1
|
Genome-wide mapping of genomic DNA damage: methods and implications. Cell Mol Life Sci 2021; 78:6745-6762. [PMID: 34463773 PMCID: PMC8558167 DOI: 10.1007/s00018-021-03923-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
Exposures from the external and internal environments lead to the modification of genomic DNA, which is implicated in the cause of numerous diseases, including cancer, cardiovascular, pulmonary and neurodegenerative diseases, together with ageing. However, the precise mechanism(s) linking the presence of damage, to impact upon cellular function and pathogenesis, is far from clear. Genomic location of specific forms of damage is likely to be highly informative in understanding this process, as the impact of downstream events (e.g. mutation, microsatellite instability, altered methylation and gene expression) on cellular function will be positional—events at key locations will have the greatest impact. However, until recently, methods for assessing DNA damage determined the totality of damage in the genomic location, with no positional information. The technique of “mapping DNA adductomics” describes the molecular approaches that map a variety of forms of DNA damage, to specific locations across the nuclear and mitochondrial genomes. We propose that integrated comparison of this information with other genome-wide data, such as mutational hotspots for specific genotoxins, tumour-specific mutation patterns and chromatin organisation and transcriptional activity in non-cancerous lesions (such as nevi), pre-cancerous conditions (such as polyps) and tumours, will improve our understanding of how environmental toxins lead to cancer. Adopting an analogous approach for non-cancer diseases, including the development of genome-wide assays for other cellular outcomes of DNA damage, will improve our understanding of the role of DNA damage in pathogenesis more generally.
Collapse
|
2
|
Sajid A, Lalani EN, Chen B, Hashimoto T, Griffin DK, Bhartiya A, Thompson G, Robinson IK, Yusuf M. Ultra-Structural Imaging Provides 3D Organization of 46 Chromosomes of a Human Lymphocyte Prophase Nucleus. Int J Mol Sci 2021; 22:ijms22115987. [PMID: 34206020 PMCID: PMC8198510 DOI: 10.3390/ijms22115987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022] Open
Abstract
Three dimensional (3D) ultra-structural imaging is an important tool for unraveling the organizational structure of individual chromosomes at various stages of the cell cycle. Performing hitherto uninvestigated ultra-structural analysis of the human genome at prophase, we used serial block-face scanning electron microscopy (SBFSEM) to understand chromosomal architectural organization within 3D nuclear space. Acquired images allowed us to segment, reconstruct, and extract quantitative 3D structural information about the prophase nucleus and the preserved, intact individual chromosomes within it. Our data demonstrate that each chromosome can be identified with its homolog and classified into respective cytogenetic groups. Thereby, we present the first 3D karyotype built from the compact axial structure seen on the core of all prophase chromosomes. The chromosomes display parallel-aligned sister chromatids with familiar chromosome morphologies with no crossovers. Furthermore, the spatial positions of all 46 chromosomes revealed a pattern showing a gene density-based correlation and a neighborhood map of individual chromosomes based on their relative spatial positioning. A comprehensive picture of 3D chromosomal organization at the nanometer level in a single human lymphocyte cell is presented.
Collapse
Affiliation(s)
- Atiqa Sajid
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
| | - El-Nasir Lalani
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
| | - Bo Chen
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Key Laboratory of Performance Evolution and Control for Engineering Structures of the Ministry of Education, Tongji University, Shanghai 200092, China
| | - Teruo Hashimoto
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (T.H.); (G.T.)
| | | | - Archana Bhartiya
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
| | - George Thompson
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (T.H.); (G.T.)
| | - Ian K. Robinson
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mohammed Yusuf
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- Correspondence:
| |
Collapse
|
3
|
Ioannou D, Tempest HG. Human Sperm Chromosomes: To Form Hairpin-Loops, Or Not to Form Hairpin-Loops, That Is the Question. Genes (Basel) 2019; 10:genes10070504. [PMID: 31277336 PMCID: PMC6678829 DOI: 10.3390/genes10070504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genomes are non-randomly organized within the interphase nucleus; and spermatozoa are proposed to have a unique hairpin-loop configuration, which has been hypothesized to be critical for the ordered exodus of the paternal genome following fertilization. Recent studies suggest that the hairpin-loop model of sperm chromatin organization is more segmentally organized. The purpose of this study is to examine the 3D organization and hairpin-loop configurations of chromosomes in human spermatozoa. METHODS Three-color sperm-fluorescence in-situ hybridization was utilized against the centromeres, and chromosome p- and q-arms of eight chromosomes from five normozoospermic donors. Wide-field fluorescence microscopy and 3D modelling established the radial organization and hairpin-loop chromosome configurations in spermatozoa. RESULTS All chromosomes possessed reproducible non-random radial organization (p < 0.05) and formed discrete hairpin-loop configurations. However, chromosomes preferentially formed narrow or wide hairpin-loops. We did not find evidence to support the existence of a centralized chromocenter(s) with centromeres being more peripherally localized than one or both of their respective chromosome arms. CONCLUSION This provides further evidence to support a more segmental organization of chromatin in the human sperm nucleus. This may be of significance for fertilization and early embryogenesis as specific genomic regions are likely to be exposed, remodeled, and activated first, following fertilization.
