1
|
Axakova A, Ding M, Cote AG, Subramaniam R, Senguttuvan V, Zhang H, Weile J, Douville SV, Gebbia M, Al-Chalabi A, Wahl A, Reuter J, Hurt J, Mitchell A, Fradette S, Andersen PM, van Loggerenberg W, Roth FP. Landscapes of missense variant impact for human superoxide dismutase 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640191. [PMID: 40060668 PMCID: PMC11888409 DOI: 10.1101/2025.02.25.640191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease for which important subtypes are caused by variation in the Superoxide Dismutase 1 gene SOD1. Diagnosis based on SOD1 sequencing can not only be definitive but also indicate specific therapies available for SOD1-associated ALS (SOD1-ALS). Unfortunately, SOD1-ALS diagnosis is limited by the fact that a substantial fraction (currently 26%) of ClinVar SOD1 missense variants are classified as "variants of uncertain significance" (VUS). Although functional assays can provide strong evidence for clinical variant interpretation, SOD1 assay validation is challenging, given the current incomplete and controversial understanding of SOD1-ALS disease mechanism. Using saturation mutagenesis and multiplexed cell-based assays, we measured the functional impact of over two thousand SOD1 amino acid substitutions on both enzymatic function and protein abundance. The resulting 'missense variant effect maps' not only reflect prior biochemical knowledge of SOD1 but also provide sequence-structure-function insights. Importantly, our variant abundance assay can discriminate pathogenic missense variation and provides new evidence for 41% of missense variants that had been previously reported as VUS, offering the potential to identify additional patients who would benefit from therapy approved for SOD1-ALS.
Collapse
Affiliation(s)
- Anna Axakova
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Megan Ding
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Atina G Cote
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Radha Subramaniam
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Vignesh Senguttuvan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Haotian Zhang
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jochen Weile
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Samuel V Douville
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Faculty of Health Science, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Marinella Gebbia
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RX, UK
| | - Alexander Wahl
- Labcorp Genetics (Formerly Invitae Corp.), CA 94103, USA
| | - Jason Reuter
- Labcorp Genetics (Formerly Invitae Corp.), CA 94103, USA
| | | | | | | | | | - Warren van Loggerenberg
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Frederick P Roth
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Huang M, Liu YU, Yao X, Qin D, Su H. Variability in SOD1-associated amyotrophic lateral sclerosis: geographic patterns, clinical heterogeneity, molecular alterations, and therapeutic implications. Transl Neurodegener 2024; 13:28. [PMID: 38811997 PMCID: PMC11138100 DOI: 10.1186/s40035-024-00416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons, resulting in global health burden and limited post-diagnosis life expectancy. Although primarily sporadic, familial ALS (fALS) cases suggest a genetic basis. This review focuses on SOD1, the first gene found to be associated with fALS, which has been more recently confirmed by genome sequencing. While informative, databases such as ALSoD and STRENGTH exhibit regional biases. Through a systematic global examination of SOD1 mutations from 1993 to 2023, we found different geographic distributions and clinical presentations. Even though different SOD1 variants are expressed at different protein levels and have different half-lives and dismutase activities, these alterations lead to loss of function that is not consistently correlated with disease severity. Gain of function of toxic aggregates of SOD1 resulting from mutated SOD1 has emerged as one of the key contributors to ALS. Therapeutic interventions specifically targeting toxic gain of function of mutant SOD1, including RNA interference and antibodies, show promise, but a cure remains elusive. This review provides a comprehensive perspective on SOD1-associated ALS and describes molecular features and the complex genetic landscape of SOD1, highlighting its importance in determining diverse clinical manifestations observed in ALS patients and emphasizing the need for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Miaodan Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Yong U Liu
