1
|
Saito K, Shimasaki K, Fukasawa M, Suzuki R, Okemoto-Nakamura Y, Katoh K, Takasaki T, Hanada K. Establishment of Vero cell lines persistently harboring a yellow fever virus 17D subgenomic replicon. Virus Res 2022; 322:198935. [PMID: 36152929 DOI: 10.1016/j.virusres.2022.198935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022]
Abstract
Yellow fever virus (YFV), a member of the genus Flavivirus, family Flaviviridae, is the etiological agent for an acute viral hemorrhagic disease, yellow fever. Although effective live attenuated vaccines based on the strain YFV 17D are currently available, no specific antiviral drug is available, and the disease remains a major public health concern. Hence, the discovery and development of antiviral drugs should lead to great benefits in controlling the disease. To provide a screening platform for antiviral agents targeting YFV RNA translation/replication, we have established and characterized two Vero cell lines that persistently harbor a subgenomic replicon derived from YFV 17D-204 (referred to as replicon cells). The replicon carries YFV nucleotides (1 - 176 and 2382-10,862) and a green fluorescent protein (GFP)-Zeocin resistance fusion gene as a selection marker and indicator of persistent replication. Immunofluorescence analysis revealed that both replicon cells and YFV 17D-infected cells showed similar distribution patterns of viral NS4B protein and replication intermediate, double-stranded RNA. Sequencing analysis of persistent replicons from the two replicon cell lines suggested that their nucleotide sequences did not vary greatly following multiple passages. We examined the effect of five agents, the antiviral cytokines interferon-β and -γ, the nucleoside analog ribavirin, the squalene synthase inhibitor zaragozic acid A, and the antibiotic rifapentine, a recently reported entry and replication inhibitor against YFV, on the persistent replication in the two replicon cell lines. These agents were selected because they inhibited both production of YFV 17D and transient replication of a luciferase-expressing replicon in Vero cells, without greatly affecting cell viability. We found that each of the agents decreased GFP fluorescence in the replicon cells, albeit to varying degrees. The agents other than rifapentine also showed a decrease in viral RNA levels in the replicon cells comparable to that seen for GFP fluorescence. These results indicate that persistent replication is susceptible to each of these five agents, although their mechanisms of action may differ. Taken together, these results provide evidence that translation/replication of the replicon in the replicon cells mimics that of the viral genome upon YFV 17D infection, indicating that the replicon cell lines can serve as a useful tool for high-throughput antiviral drug screening.
Collapse
Affiliation(s)
- Kyoko Saito
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| | - Kentaro Shimasaki
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba-shi, Ibaragi, Japan; AIRC, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, Japan
| | - Tomohiko Takasaki
- Kanagawa Prefectural Institute of Public Health, Chigasaki-shi, Kanagawa, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Department of Quality Assurance, Radiation Safety, and Information System, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
2
|
Onomura D, Satoh S, Ueda Y, Dansako H, Kato N. Identification of ribavirin-responsive cis-elements for GPAM suppression in the GPAM genome. Biochem Biophys Res Commun 2020; 533:148-154. [PMID: 32933750 DOI: 10.1016/j.bbrc.2020.08.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 11/15/2022]
Abstract
Glycerol-3-phosphate acyltransferase, mitochondrial (GPAM) is a rate-limiting enzyme catalyzing triglyceride synthesis. Recently, we demonstrated that the anti-viral drug ribavirin (RBV) reduces GPAM expression by downregulating CCAAT/enhancer-binding protein α (C/EBPα). However, the precise mechanisms of GPAM suppression have remained unclear. Here, we found that RBV suppressed GPAM expression by downregulating not only C/EBPα, but also sterol regulatory element-binding protein-1c (SREBP-1c). We also found that cis-elements regulated by C/EBPα and SREBP-1c functioned as distal and proximal enhancers, respectively, to express hepatocyte- and adipocytes-specific GPAM variants. These results imply that RBV disrupts formation of the enhancer machineries on the GPAM genome by downregulating both transcription factors. Our findings may contribute to the development of treatments for fatty liver diseases caused by aberrant triglyceride synthesis.
