1
|
Osei-Owusu H, Rondevaldova J, Houdkova M, Kudera T, Needham T, Mascellani A, Kokoska L. Evaluation of In Vitro Synergistic Effects of Tetracycline with Alkaloid-Related Compounds against Diarrhoeic Bacteria. Int J Mol Sci 2024; 25:6038. [PMID: 38892226 PMCID: PMC11173066 DOI: 10.3390/ijms25116038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Diarrhoea remains an important public health concern, particularly in developing countries, and has become difficult to treat because of antibacterial resistance. The development of synergistic antimicrobial agents appears to be a promising alternative treatment against diarrhoeic infections. In this study, the combined effect of tetracycline together with either nitroxoline, sanguinarine, or zinc pyrithione (representing various classes of plant-based compounds) was evaluated in vitro against selected diarrhoeic bacteria (Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Shigella flexneri, Vibrio parahaemolyticus, and Yersinia enterocolitica). The chequerboard method in 96-well microtiter plates was used to determine the sum of the fractional inhibitory concentration indices (FICIs). Three independent experiments were performed per combination, each in triplicate. It was observed that the combination of tetracycline with either nitroxoline, sanguinarine, or zinc pyrithione produced synergistic effects against most of the pathogenic bacteria tested, with FICI values ranging from 0.086 to 0.5. Tetracycline-nitroxoline combinations produced the greatest synergistic action against S. flexneri at a FICI value of 0.086. The combinations of the agents tested in this study can thus be used for the development of new anti-diarrhoeic medications. However, studies focusing on their in vivo anti-diarrhoeic activity and safety are required before any consideration for utilization in human medicine.
Collapse
Affiliation(s)
- Hayford Osei-Owusu
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic; (H.O.-O.); (J.R.); (M.H.); (T.K.)
| | - Johana Rondevaldova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic; (H.O.-O.); (J.R.); (M.H.); (T.K.)
| | - Marketa Houdkova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic; (H.O.-O.); (J.R.); (M.H.); (T.K.)
| | - Tomas Kudera
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic; (H.O.-O.); (J.R.); (M.H.); (T.K.)
| | - Tersia Needham
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic;
| | - Anna Mascellani
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic;
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic; (H.O.-O.); (J.R.); (M.H.); (T.K.)
| |
Collapse
|
2
|
Sarkar A, Novohradsky V, Maji M, Babu T, Markova L, Kostrhunova H, Kasparkova J, Gandin V, Brabec V, Gibson D. Multitargeting Prodrugs that Release Oxaliplatin, Doxorubicin and Gemcitabine are Potent Inhibitors of Tumor Growth and Effective Inducers of Immunogenic Cell Death. Angew Chem Int Ed Engl 2023; 62:e202310774. [PMID: 37646232 DOI: 10.1002/anie.202310774] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
A multitargeting prodrug (2) that releases gemcitabine, oxaliplatin, and doxorubicin in their active form in cancer cells is a potent cytotoxic agent with nM IC50s ; it is highly selective to cancer cells with mean selectivity indices to human (136) and murine (320) cancer cells. It effectively induces release of DAMPs (CALR, ATP & HMGB1) in CT26 cells facilitating more efficient phagocytosis by J774 macrophages than the FDA drugs or their co-administration. The viability of CT26 cells co-cultured with J774 macrophages and treated with 2 was reduced by 32 % compared to the non-treated cells, suggesting a synergistic antiproliferative effect between the chemical and immune reactions. 2 inhibited in vivo tumor growth in two murine models (LLC and CT26) better than the FDA drugs or their co-administration with significantly lower body weight loss. Mice inoculated with CT26 cells treated with 2 showed slightly better tumor free survival than doxorubicin.
