1
|
Šetinc M, Celinšćak Ž, Bočkor L, Zajc Petranović M, Stojanović Marković A, Peričić Salihović M, Deelen J, Škarić-Jurić T. The role of longevity-related genetic variant interactions as predictors of survival after 85 years of age. Mech Ageing Dev 2024; 219:111926. [PMID: 38484896 PMCID: PMC11166054 DOI: 10.1016/j.mad.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Genome-wide association studies and candidate gene studies have identified several genetic variants that might play a role in achieving longevity. This study investigates interactions between pairs of those single nucleotide polymorphisms (SNPs) and their effect on survival above the age of 85 in a sample of 327 Croatian individuals. Although none of the SNPs individually showed a significant effect on survival in this sample, 14 of the 359 interactions tested (between SNPs not in LD) reached the level of nominal significance (p<0.05), showing a potential effect on late-life survival. Notably, SH2B3 rs3184504 interacted with different SNPs near TERC, TP53 rs1042522 with different SNPs located near the CDKN2B gene, and CDKN2B rs1333049 with different SNPs in FOXO3, as well as with LINC02227 rs2149954. The other interaction pairs with a possible effect on survival were FOXO3 rs2802292 and ERCC2 rs50871, IL6 rs1800795 and GHRHR rs2267723, LINC02227 rs2149954 and PARK7 rs225119, as well as PARK7 rs225119 and PTPN1 rs6067484. These interactions remained significant when tested together with a set of health-related variables that also had a significant effect on survival above 85 years. In conclusion, our results confirm the central role of genetic regulation of insulin signalling and cell cycle control in longevity.
Collapse
Affiliation(s)
- Maja Šetinc
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia.
| | | | - Luka Bočkor
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia
| | | | | | | | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.
| | | |
Collapse
|
2
|
Song P, Li X, Yuan X, Pang L, Song X, Wang Y. Identifying frequency-dependent imaging genetic associations via hypergraph-structured multi-task sparse canonical correlation analysis. Comput Biol Med 2024; 171:108051. [PMID: 38335819 DOI: 10.1016/j.compbiomed.2024.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Identifying complex associations between genetic variations and imaging phenotypes is a challenging task in the research of brain imaging genetics. The previous study has proved that neuronal oscillations within distinct frequency bands are derived from frequency-dependent genetic modulation. Thus it is meaningful to explore frequency-dependent imaging genetic associations, which may give important insights into the pathogenesis of brain disorders. In this work, the hypergraph-structured multi-task sparse canonical correlation analysis (HS-MTSCCA) was developed to explore the associations between multi-frequency imaging phenotypes and single-nucleotide polymorphisms (SNPs). Specifically, we first created a hypergraph for the imaging phenotypes of each frequency and the SNPs, respectively. Then, a new hypergraph-structured constraint was proposed to learn high-order relationships among features in each hypergraph, which can introduce biologically meaningful information into the model. The frequency-shared and frequency-specific imaging phenotypes and SNPs could be identified using the multi-task learning framework. We also proposed a useful strategy to tackle this algorithm and then demonstrated its convergence. The proposed method was evaluated on four simulation datasets and a real schizophrenia dataset. The experimental results on synthetic data showed that HS-MTSCCA outperforms the other competing methods according to canonical correlation coefficients, canonical weights, and cosine similarity. And the results on real data showed that HS-MTSCCA could obtain superior canonical coefficients and canonical weights. Furthermore, the identified frequency-shared and frequency-specific biomarkers could provide more interesting and meaningful information, demonstrating that HS-MTSCCA is a powerful method for brain imaging genetics.