Collapse
Affiliation(s)
- Daichi Onomura
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Shinya Satoh
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan.
| | - Youki Ueda
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Hiromichi Dansako
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Nobuyuki Kato
- Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| |
Collapse
|
3
|
Ribavirin-induced down-regulation of CCAAT/enhancer-binding protein α leads to suppression of lipogenesis. Biochem J 2019; 476:137-149. [PMID: 30552141 DOI: 10.1042/bcj20180680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022]
Abstract
Recently, we demonstrated that the anti-viral drug ribavirin (RBV) had the ability to suppress lipogenesis through down-regulation of retinoid X receptor α (RXRα) under the control of the intracellular GTP-level and AMP-activated protein kinase-related kinases, especially microtubule affinity regulating kinase 4 (MARK4). RXRα-overexpression attenuated but did not abolish lipogenesis suppression by RBV, implying that additional factor(s) were involved in this suppressive effect. In the present study, we found that the protein level, but not the mRNA level, of CCAAT/enhancer-binding protein α (C/EBPα) was down-regulated by RBV in hepatic cells. Treatment with proteasome inhibitor attenuated RBV-induced down-regulation of C/EBPα, suggesting that RBV promoted degradation of C/EBPα protein via the ubiquitin-proteasome pathway. Depletion of intracellular GTP through inosine monophosphate dehydrogenase inhibition by RBV led to down-regulation of C/EBPα. In contrast, down-regulation of C/EBPα by RBV was independent of RXRα and MARK4. Knockdown of C/EBPα reduced the intracellular neutral lipid levels and the expression of genes related to the triglyceride (TG) synthesis pathway, especially glycerol-3-phosphate acyltransferase, mitochondrial (GPAM), which encodes the first rate-limiting TG enzyme. Overexpression of C/EBPα yielded the opposite results. We also observed that RBV decreased GPAM expression. Moreover, overexpression of GPAM attenuated RBV-induced reduction in the intracellular neutral lipid levels. These data suggest that down-regulation of C/EBPα by RBV leads to the reduction in GPAM expression, which contributes to the suppression of lipogenesis. Our findings about the mechanism of RBV action in lipogenesis suppression will provide new insights for therapy against the active lipogenesis involved in hepatic steatosis and hepatocellular carcinomas.
Collapse
|
4
|
Satoh S, Mori K, Onomura D, Ueda Y, Dansako H, Honda M, Kaneko S, Ikeda M, Kato N. Ribavirin suppresses hepatic lipogenesis through inosine monophosphate dehydrogenase inhibition: Involvement of adenosine monophosphate-activated protein kinase-related kinases and retinoid X receptor α. Hepatol Commun 2017; 1:550-563. [PMID: 29404478 PMCID: PMC5678905 DOI: 10.1002/hep4.1065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/30/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022] Open
Abstract
Ribavirin (RBV) has been widely used as an antiviral reagent, specifically for patients with chronic hepatitis C. We previously demonstrated that adenosine kinase, which monophosphorylates RBV into the metabolically active form, is a key determinant for RBV sensitivity against hepatitis C virus RNA replication. However, the precise mechanism of RBV action and whether RBV affects cellular metabolism remain unclear. Analysis of liver gene expression profiles obtained from patients with advanced chronic hepatitis C treated with the combination of pegylated interferon and RBV showed that the adenosine kinase expression level tends to be lower in patients who are overweight and significantly decreases with progression to advanced fibrosis stages. In our effort to investigate whether RBV affects cellular metabolism, we found that RBV treatment under clinically achievable concentrations suppressed lipogenesis in hepatic cells. In this process, guanosine triphosphate depletion through inosine monophosphate dehydrogenase inhibition by RBV and adenosine monophosphate-activated protein kinase-related kinases, especially microtubule affinity regulating kinase 4, were required. In addition, RBV treatment led to the down-regulation of retinoid X receptor α (RXRα), a key nuclear receptor in various metabolic processes, including lipogenesis. Moreover, we found that guanosine triphosphate depletion in cells induced the down-regulation of RXRα, which was mediated by microtubule affinity regulating kinase 4. Overexpression of RXRα attenuated the RBV action for suppression of lipogenic genes and intracellular neutral lipids, suggesting that down-regulation of RXRα was required for the suppression of lipogenesis in RBV action. Conclusion: We provide novel insights about RBV action in lipogenesis and its mechanisms involving inosine monophosphate dehydrogenase inhibition, adenosine monophosphate-activated protein kinase-related kinases, and down-regulation of RXRα. RBV may be a potential reagent for anticancer therapy against the active lipogenesis involved in hepatocarcinogenesis. (Hepatology Communications 2017;1:550-563).