Collapse
Affiliation(s)
- Amrita Sarkar
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Moumita Maji
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Tomer Babu
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61200, Brno, Czech Republic
- Department of Biophysics, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Universita di Padova, 35131, Padova, Italy
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| |
Collapse
|
3
|
Coverdale JPC, Kostrhunova H, Markova L, Song H, Postings M, Bridgewater HE, Brabec V, Rogers NJ, Scott P. Triplex metallohelices have enantiomer-dependent mechanisms of action in colon cancer cells. Dalton Trans 2023; 52:6656-6667. [PMID: 37114730 DOI: 10.1039/d3dt00948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Self-assembled enantiomers of an asymmetric di-iron metallohelix differ in their antiproliferative activities against HCT116 colon cancer cells such that the compound with Λ-helicity at the metals becomes more potent than the Δ compound with increasing exposure time. From concentration- and temperature-dependent 57Fe isotopic labelling studies of cellular accumulation we postulate that while the more potent Λ enantiomer undergoes carrier-mediated efflux, for Δ the process is principally equilibrative. Cell fractionation studies demonstrate that both enantiomers localise in a similar fashion; compound is observed mostly within the cytoskeleton and/or genomic DNA, with significant amounts also found in the nucleus and membrane, but with negligible concentration in the cytosol. Cell cycle analyses using flow cytometry reveal that the Δ enantiomer induces mild arrest in the G1 phase, while Λ causes a very large dose-dependent increase in the G2/M population at a concentration significantly below the relevant IC50. Correspondingly, G2-M checkpoint failure as a result of Λ-metallohelix binding to DNA is shown to be feasible by linear dichroism studies, which indicate, in contrast to the Δ compound, a quite specific mode of binding, probably in the major groove. Further, spindle assembly checkpoint (SAC) failure, which could also be responsible for the observed G2/M arrest, is established as a feasible mechanism for the Λ helix via drug combination (synergy) studies and the discovery of tubulin and actin inhibition. Here, while the Λ compound stabilizes F-actin and induces a distinct change in tubulin architecture of HCT116 cells, Δ promotes depolymerization and more subtle changes in microtubule and actin networks.
Collapse
Affiliation(s)
- J P C Coverdale
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - H Kostrhunova
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - L Markova
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - H Song
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - M Postings
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - H E Bridgewater
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Centre of Exercise, Sport and Life Science, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, UK
| | - V Brabec
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - N J Rogers
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - P Scott
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
4
|
Guan X, Li Z, Geng X, Lei Z, Karakoti A, Wu T, Kumar P, Yi J, Vinu A. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207181. [PMID: 36693792 DOI: 10.1002/smll.202207181] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.
Collapse
Affiliation(s)
- Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xun Geng
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
5
|
In Vitro Selective Combinatory Effect of Ciprofloxacin with Nitroxoline, Sanguinarine, and Zinc Pyrithione against Diarrhea-Causing and Gut Beneficial Bacteria. Microbiol Spectr 2022; 10:e0106322. [PMID: 35972279 PMCID: PMC9603368 DOI: 10.1128/spectrum.01063-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance in diarrhea-causing bacteria and its disruption of gut microbiota composition are health problems worldwide. The development of combinatory agents that increase the selective inhibitory effect (synergism) against diarrheagenic pathogens and, simultaneously, have a lowered impact (antagonism) or no negative action on the gut microbiota is therefore proposed as a new strategy efficient for chemotherapy against diarrheal conditions. In this study, the in vitro selective combinatory