Collapse
Affiliation(s)
- Peilun Song
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xue Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lijuan Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yaping Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Yaldız B, Erdoğan O, Rafatov S, Iyigün C, Aydın Son Y. Revealing third-order interactions through the integration of machine learning and entropy methods in genomic studies. BioData Min 2024; 17:3. [PMID: 38291454 PMCID: PMC10826120 DOI: 10.1186/s13040-024-00355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Non-linear relationships at the genotype level are essential in understanding the genetic interactions of complex disease traits. Genome-wide association Studies (GWAS) have revealed statistical association of the SNPs in many complex diseases. As GWAS results could not thoroughly reveal the genetic background of these disorders, Genome-Wide Interaction Studies have started to gain importance. In recent years, various statistical approaches, such as entropy-based methods, have been suggested for revealing these non-additive interactions between variants. This study presents a novel prioritization workflow integrating two-step Random Forest (RF) modeling and entropy analysis after PLINK filtering. PLINK-RF-RF workflow is followed by an entropy-based 3-way interaction information (3WII) method to capture the hidden patterns resulting from non-linear relationships between genotypes in Late-Onset Alzheimer Disease to discover early and differential diagnosis markers. RESULTS Three models from different datasets are developed by integrating PLINK-RF-RF analysis and entropy-based three-way interaction information (3WII) calculation method, which enables the detection of the third-order interactions, which are not primarily considered in epistatic interaction studies. A reduced SNP set is selected for all three datasets by 3WII analysis by PLINK filtering and prioritization of SNP with RF-RF modeling, promising as a model minimization approach. Among SNPs revealed by 3WII, 4 SNPs out of 19 from GenADA, 1 SNP out of 27 from ADNI, and 4 SNPs out of 106 from NCRAD are mapped to genes directly associated with Alzheimer Disease. Additionally, several SNPs are associated with other neurological disorders. Also, the genes the variants mapped to in all datasets are significantly enriched in calcium ion binding, extracellular matrix, external encapsulating structure, and RUNX1 regulates estrogen receptor-mediated transcription pathways. Therefore, these functional pathways are proposed for further examination for a possible LOAD association. Besides, all 3WII variants are proposed as candidate biomarkers for the genotyping-based LOAD diagnosis. CONCLUSION The entropy approach performed in this study reveals the complex genetic interactions that significantly contribute to LOAD risk. We benefited from the entropy-based 3WII as a model minimization step and determined the significant 3-way interactions between the prioritized SNPs by PLINK-RF-RF. This framework is a promising approach for disease association studies, which can also be modified by integrating other machine learning and entropy-based interaction methods.
Collapse
Affiliation(s)
- Burcu Yaldız
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey
| | - Onur Erdoğan
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey
| | - Sevda Rafatov
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey
| | - Cem Iyigün
- Department of Industrial Engineering, METU, Ankara, Turkey
| | - Yeşim Aydın Son
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey.
- Graduate School of Informatics, ODTU-NOROM, METU, Ankara, Turkey.
| |
Collapse
|
4
|
MDSN: A Module Detection Method for Identifying High-Order Epistatic Interactions. Genes (Basel) 2022; 13:genes13122403. [PMID: 36553670 PMCID: PMC9778340 DOI: 10.3390/genes13122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Epistatic interactions are referred to as SNPs (single nucleotide polymorphisms) that affect disease development and trait expression nonlinearly, and hence identifying epistatic interactions plays a great role in explaining the pathogenesis and genetic heterogeneity of complex diseases. Many methods have been proposed for epistasis detection; nevertheless, they mainly focus on low-order epistatic interactions, two-order or three-order for instance, and often ignore high-order interactions due to computational burden. In this paper, a module detection method called MDSN is proposed for identifying high-order epistatic interactions. First, an SNP network is constructed by a construction strategy of interaction complementary, which consists of low-order SNP interactions that can be obtained from fast computations. Then, a node evaluation measure that integrates multi-topological features is proposed to improve the node expansion algorithm, where the importance of a node is comprehensively evaluated by the topological characteristics of the neighborhood. Finally, modules are detected in the constructed SNP network, which have high-order epistatic interactions associated with the disease. The MDSN was compared with four state-of-the-art methods on simulation datasets and a real Age-related Macular Degeneration dataset. The results demonstrate that MDSN has higher performance on detecting high-order interactions.
Collapse
|
5
|
Kunert-Graf JM, Sakhanenko NA, Galas DJ. Optimized permutation testing for information theoretic measures of multi-gene interactions. BMC Bioinformatics 2021; 22:180. [PMID: 33827420 PMCID: PMC8028212 DOI: 10.1186/s12859-021-04107-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background Permutation testing is often considered the “gold standard” for multi-test significance analysis, as it is an exact test requiring few assumptions about the distribution being computed. However, it can be computationally very expensive, particularly in its naive form in which the full analysis pipeline is re-run after permuting the phenotype labels. This can become intractable in multi-locus genome-wide association studies (GWAS), in which the number of potential interactions to be tested is combinatorially large. Results In this paper, we develop an approach for permutation testing in multi-locus GWAS, specifically focusing on SNP–SNP-phenotype interactions using multivariable measures that can be computed from frequency count tables, such as those based in Information Theory. We find that the computational bottleneck in this process is the construction of the count tables themselves, and that this step can be eliminated at each iteration of the permutation testing by transforming the count tables directly. This leads to a speed-up by a factor of over 103 for a typical permutation test compared to the naive approach. Additionally, this approach is insensitive to the number of samples making it suitable for datasets with large number of samples. Conclusions The proliferation of large-scale datasets with genotype data for hundreds of thousands of individuals enables new and more powerful approaches for the detection of multi-locus genotype-phenotype interactions. Our approach significantly improves the computational tractability of permutation testing for these studies. Moreover, our approach is insensitive to the large number of samples in these modern datasets. The code for performing these computations and replicating the figures in this paper is freely available at https://github.com/kunert/permute-counts.
