absence of any brain injury (from here the term congenital prosopagnosia, CP). It has been estimated that approximately 2.5% of the population is affected by face-processing deficits not depending on brain lesions, and varying a lot in severity. The genetic bases of this disorder are not known. In this study we tested for genetic association between single-nucleotide polymorphisms (SNPs) in the oxytocin receptor gene (OXTR) and CP in a restricted cohort of Italian participants. We found evidence of an association between the common genetic variants rs53576 and rs2254298 OXTR SNPs and prosopagnosia. This association was also found when including an additional group of German individuals classified as prosopagnosic in the analysis. Our preliminary data provide initial support for the involvement of genetic variants of OXTR in a relevant cognitive impairment, whose genetic bases are still largely unexplored.
Collapse
Affiliation(s)
- Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy.
| | - Roberta Daini
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; Milan Center for Neuroscience (NeuroMI), Milano, Italy
| | - Manuela Malaspina
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; Milan Center for Neuroscience (NeuroMI), Milano, Italy
| | - Federico Manai
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mariarita Lillo
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Valentina Fermi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Susanna Schiavi
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; Milan Center for Neuroscience (NeuroMI), Milano, Italy
| | - Boris Suchan
- Clinical Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Sergio Comincini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
16
|
Vai S, Lari M, Caramelli D. DNA Sequencing in Cultural Heritage. Top Curr Chem (Cham) 2016; 374:8. [PMID: 27572991 DOI: 10.1007/s41061-015-0009-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/31/2015] [Indexed: 12/17/2022]
Abstract
During the last three decades, DNA analysis on degraded samples revealed itself as an important research tool in anthropology, archaeozoology, molecular evolution, and population genetics. Application on topics such as determination of species origin of prehistoric and historic objects, individual identification of famous personalities, characterization of particular samples important for historical, archeological, or evolutionary reconstructions, confers to the paleogenetics an important role also for the enhancement of cultural heritage. A really fast improvement in methodologies in recent years led to a revolution that permitted recovering even complete genomes from highly degraded samples with the possibility to go back in time 400,000 years for samples from temperate regions and 700,000 years for permafrozen remains and to analyze even more recent material that has been subjected to hard biochemical treatments. Here we propose a review on the different methodological approaches used so far for the molecular analysis of degraded samples and their application on some case studies.
Collapse
Affiliation(s)
- Stefania Vai
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy.
| | - Martina Lari
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Via del Proconsolo 12, 50122, Florence, Italy
| |
Collapse
|
17
|
Csákyová V, Szécsényi-Nagy A, Csősz A, Nagy M, Fusek G, Langó P, Bauer M, Mende BG, Makovický P, Bauerová M. Maternal Genetic Composition of a Medieval Population from a Hungarian-Slavic Contact Zone in Central Europe. PLoS One 2016; 11:e0151206. [PMID: 26963389 PMCID: PMC4786151 DOI: 10.1371/journal.pone.0151206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023] Open
Abstract
The genetic composition of the medieval populations of Central Europe has been poorly investigated to date. In particular, the region of modern-day Slovakia is a blank spot in archaeogenetic research. This paper reports the study of mitochondrial DNA (mtDNA) in ancient samples from the 9th–12th centuries originating from the cemeteries discovered in Nitra-Šindolka and Čakajovce, located in western Slovakia (Central Europe). This geographical region is interesting to study because its medieval multi-ethnic population lived in the so-called contact zone of the territory of the Great Moravian and later Hungarian state formations. We described 16 different mtDNA haplotypes in 19 individuals, which belong to the most widespread European mtDNA haplogroups: H, J, T, U and R0. Using comparative statistical and population genetic analyses, we showed the differentiation of the European gene pool in the medieval period. We also demonstrated the heterogeneous genetic characteristics of the investigated population and its affinity to the populations of modern Europe.
Collapse
Affiliation(s)
- Veronika Csákyová
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia
- * E-mail:
| | - Anna Szécsényi-Nagy
- Laboratory of Archaeogenetics, Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest, Hungary
| | - Aranka Csősz
- Laboratory of Archaeogenetics, Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest, Hungary
| | - Melinda Nagy
- Department of Biology, Faculty of Education, J. Selye University in Komárno, Komárno, Slovakia
| | - Gabriel Fusek
- Institute of Archaeology, Slovak Academy of Sciences, Nitra, Slovakia
| | - Péter Langó
- Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miroslav Bauer
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia
- Research Institute for Animal Production, NAFC, Nitra, Slovakia
| | - Balázs Gusztáv Mende
- Laboratory of Archaeogenetics, Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest, Hungary
| | - Pavol Makovický
- Department of Biology, Faculty of Education, J. Selye University in Komárno, Komárno, Slovakia
| | - Mária Bauerová
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| |
Collapse
|
18
|
Ottoni C, Rasteiro R, Willet R, Claeys J, Talloen P, Van de Vijver K, Chikhi L, Poblome J, Decorte R. Comparing maternal genetic variation across two millennia reveals the demographic history of an ancient human population in southwest Turkey. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150250. [PMID: 26998313 PMCID: PMC4785964 DOI: 10.1098/rsos.150250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
More than two decades of archaeological research at the site of Sagalassos, in southwest Turkey, resulted in the study of the former urban settlement in all its features. Originally settled in late Classical/early Hellenistic times, possibly from the later fifth century BCE onwards, the city of Sagalassos and its surrounding territory saw empires come and go. The Plague of Justinian in the sixth century CE, which is considered to have caused the death of up to a third of the population in Anatolia, and an earthquake in the seventh century CE, which is attested to have devastated many monuments in the city, may have severely affected the contemporary Sagalassos community. Human occupation continued, however, and Byzantine Sagalassos was eventually abandoned around 1200 CE. In order to investigate whether these historical events resulted in demographic changes across time, we compared the mitochondrial DNA variation of two population samples from Sagalassos (Roman and Middle Byzantine) and a modern sample from the nearby town of Ağlasun. Our analyses revealed no genetic discontinuity across two millennia in the region and Bayesian coalescence-based simulations indicated that a major population decline in the area coincided with the final abandonment of Sagalassos, rather than with the Plague of Justinian or the mentioned earthquake.
Collapse
Affiliation(s)
- Claudio Ottoni
- Center for Archaeological Sciences, University of Leuven, Leuven, Belgium
- Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
- Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Belgium
| | - Rita Rasteiro
- Department of Genetics, School of History, University of Leicester, Leicester, UK
| | - Rinse Willet
- Depatment of Humanities, Institute of History, Leiden University, Leiden, The Netherlands
| | - Johan Claeys
- Sagalassos Archaeological Research Project, University of Leuven, Leuven, Belgium
| | - Peter Talloen
- Sagalassos Archaeological Research Project, University of Leuven, Leuven, Belgium
| | | | - Lounès Chikhi
- CNRS, Université Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
- Université Toulouse 3 Paul Sabatier, CNRS; UMR5174 EDB, Toulouse, France
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jeroen Poblome
- Sagalassos Archaeological Research Project, University of Leuven, Leuven, Belgium
| | - Ronny Decorte
- Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
- Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Belgium
| |
Collapse
|