effect of ciprofloxacin with nitroxoline, sanguinarine, and zinc pyrithione, representing various classes of alkaloid-related compounds (nitroquinolines, benzylisoquinolines and metal-pyridine derivative complexes) against selected standard diarrhea-causing (Bacillus cereus, Enterococcus faecalis, Listeria monocytogenes, Shigella flexneri, and Vibrio parahaemolyticus) and gut-beneficial (Bifidobacterium adolescentis, Bifidobacterium animalis subsp. lactis, Bifidobacterium breve, Lactobacillus casei, and Lactobacillus rhamnosus) bacteria, was evaluated according to the sum of fractional inhibitory concentration indices (FICIs) obtained by the checkerboard method. The results showed that the individual combination of ciprofloxacin with nitroxoline, sanguinarine, and zinc pyrithione produced a synergistic effect against the pathogenic bacteria, with FICI values ranging from 0.071 to 0.5, whereas their antagonistic interaction toward the Bifidobacterium strains (with FICI values ranging from 4.012 to 8.023) was observed. Ciprofloxacin-zinc pyrithione produced significant synergistic action against S. flexneri, whereas a strong antagonistic interaction was observed toward B. breve for the ciprofloxacin-nitroxoline combination. These findings suggest that certain combinations of agents tested in this study can be used for the development of antidiarrheal therapeutic agents with reduced harmful action on the gastrointestinal microbiome. However, further studies focused on their pharmacological efficacy and safety are needed before they are considered for clinical trials. IMPORTANCE Diarrheal infections, which are commonly treated by antibiotics, are still responsible for over 4 to 5 million cases of human deaths annually. Moreover, the rising incidence of antibiotic resistance and its negative effect on beneficial bacteria (e.g., Bifidobacteria) of the gut microbial community are another problem. Thus, the development of selective agents able to inhibit diarrheal bacteria and, simultaneously, that have no negative impact on the gut microbiota, is important. Our results showed that individual combinations of ciprofloxacin with nitroxoline, sanguinarine, and zinc pyrithione produced synergism against the pathogenic bacteria, whereas their antagonistic interaction toward the beneficial strains was observed. The antagonism can be considered a positive effect contributing to the safety of the therapeutic agents, whereas their synergism against diarrheal bacteria significantly potentiates total antimicrobial efficacy. The certain combinations tested in this study can be used for the development of antidiarrheal agents with reduced harmful action on the gastrointestinal microbiome.
Collapse
|
6
|
Santana-Gálvez J, Villela-Castrejón J, Serna-Saldívar SO, Cisneros-Zevallos L, Jacobo-Velázquez DA. Synergistic Combinations of Curcumin, Sulforaphane, and Dihydrocaffeic Acid against Human Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21093108. [PMID: 32354075 PMCID: PMC7246525 DOI: 10.3390/ijms21093108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 01/13/2023] Open
Abstract
Nutraceutical combinations that act synergistically could be a powerful solution against colon cancer, which is the second deadliest malignancy worldwide. In this study, curcumin (C), sulforaphane (S), and dihydrocaffeic acid (D, a chlorogenic acid metabolite) were evaluated, individually and in different combinations, over the viability of HT-29 and Caco-2 colon cancer cells, and compared against healthy fetal human colon (FHC) cells. The cytotoxic concentrations to kill 50%, 75%, and 90% of the cells (CC50, CC75, and CC90) were obtained, using the MTS assay. Synergistic, additive, and antagonistic effects were determined by using the combination index (CI) method. The 1:1 combination of S and D exerted synergistic effects against HT-29 at 90% cytotoxicity level (doses 90:90 µM), whereas CD(1:4) was synergistic at all cytotoxicity levels (9:36–34:136 µM) and CD(9:2) at 90% (108:24 µM) against Caco-2 cells. SD(1:1) was significantly more cytotoxic for cancer cells than healthy cells, while CD(1:4) and CD(9:2) were similarly or more cytotoxic for healthy cells. Therefore, the SD(1:1) combination was chosen as the best. A model explaining SD(1:1) synergy is proposed. SD(1:1) can be used as a basis to develop advanced food products for the prevention/co-treatment of colon cancer.