- Laboratory for Neuroimmunology in Health and Diseases, Guangzhou First People's Hospital School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
3
|
Abstract
The scientific landscape surrounding amyotrophic lateral sclerosis has shifted immensely with a number of well-defined ALS disease-causing genes, each with related phenotypical and cellular motor neuron processes that have come to light. Yet in spite of decades of research and clinical investigation, there is still no etiology for sporadic amyotrophic lateral sclerosis, and treatment options even for those with well-defined familial syndromes are still limited. This chapter provides a comprehensive review of the genetic basis of amyotrophic lateral sclerosis, highlighting factors that contribute to its heritability and phenotypic manifestations, and an overview of past, present, and upcoming therapeutic strategies.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| | - Robert H Brown
- Department of Neurology, UMass Chan Medical School, Donna M. and Robert J. Manning Chair in Neurosciences and Director in Neurotherapeutics, Worcester, MA, United States
| |
Collapse
|
4
|
Henderson RD, Kepp KP, Eisen A. ALS/FTD: Evolution, Aging, and Cellular Metabolic Exhaustion. Front Neurol 2022; 13:890203. [PMID: 35711269 PMCID: PMC9196861 DOI: 10.3389/fneur.2022.890203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) are neurodegenerations with evolutionary underpinnings, expansive clinical presentations, and multiple genetic risk factors involving a complex network of pathways. This perspective considers the complex cellular pathology of aging motoneuronal and frontal/prefrontal cortical networks in the context of evolutionary, clinical, and biochemical features of the disease. We emphasize the importance of evolution in the development of the higher cortical function, within the influence of increasing lifespan. Particularly, the role of aging on the metabolic competence of delicately optimized neurons, age-related increased proteostatic costs, and specific genetic risk factors that gradually reduce the energy available for neuronal function leading to neuronal failure and disease.
Collapse
Affiliation(s)
| | - Kasper Planeta Kepp
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andrew Eisen
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Planeta Kepp K. Bioinorganic Chemistry of Zinc in Relation to the Immune System. Chembiochem 2021; 23:e202100554. [PMID: 34889510 DOI: 10.1002/cbic.202100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Indexed: 01/18/2023]
Abstract
Zinc is well-known to have a central role in human inflammation and immunity and is itself an anti-inflammatory and antiviral agent. Despite its massively documented role in such processes, the underlying chemistry of zinc in relation to specific proteins and pathways of the immune system has not received much focus. This short review provides an overview of this topic, with emphasis on the structures of key proteins, zinc coordination chemistry, and probable mechanisms involved in zinc-based immunity, with some focus points for future chemical and biological research.
Collapse
Affiliation(s)
- Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Abstract
Darwin's theory of evolution emphasized that positive selection of functional proficiency provides the fitness that ultimately determines the structure of life, a view that has dominated biochemical thinking of enzymes as perfectly optimized for their specific functions. The 20th-century modern synthesis, structural biology, and the central dogma explained the machinery of evolution, and nearly neutral theory explained how selection competes with random fixation dynamics that produce molecular clocks essential e.g. for dating evolutionary histories. However, quantitative proteomics revealed that selection pressures not relating to optimal function play much larger roles than previously thought, acting perhaps most importantly via protein expression levels. This paper first summarizes recent progress in the 21st century toward recovering this universal selection pressure. Then, the paper argues that proteome cost minimization is the dominant, underlying 'non-function' selection pressure controlling most of the evolution of already functionally adapted living systems. A theory of proteome cost minimization is described and argued to have consequences for understanding evolutionary trade-offs, aging, cancer, and neurodegenerative protein-misfolding diseases.