Collapse
Affiliation(s)
- Shinya Satoh
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Kyoko Mori
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Daichi Onomura
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Youki Ueda
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Hiromichi Dansako
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Masao Honda
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Shuichi Kaneko
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Masanori Ikeda
- Division of Persistent and Oncogenic Viruses Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University Kagoshima Japan
| | - Nobuyuki Kato
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
5
|
Evaluation of preclinical antimalarial drugs, which can overcome direct-acting antivirals-resistant hepatitis C viruses, using the viral reporter assay systems. Virus Res 2017; 235:37-48. [PMID: 28322919 DOI: 10.1016/j.virusres.2017.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 11/23/2022]
Abstract
Persistent hepatitis C virus (HCV) infection causes chronic liver diseases and is a major global health problem. Recently developed treatments with direct-acting antivirals (DAAs) have largely improved the sustained virologic response rate of patients with chronic hepatitis C. However, this approach is still hindered by its great expense and the problem of drug resistance. Using our cell-based HCV assay systems, we reported that the preclinical antimalarial drugs N-89 and N-251 exhibited potent anti-HCV activities. In this study we used our assay systems to evaluate the anti-HCV activities of six kinds of DAAs individually or in combination with N-89 or N-251. The results showed that the DAAs had potent anti-HCV activities and N-89 or N-251 contributed additive or synergistic effect. Using DAA-resistant HCV-RNA-replicating cells, which were prepared by continuous treatment with each DAA, we demonstrated that N-89 and N-251 could overcome all of the DAA-resistant HCVs. These preclinical drugs would have been potential as components of a therapeutic regimen that also included combinations of various DAAs. In addition, sequence analysis of the NS3-NS5B regions of the DAA-resistant HCV genomes newly found several amino acid (aa) substitutions that were suggested to contribute to DAA-resistance in addition to the aa substitutions already known to cause DAA-resistance. Among these new aa substitutions, we found that two substitutions in the NS3 region (D79G and S174Y) contributed to simeprevir- and/or asunaprevir-resistance.
Collapse
|
6
|
Baloch K, Chen L, Memon AA, Dexter L, Irving W, Ilyas M, Thomson BJ. Equilibrative nucleoside transporter 1 expression in primary human hepatocytes is highly variable and determines uptake of ribavirin. Antivir Chem Chemother 2017; 25:2-10. [PMID: 28417642 DOI: 10.1177/2040206616686894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims Ribavirin is a nucleoside analogue and remains a necessary component of both interferon-based and directly acting anti-viral regimens for the treatment of hepatitis C virus infection. The achievable concentration of ribavirin within hepatocytes is likely to be an important determinant of therapeutic outcome. In vitro expression levels of equilibrative nucleoside transporter 1 (ENT1) has been shown to be a predictor of treatment response in patients receiving nucleoside-based chemotherapeutic agents. We therefore investigated whether a similar relationship existed between ENT1 expression and ribavirin uptake in freshly isolated primary hepatocytes. Methods Primary hepatocytes were cultured on collagen-coated plates and exposed to ribavirin. Parallel samples were taken for high-performance liquid chromatography to assess ribavirin uptake and for quantitative polymerase chain reaction to evaluate ENT1 expression. Similar assays were performed on the human hepatoma cell line (Huh7). ENT1 gene sequence was analysed by cloning of polymerase chain reaction amplified complementary DNA followed by direct sequencing. Results There was a strong direct correlation between expression of ENT1 in primary hepatocytes and ribavirin uptake at 24 hr. Huh7 cells expressed ENT1 at similar levels to the majority of primary hepatocytes, but did not take up ribavirin. Sequencing revealed that ENT1 in Huh7 cells is wild type. Conclusions In this study, we clearly demonstrate that ribavirin uptake in primary human hepatocytes is variable and correlates with ENT1 expression. This variation in ENT1 expression may account for differences in response rate in patients receiving ribavirin-based anti-hepatitis C virus therapy.
Collapse
Affiliation(s)
- Kanwal Baloch
- 1 School of Medicine, University of Nottingham, Nottingham, UK.,2 Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Liqiong Chen
- 3 School of Pharmacy, University of Nottingham, Nottingham, UK.,4 AEM iMed, AstraZeneca, Shanghai, China
| | - Ameer A Memon
- 2 Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Laura Dexter
- 3 School of Pharmacy, University of Nottingham, Nottingham, UK.,5 Wales Specialist Virology Centre, University Hospital of Wales, Heath Park, Cardiff, UK
| | - William Irving
- 6 Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK.,7 Nottingham Digestive Diseases Centre Biomedical Research Unit, Nottingham University Hospitals, Nottingham, UK
| | - Mohammad Ilyas
- 1 School of Medicine, University of Nottingham, Nottingham, UK
| | - Brian J Thomson
- 1 School of Medicine, University of Nottingham, Nottingham, UK.,7 Nottingham Digestive Diseases Centre Biomedical Research Unit, Nottingham University Hospitals, Nottingham, UK
| |
Collapse
|