Collapse
Affiliation(s)
- Dimitrios Ioannou
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Helen G Tempest
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
4
|
Ravi M, Ramanathan S, Krishna K. Factors, mechanisms and implications of chromatin condensation and chromosomal structural maintenance through the cell cycle. J Cell Physiol 2019; 235:758-775. [PMID: 31264212 DOI: 10.1002/jcp.29038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
A series of well-orchestrated events help in the chromatin condensation and the formation of chromosomes. Apart from the formation of chromosomes, maintenance of their structure is important, especially for the cell division. The structural maintenance of chromosome (SMC) proteins, the non-SMC proteins and the SMC complexes are critical for the maintenance of chromosome structure. While condensins have roles for the DNA compaction, organization, and segregation, the cohesin functions in a cyclic manner through the cell cycle, as a "cohesin cycle." Specific mechanisms maintain the architecture of the centromere, the kinetochore and the telomeres which are in tandem with the cell cycle checkpoints. The presence of chromosomal territories and compactness differences through the length of the chromosomes might have implications on selective susceptibility of specific chromosomes for induced genotoxicity.
Collapse
Affiliation(s)
- Maddaly Ravi
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Srishti Ramanathan
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Krupa Krishna
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
5
|
Ioannou D, Tempest HG. Does genome organization matter in spermatozoa? A refined hypothesis to awaken the silent vessel. Syst Biol Reprod Med 2018; 64:518-534. [DOI: 10.1080/19396368.2017.1421278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dimitrios Ioannou
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- IVF Florida Reproductive Associates, Margate, FL, USA
| | - Helen G. Tempest
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
6
|
Ioannou D, Millan NM, Jordan E, Tempest HG. A new model of sperm nuclear architecture following assessment of the organization of centromeres and telomeres in three-dimensions. Sci Rep 2017; 7:41585. [PMID: 28139771 PMCID: PMC5282497 DOI: 10.1038/srep41585] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 12/21/2016] [Indexed: 01/01/2023] Open
Abstract
The organization of chromosomes in sperm nuclei has been proposed to possess a unique “hairpin-loop” arrangement, which is hypothesized to aid in the ordered exodus of the paternal genome following fertilization. This study simultaneously assessed the 3D and 2D radial and longitudinal organization of telomeres, centromeres, and investigated whether chromosomes formed the same centromere clusters in sperm cells. Reproducible radial and longitudinal non-random organization was observed for all investigated loci using both 3D and 2D approaches in multiple subjects. We report novel findings, with telomeres and centromeres being localized throughout the nucleus but demonstrating roughly a 1:1 distribution in the nuclear periphery and the intermediate regions with <15% occupying the nuclear interior. Telomeres and centromeres were observed to aggregate in sperm nuclei, forming an average of 20 and 7 clusters, respectively. Reproducible
longitudinal organization demonstrated preferential localization of telomeres and centromeres in the mid region of the sperm cell. Preliminary evidence is also provided to support the hypothesis that specific chromosomes preferentially form the same centromere clusters. The more segmental distribution of telomeres and centromeres as described in this study could more readily accommodate and facilitate the sequential exodus of paternal chromosomes following fertilization.