Collapse
|
7
|
Tang N, Sandahl TD, Ott P, Kepp KP. Computing the Pathogenicity of Wilson's Disease ATP7B Mutations: Implications for Disease Prevalence. J Chem Inf Model 2019; 59:5230-5243. [PMID: 31751128 DOI: 10.1021/acs.jcim.9b00852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetic variations in the gene encoding the copper-transport protein ATP7B are the primary cause of Wilson's disease. Controversially, clinical prevalence seems much smaller than the prevalence estimated by genetic screening tools, causing fear that many people are undiagnosed, although early diagnosis and treatment is essential. To address this issue, we benchmarked 16 state-of-the-art computational disease-prediction methods against established data of missense ATP7B mutations. Our results show that the quality of the methods varies widely. We show the importance of optimizing the threshold of the methods used to distinguish pathogenic from nonpathogenic mutations against data of clinically confirmed pathogenic and nonpathogenic mutations. We find that most methods use thresholds that predict too many ATP7B mutations to be pathogenic. Thus, our findings explain the current controversy on Wilson's disease prevalence because meta-analysis and text search methods include many computational estimates that lead to higher disease prevalence than clinically observed. As proteins and diseases differ widely, a one-size-fits-all threshold cannot distinguish pathogenic and nonpathogenic mutations efficiently, as shown here. We also show that amino acid changes with small evolutionary substitution probability, mainly due to amino acid volume, are more associated with the disease, implying a pathological effect on the conformational state of the protein, which could affect copper transport or adenosine triphosphate recognition and hydrolysis. These findings may be a first step toward a more quantitative genotype-phenotype relationship of Wilson's disease.
Collapse
Affiliation(s)
- Ning Tang
- DTU Chemistry , Technical University of Denmark , Kemitorvet 206 , 2800 Kongens Lyngby , Denmark
| | - Thomas D Sandahl
- Department of Hepatology and Gastroenterology , Aarhus University Hospital , 8200 Aarhus , Denmark
| | - Peter Ott
- Department of Hepatology and Gastroenterology , Aarhus University Hospital , 8200 Aarhus , Denmark
| | - Kasper P Kepp
- DTU Chemistry , Technical University of Denmark , Kemitorvet 206 , 2800 Kongens Lyngby , Denmark
| |
Collapse
|
8
|
Computational analysis of Alzheimer-causing mutations in amyloid precursor protein and presenilin 1. Arch Biochem Biophys 2019; 678:108168. [DOI: 10.1016/j.abb.2019.108168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
|
9
|
Kepp KP, Squitti R. Copper imbalance in Alzheimer’s disease: Convergence of the chemistry and the clinic. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
A quantitative model of human neurodegenerative diseases involving protein aggregation. Neurobiol Aging 2019; 80:46-55. [DOI: 10.1016/j.neurobiolaging.2019.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
|
11
|
Tiwari MK, Hägglund PM, Møller IM, Davies MJ, Bjerrum MJ. Copper ion / H 2O 2 oxidation of Cu/Zn-Superoxide dismutase: Implications for enzymatic activity and antioxidant action. Redox Biol 2019; 26:101262. [PMID: 31284117 PMCID: PMC6614508 DOI: 10.1016/j.redox.2019.101262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/25/2023] Open
Abstract
Copper ion-catalyzed oxidation of yeast SOD1 (ySOD1) was examined to determine early oxidative modifications, including oxidation of a crucial disulfide bond, and the structural and functional repercussions of these events. The study used distinct oxidative conditions: Cu2+/H2O2, Cu2+/H2O2/AscH− and Cu2+/H2O2/glucose. Capillary electrophoresis experiments and quantification of protein carbonyls indicate that ySOD1 is highly susceptible to oxidative modification and that changes can be detected within 0.1 min of the initiation of the reaction. Oxidation-induced structural perturbations, characterized by circular dichroism, revealed the formation of partially-unfolded ySOD1 species in a dose-dependent manner. Consistent with these structural changes, pyrogallol assay indicates a partial loss of enzymatic activity. ESI-MS analyses showed seven distinct oxidized ySOD1 species under mild oxidation within 0.1 min. LC/MS analysis after proteolytic digestion demonstrated that the copper-coordinating active site histidine residues, His47 and His49, were converted into 2-oxo-histidine. Furthermore, the Cu and Zn bridging residue, His64 is converted into aspartate/asparagine. Importantly, the disulfide-bond Cys58-Cys147 which is critical for the structural and functional integrity of ySOD1 was detected as being oxidized at Cys147. We propose, based on LC/MS analyses, that disulfide-bond oxidation occurs without disulfide bond cleavage. Modifications were also detected at Met85 and five surface-exposed Lys residues. Based on these data we propose that the Cys58-Cys147 bond may act as a sacrificial target for oxidants and protect ySOD1 from oxidative inactivation arising from exposure to Cu2+/H2O2 and auto-inactivation during extended enzymatic turnover. Oxidation of yeast superoxide dismutase (ySOD1) by Cu2+/H2O2 is examined. Rapid modification of His, Met, Cys and Lys residues detected by LC-MS methods. Oxidation of active site His residues and partial protein unfolding are early events. The Cys58-Cys147 disulfide bond is oxidized and may act as a sacrificial target. Excess exogenous Cu2+ decreases protein damage and can reverse loss of activity.