Collapse
Affiliation(s)
- James M Kunert-Graf
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA, 98122, USA.
| | | | - David J Galas
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA, 98122, USA
| |
Collapse
|
6
|
Blood-Based Biomarkers for Predicting the Risk for Five-Year Incident Coronary Heart Disease in the Framingham Heart Study via Machine Learning. Genes (Basel) 2018; 9:genes9120641. [PMID: 30567402 PMCID: PMC6315411 DOI: 10.3390/genes9120641] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022] Open
Abstract
An improved approach for predicting the risk for incident coronary heart disease (CHD) could lead to substantial improvements in cardiovascular health. Previously, we have shown that genetic and epigenetic loci could predict CHD status more sensitively than conventional risk factors. Herein, we examine whether similar machine learning approaches could be used to develop a similar panel for predicting incident CHD. Training and test sets consisted of 1180 and 524 individuals, respectively. Data mining techniques were employed to mine for predictive biosignatures in the training set. An ensemble of Random Forest models consisting of four genetic and four epigenetic loci was trained on the training set and subsequently evaluated on the test set. The test sensitivity and specificity were 0.70 and 0.74, respectively. In contrast, the Framingham risk score and atherosclerotic cardiovascular disease (ASCVD) risk estimator performed with test sensitivities of 0.20 and 0.38, respectively. Notably, the integrated genetic-epigenetic model predicted risk better for both genders and very well in the three-year risk prediction window. We describe a novel DNA-based precision medicine tool capable of capturing the complex genetic and environmental relationships that contribute to the risk of CHD, and being mapped to actionable risk factors that may be leveraged to guide risk modification efforts.
Collapse
|
7
|
Abstract
Genome-wide association studies are moving to genome-wide interaction studies, as the genetic background of many diseases appears to be more complex than previously supposed. Thus, many statistical approaches have been proposed to detect gene-gene (GxG) interactions, among them numerous information theory-based methods, inspired by the concept of entropy. These are suggested as particularly powerful and, because of their nonlinearity, as better able to capture nonlinear relationships between genetic variants and/or variables. However, the introduced entropy-based estimators differ to a surprising extent in their construction and even with respect to the basic definition of interactions. Also, not every entropy-based measure for interaction is accompanied by a proper statistical test. To shed light on this, a systematic review of the literature is presented answering the following questions: (1) How are GxG interactions defined within the framework of information theory? (2) Which entropy-based test statistics are available? (3) Which underlying distribution do the test statistics follow? (4) What are the given strengths and limitations of these test statistics?
Collapse
Affiliation(s)
| | - Inke R König
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, Lübeck, Germany
- Corresponding author. Inke R. Konig, Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany. Tel.: ++49 451 500 50610; Fax: ++49 451 500 50604; E-Mail:
| |
Collapse
|
8
|
Dato S, Soerensen M, De Rango F, Rose G, Christensen K, Christiansen L, Passarino G. The genetic component of human longevity: New insights from the analysis of pathway-based SNP-SNP interactions. Aging Cell 2018; 17:e12755. [PMID: 29577582 PMCID: PMC5946073 DOI: 10.1111/acel.12755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 01/24/2023] Open
Abstract
In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin‐like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1,089 unrelated nonagenarians from the Danish 1905 Birth Cohort Study and 736 Danish controls aged 46–55 years) for evaluating synergic interactions by SNPsyn. Synergies were further tested by the multidimensional reduction (MDR) approach, both intra‐ and interpathways. The best combinations (FDR<0.0001) resulted those encompassing IGF1R‐rs12437963 and PTPN1‐rs6067484, TP53‐rs2078486 and ERCC2‐rs50871, TXNRD1‐rs17202060 and TP53‐rs2078486, the latter two supporting a central role of TP53 in mediating the concerted activation of the DNA repair and pro‐antioxidant pathways in human longevity. Results were consistently replicated with both approaches, as well as a significant effect on longevity was found for the GHSR gene, which also interacts with partners belonging to both IIS and DNA repair pathways (PAPPA,PTPN1,PARK7, MRE11A). The combination GHSR‐MREA11, positively associated with longevity by MDR, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP‐SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes of additional networks involved in human longevity.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Rende Italy
| | - Mette Soerensen
- The Danish Aging Research Center, Epidemiology, Biostatistics and Biodemography; Institute of Public Health; University of Southern Denmark; Odense C Denmark
- Department of Clinical Genetics; Odense University Hospital; Odense C Denmark
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Rende Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Rende Italy
| | - Kaare Christensen