Collapse
Affiliation(s)
- Jesús Santana-Gálvez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL C.P. 64849, Mexico
| | - Javier Villela-Castrejón
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL C.P. 64849, Mexico
| | - Sergio O. Serna-Saldívar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL C.P. 64849, Mexico
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL C.P. 64849, Mexico
- Correspondence: ; Tel.: +52-33-3669-3000
| |
Collapse
|
7
|
Mohamad NE, Abu N, Yeap SK, Alitheen NB. Bromelain Enhances the Anti-tumor Effects of Cisplatin on 4T1 Breast Tumor Model In Vivo. Integr Cancer Ther 2020; 18:1534735419880258. [PMID: 31752555 PMCID: PMC6876173 DOI: 10.1177/1534735419880258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: This study aimed to evaluate the antitumor enhancing effect of bromelain consumption on 4T1-challenged mice treated with cisplatin. Methods: Mice challenged with 4T1 triple-negative breast cancer cells received water, bromelain, cisplatin, or bromelain + cisplatin treatment for 28 days. Tumor size was measured, and lung metastasis was evaluated by clonogenic assay. Expression of tumor inflammatory genes of the harvested tumor was quantified by polymerase chain reaction array and ELISA (enzyme-linked immunosorbent assay). Results: All treatments significantly reduced the size of tumor and lung metastasis, with combination treatment showing the best effect. Also, bromelain alone and combination treatment showed downregulation of the expression of tumor inflammatory genes (Gremlin [GREM1], interleukin 1β [IL-1β], interleukin-4 [IL-4], nuclear factor κB subunit 1 [NFκB1], and prostaglandin-endoperoxide synthase 2 [PTGS2]), tumor nitric oxide level, and serum IL-1β, and IL-4 levels. On the other hand, cisplatin treatment increased the expression of selected inflammatory markers. Conclusion: This study suggests that bromelain treatment could potentiate the antitumor effect of cisplatin on triple-negative breast cancer 4T1 cells through modulating the tumor environmental inflammation.
Collapse
Affiliation(s)
- Nurul Elyani Mohamad
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nadiah Abu
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Kostrhunova H, Zajac J, Novohradsky V, Kasparkova J, Malina J, Aldrich-Wright JR, Petruzzella E, Sirota R, Gibson D, Brabec V. A Subset of New Platinum Antitumor Agents Kills Cells by a Multimodal Mechanism of Action Also Involving Changes in the Organization of the Microtubule Cytoskeleton. J Med Chem 2019; 62:5176-5190. [PMID: 31030506 DOI: 10.1021/acs.jmedchem.9b00489] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The substitution inert platinum agent [Pt(1 S,2 S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)]2+ (56MeSS, 5) is a potent cytotoxic metallodrug. In contrast to conventional cisplatin or oxaliplatin, the mechanism of action (MoA) of 5 is fundamentally different. However, details of the mechanism by which the 5,6-dimethyl-1,10-phenanthroline ligand contributes to the cytotoxicity of 5 and its derivatives have not been sufficiently clarified so far. Here, we show that 5 and its Pt(IV) derivatives exhibit an intriguing potency in the triple-negative breast cancer cells MDA-MB-231. Moreover, we show that the Pt(IV) derivatives of 5 act by multimodal MoA resulting in the global biological effects, that is, they damage nuclear DNA, reduce the mitochondrial membrane potential, induce the epigenetic processes, and last but not least, the data provide evidence that changes in the organization of cytoskeleton networks are functionally important for 5 and its derivatives, in contrast to clinically used platinum cytostatics, to kill cancer cells.