Collapse
Affiliation(s)
- Manish K Tiwari
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Per M Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Goutman SA, Chen KS, Paez-Colasante X, Feldman EL. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:603-623. [PMID: 29478603 DOI: 10.1016/b978-0-444-64076-5.00039-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, noncurable neurodegenerative disorder of the upper and lower motor neurons causing weakness and death within a few years of symptom onset. About 10% of patients with ALS have a family history of the disease; however, ALS-associated genetic mutations are also found in sporadic cases. There are over 100 ALS-associated mutations, and importantly, several genetic mutations, including C9ORF72, SOD1, and TARDBP, have led to mechanistic insight into this complex disease. In the clinical realm, knowledge of ALS genetics can also help explain phenotypic heterogeneity, aid in genetic counseling, and in the future may help direct treatment efforts.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
|
14
|
Dasmeh P, Kepp KP. Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes. Cell Mol Life Sci 2017; 74:3023-3037. [PMID: 28389720 PMCID: PMC11107616 DOI: 10.1007/s00018-017-2519-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
Positive (adaptive) selection has recently been implied in human superoxide dismutase 1 (SOD1), a highly abundant antioxidant protein with energy signaling and antiaging functions, one of very few examples of direct selection on a human protein product (exon); the molecular drivers of this selection are unknown. We mapped 30 extant SOD1 sequences to the recently established mammalian species tree and inferred ancestors, key substitutions, and signatures of selection during the protein's evolution. We detected elevated substitution rates leading to great apes (Hominidae) at ~1 per 2 million years, significantly higher than in other primates and rodents, although these paradoxically generally evolve much faster. The high evolutionary rate was partly due to relaxation of some selection pressures and partly to distinct positive selection of SOD1 in great apes. We then show that higher stability and net charge and changes at the dimer interface were selectively introduced upon separation from old world monkeys and lesser apes (gibbons). Consequently, human, chimpanzee and gorilla SOD1s have a net charge of -6 at physiological pH, whereas the closely related gibbons and macaques have -3. These features consistently point towards selection against the malicious aggregation effects of elevated SOD1 levels in long-living great apes. The findings mirror the impact of human SOD1 mutations that reduce net charge and/or stability and cause ALS, a motor neuron disease characterized by oxidative stress and SOD1 aggregates and triggered by aging. Our study thus marks an example of direct selection for a particular chemical phenotype (high net charge and stability) in a single human protein with possible implications for the evolution of aging.
Collapse
Affiliation(s)
- Pouria Dasmeh
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Biochemistry and Cedergren Center for Bioinformatics and Genomics, Faculty of Medicine, University of Montreal, 2900 Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
15
|
Kumar V, Rahman S, Choudhry H, Zamzami MA, Sarwar Jamal M, Islam A, Ahmad F, Hassan MI. Computing disease-linked SOD1 mutations: deciphering protein stability and patient-phenotype relations. Sci Rep 2017; 7:4678. [PMID: 28680046 PMCID: PMC5498623 DOI: 10.1038/s41598-017-04950-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Protein stability is a requisite in the field of biotechnology, cell biology and drug design. To understand effects of amino acid substitutions, computational models are preferred to save time and expenses. As a systemically important, highly abundant, stable protein, the knowledge of Cu/Zn Superoxide dismutase1 (SOD1) is important, making it a suitable test case for genotype-phenotype correlation in understanding ALS. Here, we report performance of eight protein stability calculators (PoPMuSiC 3.1, I-Mutant 2.0, I-Mutant 3.0, CUPSAT, FoldX, mCSM, BeatMusic and ENCoM) against 54 experimental stability changes due to mutations of SOD1. Four different high-resolution structures were used to test structure sensitivity that may affect protein calculations. Bland-Altman plot was also used to assess agreement between stability analyses. Overall, PoPMuSiC and FoldX emerge as the best methods in this benchmark. The relative performance of all the eight methods was very much structure independent, and also displayed less structural sensitivity. We also analyzed patient's data in relation to experimental and computed protein stabilities for mutations of human SOD1. Correlation between disease phenotypes and stability changes suggest that the changes in SOD1 stability correlate with ALS patient survival times. Thus, the results clearly demonstrate the importance of protein stability in SOD1 pathogenicity.