Collapse
Affiliation(s)
- Dimitrios Ioannou
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Nicole M Millan
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Elizabeth Jordan
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Helen G Tempest
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
7
|
Meaburn KJ. Spatial Genome Organization and Its Emerging Role as a Potential Diagnosis Tool. Front Genet 2016; 7:134. [PMID: 27507988 PMCID: PMC4961005 DOI: 10.3389/fgene.2016.00134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells the genome is highly spatially organized. Functional relevance of higher order genome organization is implied by the fact that specific genes, and even whole chromosomes, alter spatial position in concert with functional changes within the nucleus, for example with modifications to chromatin or transcription. The exact molecular pathways that regulate spatial genome organization and the full implication to the cell of such an organization remain to be determined. However, there is a growing realization that the spatial organization of the genome can be used as a marker of disease. While global genome organization patterns remain largely conserved in disease, some genes and chromosomes occupy distinct nuclear positions in diseased cells compared to their normal counterparts, with the patterns of reorganization differing between diseases. Importantly, mapping the spatial positioning patterns of specific genomic loci can distinguish cancerous tissue from benign with high accuracy. Genome positioning is an attractive novel biomarker since additional quantitative biomarkers are urgently required in many cancer types. Current diagnostic techniques are often subjective and generally lack the ability to identify aggressive cancer from indolent, which can lead to over- or under-treatment of patients. Proof-of-principle for the use of genome positioning as a diagnostic tool has been provided based on small scale retrospective studies. Future large-scale studies are required to assess the feasibility of bringing spatial genome organization-based diagnostics to the clinical setting and to determine if the positioning patterns of specific loci can be useful biomarkers for cancer prognosis. Since spatial reorganization of the genome has been identified in multiple human diseases, it is likely that spatial genome positioning patterns as a diagnostic biomarker may be applied to many diseases.
Collapse
Affiliation(s)
- Karen J. Meaburn
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
8
|
Loucas BD, Shuryak I, Cornforth MN. Three-Color Chromosome Painting as Seen through the Eyes of mFISH: Another Look at Radiation-Induced Exchanges and Their Conversion to Whole-Genome Equivalency. Front Oncol 2016; 6:52. [PMID: 27014627 PMCID: PMC4791380 DOI: 10.3389/fonc.2016.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/22/2016] [Indexed: 01/25/2023] Open
Abstract
Whole-chromosome painting (WCP) typically involves the fluorescent staining of a small number of chromosomes. Consequently, it is capable of detecting only a fraction of exchanges that occur among the full complement of chromosomes in a genome. Mathematical corrections are commonly applied to WCP data in order to extrapolate the frequency of exchanges occurring in the entire genome [whole-genome equivalency (WGE)]. However, the reliability of WCP to WGE extrapolations depends on underlying assumptions whose conditions are seldom met in actual experimental situations, in particular the presumed absence of complex exchanges. Using multi-fluor fluorescence in situ hybridization (mFISH), we analyzed the induction of simple exchanges produced by graded doses of 137Cs gamma rays (0–4 Gy), and also 1.1 GeV 56Fe ions (0–1.5 Gy). In order to represent cytogenetic damage as it would have appeared to the observer following standard three-color WCP, all mFISH information pertaining to exchanges that did not specifically involve chromosomes 1, 2, or 4 was ignored. This allowed us to reconstruct dose–responses for three-color apparently simple (AS) exchanges. Using extrapolation methods similar to those derived elsewhere, these were expressed in terms of WGE for comparison to mFISH data. Based on AS events, the extrapolated frequencies systematically overestimated those actually observed by mFISH. For gamma rays, these errors were practically independent of dose. When constrained to a relatively narrow range of doses, the WGE corrections applied to both 56Fe and gamma rays predicted genome-equivalent damage with a level of accuracy likely sufficient for most applications. However, the apparent accuracy associated with WCP to WGE corrections is both fortuitous and misleading. This is because (in normal practice) such corrections can only be applied to AS exchanges, which are known to include complex aberrations in the form of pseudosimple exchanges. When WCP to WGE corrections are applied to true simple exchanges, the results are less than satisfactory, leading to extrapolated values that underestimate the true WGE response by unacceptably large margins. Likely explanations for these results are discussed, as well as their implications for radiation protection. Thus, in seeming contradiction to notion that complex aberrations be avoided altogether in WGE corrections – and in violation of assumptions upon which these corrections are based – their inadvertent inclusion in three-color WCP data is actually required in order for them to yield even marginally acceptable results.