- The Danish Aging Research Center, Epidemiology, Biostatistics and Biodemography; Institute of Public Health; University of Southern Denmark; Odense C Denmark
- Department of Clinical Genetics; Odense University Hospital; Odense C Denmark
| | - Lene Christiansen
- The Danish Aging Research Center, Epidemiology, Biostatistics and Biodemography; Institute of Public Health; University of Southern Denmark; Odense C Denmark
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Rende Italy
| |
Collapse
|
9
|
Uppu S, Krishna A, Gopalan RP. A Review on Methods for Detecting SNP Interactions in High-Dimensional Genomic Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:599-612. [PMID: 28060710 DOI: 10.1109/tcbb.2016.2635125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this era of genome-wide association studies (GWAS), the quest for understanding the genetic architecture of complex diseases is rapidly increasing more than ever before. The development of high throughput genotyping and next generation sequencing technologies enables genetic epidemiological analysis of large scale data. These advances have led to the identification of a number of single nucleotide polymorphisms (SNPs) responsible for disease susceptibility. The interactions between SNPs associated with complex diseases are increasingly being explored in the current literature. These interaction studies are mathematically challenging and computationally complex. These challenges have been addressed by a number of data mining and machine learning approaches. This paper reviews the current methods and the related software packages to detect the SNP interactions that contribute to diseases. The issues that need to be considered when developing these models are addressed in this review. The paper also reviews the achievements in data simulation to evaluate the performance of these models. Further, it discusses the future of SNP interaction analysis.
Collapse
|
10
|
Chen Q, Mao X, Zhang Z, Zhu R, Yin Z, Leng Y, Yu H, Jia H, Jiang S, Ni Z, Jiang H, Han X, Liu C, Hu Z, Wu X, Hu G, Xin D, Qi Z. SNP-SNP Interaction Analysis on Soybean Oil Content under Multi-Environments. PLoS One 2016; 11:e0163692. [PMID: 27668866 PMCID: PMC5036806 DOI: 10.1371/journal.pone.0163692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/13/2016] [Indexed: 11/22/2022] Open
Abstract
Soybean oil content is one of main quality traits. In this study, we used the multifactor dimensionality reduction (MDR) method and a soybean high-density genetic map including 5,308 markers to identify stable single nucleotide polymorphism (SNP)—SNP interactions controlling oil content in soybean across 23 environments. In total, 36,442,756 SNP-SNP interaction pairs were detected, 1865 of all interaction pairs associated with soybean oil content were identified under multiple environments by the Bonferroni correction with p <3.55×10−11. Two and 1863 SNP-SNP interaction pairs detected stable across 12 and 11 environments, respectively, which account around 50% of total environments. Epistasis values and contribution rates of stable interaction (the SNP interaction pairs were detected in more than 2 environments) pairs were detected by the two way ANOVA test, the available interaction pairs were ranged 0.01 to 0.89 and from 0.01 to 0.85, respectively. Some of one side of the interaction pairs were identified with previously research as a major QTL without epistasis effects. The results of this study provide insights into the genetic architecture of soybean oil content and can serve as a basis for marker-assisted selection breeding.
Collapse
Affiliation(s)
- Qingshan Chen
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Xinrui Mao
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Zhanguo Zhang
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Rongsheng Zhu
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Zhengong Yin
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
- Crop Breeding Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, People’s Republic of China
| | - Yue Leng
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Hongxiao Yu
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Huiying Jia
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Shanshan Jiang
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Zhongqiu Ni
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Hongwei Jiang
- The Crop Research and Breeding Center of Land-Reclamation of Heilongjiang Province, Harbin, 150090, Heilongjiang, People’s Republic of China
| | - Xue Han
- The Crop Research and Breeding Center of Land-Reclamation of Heilongjiang Province, Harbin, 150090, Heilongjiang, People’s Republic of China
| | - Chunyan Liu
- The Crop Research and Breeding Center of Land-Reclamation of Heilongjiang Province, Harbin, 150090, Heilongjiang, People’s Republic of China
| | - Zhenbang Hu
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Xiaoxia Wu
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
| | - Guohua Hu
- The Crop Research and Breeding Center of Land-Reclamation of Heilongjiang Province, Harbin, 150090, Heilongjiang, People’s Republic of China
| | - Dawei Xin
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
- * E-mail: (DX); (ZQ)
| | - Zhaoming Qi
- College of Agriculture, Soybean biology Key Laboratory of the Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People’s Republic of China
- * E-mail: (DX); (ZQ)
| |
Collapse
|