Collapse
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
16
|
Abdolvahabi A, Shi Y, Rasouli S, Croom CM, Aliyan A, Martí AA, Shaw BF. Kaplan-Meier Meets Chemical Kinetics: Intrinsic Rate of SOD1 Amyloidogenesis Decreased by Subset of ALS Mutations and Cannot Fully Explain Age of Disease Onset. ACS Chem Neurosci 2017; 8:1378-1389. [PMID: 28290665 DOI: 10.1021/acschemneuro.7b00029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over 150 mutations in SOD1 (superoxide dismutase-1) cause amyotrophic lateral sclerosis (ALS), presumably by accelerating SOD1 amyloidogenesis. Like many nucleation processes, SOD1 fibrillization is stochastic (in vitro), which inhibits the determination of aggregation rates (and obscures whether rates correlate with patient phenotypes). Here, we diverged from classical chemical kinetics and used Kaplan-Meier estimators to quantify the probability of apo-SOD1 fibrillization (in vitro) from ∼103 replicate amyloid assays of wild-type (WT) SOD1 and nine ALS variants. The probability of apo-SOD1 fibrillization (expressed as a Hazard ratio) is increased by certain ALS-linked SOD1 mutations but is decreased or remains unchanged by other mutations. Despite this diversity, Hazard ratios of fibrillization correlated linearly with (and for three mutants, approximately equaled) Hazard ratios of patient survival (R2 = 0.67; Pearson's r = 0.82). No correlation exists between Hazard ratios of fibrillization and age of initial onset of ALS (R2 = 0.09). Thus, Hazard ratios of fibrillization might explain rates of disease progression but not onset. Classical kinetic metrics of fibrillization, i.e., mean lag time and propagation rate, did not correlate as strongly with phenotype (and ALS mutations did not uniformly accelerate mean rate of nucleation or propagation). A strong correlation was found, however, between mean ThT fluorescence at lag time and patient survival (R2 = 0.93); oligomers of SOD1 with weaker fluorescence correlated with shorter survival. This study suggests that SOD1 mutations trigger ALS by altering a property of SOD1 or its oligomers other than the intrinsic rate of amyloid nucleation (e.g., oligomer stability; rates of intercellular propagation; affinity for membrane surfaces; and maturation rate).
Collapse
Affiliation(s)
- Alireza Abdolvahabi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Yunhua Shi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Sanaz Rasouli
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76706, United States
| | - Corbin M. Croom
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Amir Aliyan
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Angel A. Martí
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Bryan F. Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
17
|
Bastow EL, Peswani AR, Tarrant DSJ, Pentland DR, Chen X, Morgan A, Staniforth GL, Tullet JM, Rowe ML, Howard MJ, Tuite MF, Gourlay CW. New links between SOD1 and metabolic dysfunction from a yeast model of amyotrophic lateral sclerosis. J Cell Sci 2016; 129:4118-4129. [PMID: 27656112 PMCID: PMC5117206 DOI: 10.1242/jcs.190298] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/16/2016] [Indexed: 12/26/2022] Open
Abstract
A number of genes have been linked to familial forms of the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). Over 150 mutations within the gene encoding superoxide dismutase 1 (SOD1) have been implicated in ALS, but why such mutations lead to ALS-associated cellular dysfunction is unclear. In this study, we identify how ALS-linked SOD1 mutations lead to changes in the cellular health of the yeast Saccharomyces cerevisiae. We find that it is not the accumulation of aggregates but the loss of Sod1 protein stability that drives cellular dysfunction. The toxic effect of Sod1 instability does not correlate with a loss of mitochondrial function or increased production of reactive oxygen species, but instead prevents acidification of the vacuole, perturbs metabolic regulation and promotes senescence. Central to the toxic gain-of-function seen with the SOD1 mutants examined was an inability to regulate amino acid biosynthesis. We also report that leucine supplementation results in an improvement in motor function in a Caenorhabditiselegans model of ALS. Our data suggest that metabolic dysfunction plays an important role in Sod1-mediated toxicity in both the yeast and worm models of ALS. Summary: In a new yeast model of ALS we have discovered for the first time that mutations in Sod1 can lead to the formation of toxic, soluble proteins that disrupt metabolic regulation.