Collapse
Affiliation(s)
- Bradford D Loucas
- Department of Radiation Oncology, University of Texas Medical Branch , Galveston, TX , USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University , New York, NY , USA
| | - Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch , Galveston, TX , USA
| |
Collapse
|
9
|
Abdullah A, Sane S, Freeling JL, Wang H, Zhang D, Rezvani K. Nucleocytoplasmic Translocation of UBXN2A Is Required for Apoptosis during DNA Damage Stresses in Colon Cancer Cells. J Cancer 2015; 6:1066-78. [PMID: 26516353 PMCID: PMC4615341 DOI: 10.7150/jca.12134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 08/02/2015] [Indexed: 12/12/2022] Open
Abstract
The subcellular localization, expression level, and activity of anti-cancer proteins alter in response to intrinsic and extrinsic cellular stresses to reverse tumor progression. The purpose of this study is to determine whether UBXN2A, an activator of the p53 tumor suppressor protein, has different subcellular compartmentalization in response to the stress of DNA damage. We measured trafficking of the UBXN2A protein in response to two different DNA damage stresses, UVB irradiation and the genotoxic agent Etoposide, in colon cancer cell lines. Using a cytosol-nuclear fractionation technique followed by western blot and immunofluorescence staining, we monitored and quantitated UBXN2A and p53 proteins as well as p53's downstream apoptotic pathway. We showed that the anti-cancer protein UBXN2A acts in the early phase of cell response to two different DNA damage stresses, being induced to translocate into the cytoplasm in a dose- and time-dependent manner. UVB-induced cytoplasmic UBXN2A binds to mortalin-2 (mot-2), a known oncoprotein in colon tumors. UVB-dependent upregulation of UBXN2A in the cytoplasm decreases p53 binding to mot-2 and activates apoptotic events in colon cancer cells. In contrast, the shRNA-mediated depletion of UBXN2A leads to significant reduction in apoptosis in colon cancer cells exposed to UVB and Etoposide. Leptomycin B (LMB), which was able to block UBXN2A nuclear export following Etoposide treatment, sustained p53-mot-2 interaction and had partially antagonistic effects with Etoposide on cell apoptosis. The present study shows that nucleocytoplasmic translocation of UBXN2A in response to stresses is necessary for its anti-cancer function in the cytoplasm. In addition, LMB-dependent suppression of UBXN2A's translocation to the cytoplasm upon stress allows the presence of an active mot-2 oncoprotein in the cytoplasm, resulting in p53 sequestration as well as activation of other mot-2-dependent growth promoting pathways.
Collapse
Affiliation(s)
- Ammara Abdullah
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Sanam Sane
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Jessica L Freeling
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Hongmin Wang
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Dong Zhang
- 2. Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd., P.O. Box 8000, Old Westbury, NY 11568-8000, USA
| | - Khosrow Rezvani
- 1. Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| |
Collapse
|
10
|
Ioannou D, Kandukuri L, Simpson JL, Tempest HG. Chromosome territory repositioning induced by PHA-activation of lymphocytes: A 2D and 3D appraisal. Mol Cytogenet 2015; 8:47. [PMID: 26146516 PMCID: PMC4490598 DOI: 10.1186/s13039-015-0146-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/14/2015] [Indexed: 11/26/2022] Open
Abstract
Background Genomes and by extension chromosome territories (CTs) in a variety of organisms exhibit nonrandom organization within interphase nuclei. CTs are susceptible to movement upon induction by a variety of stimuli, including: cell differentiation, growth factors, genotoxic agents, proliferating status, and stimulants that induce novel transcription profiles. These findings suggest nuclear architecture can undergo reorganization, providing support for a functional significance of CT organization. The effect of the initiation of transcription on global scale chromatin architecture has been underexplored. This study investigates the organization of all 24 human chromosomes in lymphocytes from two individuals in resting and phytohaemagglutinin activated lymphocytes using 2D and 3D approaches. Results The radial organization of CTs in lymphocytes in both resting and activated lymphocytes follows a gene-density pattern. However, CT organization in activated nuclei appears less constrained exhibiting a more random organization. We report differences in the spatial relationship between homologous and heterologous CTs in activated nuclei. In addition, a reproducible radial hierarchy of CTs was identified and evidence of a CT repositioning was observed in activated nuclei using both 2D and 3D approaches. Conclusions Alterations between resting and activated lymphocytes could be adaptation of CTs to the new transcription profile and possibly the formation of new neighborhoods of interest or interaction of CTs with nuclear landmarks. The increased distances between homologous and heterologous CTs in activated lymphocytes could be a reflection of a defensive mechanism to reduce potential interaction to prevent any structural chromosome abnormalities (e.g. translocations) as a result of DNA damage that increases during lymphocyte activation.
Collapse
Affiliation(s)
- Dimitrios Ioannou
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| | - Lakshmi Kandukuri
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA ; Present address Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR) Uppal Road, Hyderabad, 500 007 India
| | - Joe Leigh Simpson
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA
| | - Helen Ghislaine Tempest
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 USA ; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| |
Collapse
|