1
|
Rikard SM, Myers PJ, Almquist J, Gennemark P, Bruce AC, Wågberg M, Fritsche-Danielson R, Hansson KM, Lazzara MJ, Peirce SM. Mathematical Model Predicts that Acceleration of Diabetic Wound Healing is Dependent on Spatial Distribution of VEGF-A mRNA (AZD8601). Cell Mol Bioeng 2021; 14:321-338. [PMID: 34290839 PMCID: PMC8280265 DOI: 10.1007/s12195-021-00678-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction Pharmacologic approaches for promoting angiogenesis have been utilized to accelerate healing of chronic wounds in diabetic patients with varying degrees of success. We hypothesize that the distribution of proangiogenic drugs in the wound area critically impacts the rate of closure of diabetic wounds. To evaluate this hypothesis, we developed a mathematical model that predicts how spatial distribution of VEGF-A produced by delivery of a modified mRNA (AZD8601) accelerates diabetic wound healing. Methods We modified a previously published model of cutaneous wound healing based on coupled partial differential equations that describe the density of sprouting capillary tips, chemoattractant concentration, and density of blood vessels in a circular wound. Key model parameters identified by a sensitivity analysis were fit to data obtained from an in vivo wound healing study performed in the dorsum of diabetic mice, and a pharmacokinetic model was used to simulate mRNA and VEGF-A distribution following injections with AZD8601. Due to the limited availability of data regarding the spatial distribution of AZD8601 in the wound bed, we performed simulations with perturbations to the location of injections and diffusion coefficient of mRNA to understand the impact of these spatial parameters on wound healing. Results When simulating injections delivered at the wound border, the model predicted that injections delivered on day 0 were more effective in accelerating wound healing than injections delivered at later time points. When the location of the injection was varied throughout the wound space, the model predicted that healing could be accelerated by delivering injections a distance of 1–2 mm inside the wound bed when compared to injections delivered on the same day at the wound border. Perturbations to the diffusivity of mRNA predicted that restricting diffusion of mRNA delayed wound healing by creating an accumulation of VEGF-A at the wound border. Alternatively, a high mRNA diffusivity had no effect on wound healing compared to a simulation with vehicle injection due to the rapid loss of mRNA at the wound border to surrounding tissue. Conclusions These findings highlight the critical need to consider the location of drug delivery and diffusivity of the drug, parameters not typically explored in pre-clinical experiments, when designing and testing drugs for treating diabetic wounds. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00678-9.
Collapse
Affiliation(s)
- S Michaela Rikard
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Paul J Myers
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA USA
| | - Joachim Almquist
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Fraunhofer-Chalmers Centre, Chalmers Science Park, Gothenburg, Sweden.,Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Anthony C Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Maria Wågberg
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Regina Fritsche-Danielson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kenny M Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew J Lazzara
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA.,Department of Chemical Engineering, University of Virginia, Charlottesville, VA USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
3
|
Li KC, Wang CH, Zou JJ, Qu C, Wang XL, Tian XS, Liu HW, Cui T. Loss of Atg7 in Endothelial Cells Enhanced Cutaneous Wound Healing in a Mouse Model. J Surg Res 2020; 249:145-155. [DOI: 10.1016/j.jss.2019.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
|