Collapse
Affiliation(s)
- Emma L Bastow
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Amber R Peswani
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Daniel S J Tarrant
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Daniel R Pentland
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Xi Chen
- Institute of Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Alan Morgan
- Institute of Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Gemma L Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Jennifer M Tullet
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Michelle L Rowe
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Mark J Howard
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Campbell W Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|
18
|
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) or motor neuron disease is a rapidly progressive neurodegenerative disorder. The primary involvement is of motor neurons in the brain, spinal cord and peripherally. There is secondary weakness of muscles and primary involvement of other brain regions, especially involving cognition. SOURCES OF DATA Peer-reviewed journal articles and reviews. PubMed.gov AREAS OF AGREEMENT The pathogenesis of ALS remains largely unknown. There are a wide range of potential mechanisms related to neurodegeneration. An increasing number of genetic factors are recognized. AREAS OF CONTROVERSY There remains controversy, or lack of knowledge, in explaining how cellular events manifest as the complex human disease. There is controversy as to how well cellular and animal models of disease relate to the human disease. GROWING POINTS Large-scale international collaborative genetic epidemiological studies are replacing local studies. Therapies related to pathogenesis remain elusive, with the greatest advances to date relating to provision of care (including multidisciplinary management) and supportive care (nutrition and respiratory support). AREAS TIMELY FOR DEVELOPING RESEARCH The identification of C9orf72 hexanucleotide repeats as the most frequent genetic background to ALS, and the association with frontotemporal dementia, gives the potential of a genetic background against which to study other risk factors, triggers and pathogenic mechanisms, and to develop potential therapies.
Collapse
Affiliation(s)
- Sarah Morgan
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Richard W Orrell
- Department of Clinical Neuroscience, UCL Institute of Neurology, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
19
|
Kepp KP. Alzheimer's disease due to loss of function: A new synthesis of the available data. Prog Neurobiol 2016; 143:36-60. [PMID: 27327400 DOI: 10.1016/j.pneurobio.2016.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/11/2022]
Abstract
Alzheimer's Disease (AD) is a highly complex disease involving a broad range of clinical, cellular, and biochemical manifestations that are currently not understood in combination. This has led to many views of AD, e.g. the amyloid, tau, presenilin, oxidative stress, and metal hypotheses. The amyloid hypothesis has dominated the field with its assumption that buildup of pathogenic β-amyloid (Aβ) peptide causes disease. This paradigm has been criticized, yet most data suggest that Aβ plays a key role in the disease. Here, a new loss-of-function hypothesis is synthesized that accounts for the anomalies of the amyloid hypothesis, e.g. the curious pathogenicity of the Aβ42/Aβ40 ratio, the loss of Aβ caused by presenilin mutation, the mixed phenotypes of APP mutations, the poor clinical-biochemical correlations for genetic variant carriers, and the failure of Aβ reducing drugs. The amyloid-loss view accounts for recent findings on the structure and chemical features of Aβ variants and their coupling to human patient data. The lost normal function of APP/Aβ is argued to be metal transport across neuronal membranes, a view with no apparent anomalies and substantially more explanatory power than the gain-of-function amyloid hypothesis. In the loss-of-function scenario, the central event of Aβ aggregation is interpreted as a loss of soluble, functional monomer Aβ rather than toxic overload of oligomers. Accordingly, new research models and treatment strategies should focus on remediation of the functional amyloid balance, rather than strict containment of Aβ, which, for reasons rationalized in this review, has failed clinically.