Collapse
Affiliation(s)
- Hana Kostrhunova
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Juraj Zajac
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Jaroslav Malina
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Janice R Aldrich-Wright
- School of Science and Health , Western Sydney University , Penrith South DC 1797 , NSW , Australia
| | - Emanuele Petruzzella
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Roman Sirota
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Viktor Brabec
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| |
Collapse
|
9
|
Doldán-Martelli V, Míguez DG. Drug treatment efficiency depends on the initial state of activation in nonlinear pathways. Sci Rep 2018; 8:12495. [PMID: 30131510 PMCID: PMC6104077 DOI: 10.1038/s41598-018-30913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/03/2018] [Indexed: 11/28/2022] Open
Abstract
An accurate prediction of the outcome of a given drug treatment requires quantitative values for all parameters and concentrations involved as well as a detailed characterization of the network of interactions where the target molecule is embedded. Here, we present a high-throughput in silico screening of all potential networks of three interacting nodes to study the effect of the initial conditions of the network in the efficiency of drug inhibition. Our study shows that most network topologies can induce multiple dose-response curves, where the treatment has an enhanced, reduced or even no effect depending on the initial conditions. The type of dual response observed depends on how the potential bistable regimes interplay with the inhibition of one of the nodes inside a nonlinear pathway architecture. We propose that this dependence of the strength of the drug on the initial state of activation of the pathway may be affecting the outcome and the reproducibility of drug studies and clinical trials.
Collapse
Affiliation(s)
| | - David G Míguez
- Centro de Biología Molecular Severo Ochoa, Depto. de Física de la Materia Condensada, Instituto Nicolás Cabrera and IFIMAC, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28046, Madrid, Spain.
| |
Collapse
|
10
|
Elliott-Dawe C. Synergism in Perioperative Services. AORN J 2018; 107:726-736. [PMID: 29851043 DOI: 10.1002/aorn.12151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This article presents an analysis of the concept of synergism in perioperative services. Perioperative services can account for a hospital's highest expenditures and net income or loss, and leaders must understand how to maximize outcomes by creating value above expectations. Using Walker and Avant's methodology, I examined the use of synergism in the literature across multiple databases. The concept has been used in business, information technology, psychology, engineering, and theology. In health care, it is used to explain the effects of combined medications, teamwork, biological systems, patient care, cleaning effectiveness, and health promotion partnerships. I identified two attributes: an emergent property and increased positivity. Optimized outcomes, increased patient and employee satisfaction, and high net revenue are evidence of perioperative synergism. Synergism in this context is dependent on team cohesion, communication, workplace adaptability, and the tactical allocation of resources to ensure unimpeded flow of the patient through the system.
Collapse
|
11
|
Bukowska B, Rogalska A, Marczak A. New potential chemotherapy for ovarian cancer - Combined therapy with WP 631 and epothilone B. Life Sci 2016; 151:86-92. [PMID: 26944437 DOI: 10.1016/j.lfs.2016.02.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/27/2022]
Abstract
Despite more modern therapeutics approaches and the use of new drugs for chemotherapy, patients with ovarian cancer still have poor prognosis and therefore, new strategies for its cure are highly needed. One of the promising ways is combined therapy, which has many advantages as minimizing drug resistance, enhancing efficacy of treatment, and reducing toxicity. Combined therapy has rich and successful history in the field of ovarian cancer treatment. Currently use therapy is usually based on platinum-containing agent (carboplatin or cisplatin) and a member of taxanes (paclitaxel or docetaxel). In the mid-2000s this standard regimen has been expanded with bevacizumab, monoclonal antibody directed to Vascular Endothelial Growth Factor (VEGF). Another drug combination with promising perspectives is WP 631 given together with epothilone B (Epo B). WP 631 is a bisanthracycline composed of two molecules of daunorubicin linked with a p-xylenyl linker. Epo B is a 16-membered macrolide manifesting similar mechanism of action to taxanes. Their effectiveness against ovarian cancer as single agents is well established. However, the combination of WP 631 and Epo B appeared to act synergistically, meaning that it is much more potent than the single drugs. The mechanism lying under its efficacy includes disturbing essential cell cycle-regulating proteins leading to mitotic slippage and following apoptosis, as well as affecting EpCAM and HMGB1 expression. In this article, we summarized the current state of knowledge regarding combined therapy based on WP 631 and Epo B as a potential way of ovarian cancer treatment.
Collapse
Affiliation(s)
- Barbara Bukowska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland.
| | - Aneta Rogalska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str, 90-236 Lodz, Poland
| |
Collapse
|