Collapse
Affiliation(s)
- Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
20
|
Delineating the relationship between amyotrophic lateral sclerosis and frontotemporal dementia: Sequence and structure-based predictions. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1742-54. [PMID: 27318084 DOI: 10.1016/j.bbadis.2016.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/19/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are related neurodegenerative disorders which are characterized by a rapid decline in cognitive and motor functions, and short survival. Both syndromes may be present within the same family or even in the same person. The genetic findings for both diseases also support the existence of a continuum, with mutations in the same genes being found in patients with ALS, FTD or FTD/ALS. Little is known about the molecular mechanisms underlying the differences in mutations of the same protein causing either ALS or FTD. Here, we shed light on 348 ALS and FTD missense mutations in 14 genes focusing on genic intolerance and protein stability based on available 3D structures. Using EvoTol, we prioritized the disease-causing genes and their domain. The most intolerant genes predicted by EvoTol are SQSTM1 and OPTN which are involved in protein homeostasis. Further, using ENCoM (Elastic Network Contact Model) that predicts stability based on vibrational entropy, we predicted that most of the missense mutations with destabilizing energies are in the structural regions that control the protein-protein interaction, and only a few mutations affect protein folding. We found a trend that energy changes are higher for ALS compared to FTD mutations. The stability of the ALS mutants correlated well with the duration of disease progression as compared to FTD-ALS mutants. This study provides a comprehensive understanding of the mechanism of ALS and illustrates the significance of structure-energy based studies in differentiating ALS and FTD mutations.
Collapse
|
21
|
Somavarapu AK, Kepp KP. Loss of stability and hydrophobicity of presenilin 1 mutations causing Alzheimer's disease. J Neurochem 2016; 137:101-11. [PMID: 26756738 DOI: 10.1111/jnc.13535] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022]
Abstract
Nearly 200 mutations in the gene coding for presenilin 1 (PSEN1) cause early-onset Alzheimer's disease, yet the molecular mechanism remains obscure. As a meta-analysis, we compiled available clinical and biochemical data for PSEN1 variants and correlated these to chemical properties of the mutants. We found statistically significant relationships between relative Aβ42 levels and clinical age of onset. We then computed chemical properties of the mutants from a variety of computational chemistry tools. Relative Aβ42 levels correlated significantly (95% confidence or more from p-values of linear regression) with loss of hydrophobicity for four different regression analyses (squared correlation coefficient of linear regression R(2) of 0.41-0.53) and with increased polarity (R(2) = 0.47, 0.59) and loss of protein stability (R(2) = 0.39, 0.63) for two independent data sets. Age of onset of patients carrying PSEN1 variants correlated with increased polarity (R(2) = 0.49, 0.40) and loss of stability (R(2) = 0.75, 0.44) of the protein for both data sets. These relations suggest that mutants impair the membrane-associated structural integrity of presenilin by reducing hydrophobic membrane association and overall protein stability. This explains why the many mutations that spread out across the protein and far from the catalytic aspartates can cause disease. The identified molecular determinants of clinical age of symptom onset may be relevant to future presenilin-modulating therapies specifically directed towards increasing the structural integrity and packing of the protein. Close to 200 mutations in presenilin 1 (PSEN1) cause Alzheimer's disease, but the biochemical relating these to disease remains debated. The chemical properties of PSEN1 variants were computed and correlated against clinical age of symptom onset. Loss of stability and hydrophobicity and gain of polarity relate to disease onset, suggesting that mutants impair the membrane structure of PSEN1 and that therapies should increase PSEN1 structural integrity.
Collapse
Affiliation(s)
| | - Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, Kongens Lyngby, Denmark
| |
Collapse
|