2
|
Patel J, Bircan E, Tang X, Orloff M, Hobbs CA, Browne ML, Botto LD, Finnell RH, Jenkins MM, Olshan A, Romitti PA, Shaw GM, Werler MM, Li J, Nembhard WN. Paternal genetic variants and risk of obstructive heart defects: A parent-of-origin approach. PLoS Genet 2021; 17:e1009413. [PMID: 33684136 PMCID: PMC7971842 DOI: 10.1371/journal.pgen.1009413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/18/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Previous research on risk factors for obstructive heart defects (OHDs) focused on maternal and infant genetic variants, prenatal environmental exposures, and their potential interaction effects. Less is known about the role of paternal genetic variants or environmental exposures and risk of OHDs. We examined parent-of-origin effects in transmission of alleles in the folate, homocysteine, or transsulfuration pathway genes on OHD occurrence in offspring. We used data on 569 families of liveborn infants with OHDs born between October 1997 and August 2008 from the National Birth Defects Prevention Study to conduct a family-based case-only study. Maternal, paternal, and infant DNA were genotyped using an Illumina Golden Gate custom single nucleotide polymorphism (SNP) panel. Relative risks (RR), 95% confidence interval (CI), and likelihood ratio tests from log-linear models were used to estimate the parent-of-origin effect of 877 SNPs in 60 candidate genes in the folate, homocysteine, and transsulfuration pathways on the risk of OHDs. Bonferroni correction was applied for multiple testing. We identified 3 SNPs in the transsulfuration pathway and 1 SNP in the folate pathway that were statistically significant after Bonferroni correction. Among infants who inherited paternally-derived copies of the G allele for rs6812588 in the RFC1 gene, the G allele for rs1762430 in the MGMT gene, and the A allele for rs9296695 and rs4712023 in the GSTA3 gene, RRs for OHD were 0.11 (95% CI: 0.04, 0.29, P = 9.16x10-7), 0.30 (95% CI: 0.17, 0.53, P = 9.80x10-6), 0.34 (95% CI: 0.20, 0.57, P = 2.28x10-5), and 0.34 (95% CI: 0.20, 0.58, P = 3.77x10-5), respectively, compared to infants who inherited maternally-derived copies of the same alleles. We observed statistically significant decreased risk of OHDs among infants who inherited paternal gene variants involved in folate and transsulfuration pathways.
Collapse
Affiliation(s)
- Jenil Patel
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Arkansas Center for Birth Defects Research and Prevention, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Dallas, TX, United States of America
| | - Emine Bircan
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Arkansas Center for Birth Defects Research and Prevention, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Xinyu Tang
- Biostatistics Program, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, Little Rock, AR, United States of America
| | - Mohammed Orloff
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Arkansas Center for Birth Defects Research and Prevention, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Charlotte A. Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, United States of America
| | - Marilyn L. Browne
- Birth Defects Research Section, New York State Department of Health, Albany, NY, United States of America
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY, United States of America
| | - Lorenzo D. Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, United States of America
| | - Richard H. Finnell
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States of America
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Andrew Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, United States of America
| | - Gary M. Shaw
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Martha M. Werler
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America
| | - Jingyun Li
- Biostatistics Program, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, Little Rock, AR, United States of America
| | - Wendy N. Nembhard
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Arkansas Center for Birth Defects Research and Prevention, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | | |
Collapse
|
3
|
Li A, Robiou-du-Pont S, Anand SS, Morrison KM, McDonald SD, Atkinson SA, Teo KK, Meyre D. Parental and child genetic contributions to obesity traits in early life based on 83 loci validated in adults: the FAMILY study. Pediatr Obes 2018; 13:133-140. [PMID: 28008729 DOI: 10.1111/ijpo.12205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The genetic influence on child obesity has not been fully elucidated. OBJECTIVE This study investigated the parental and child contributions of 83 adult body mass index (BMI)-associated single-nucleotide polymorphisms (SNPs) to obesity-related traits in children from birth to 5 years old. METHODS A total of 1402 individuals were genotyped for 83 SNPs. An unweighted genetic risk score (GRS) was generated by the sum of BMI-increasing alleles. Repeated weight and length/height were measured at birth, 1, 2, 3 and 5 years of age, and age-specific and sex-specific weight and BMI Z-scores were computed. RESULTS The GRS was significantly associated with birthweight Z-score (P = 0.03). It was also associated with weight/BMI Z-score gain between birth and 5 years old (P = 0.02 and 6.77 × 10-3 , respectively). In longitudinal analyses, the GRS was associated with weight and BMI Z-score from birth to 5 years (P = 5.91 × 10-3 and 5.08 × 10-3 , respectively). The maternal effects of rs3736485 in DMXL2 on weight and BMI variation from birth to 5 years were significantly greater compared with the paternal effects by Z test (P = 1.53 × 10-6 and 3.75 × 10-5 , respectively). CONCLUSIONS SNPs contributing to adult BMI exert their effect at birth and in early childhood. Parent-of-origin effects may occur in a limited subset of obesity predisposing SNPs.
Collapse
Affiliation(s)
- A Li
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - S Robiou-du-Pont
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - S S Anand
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - K M Morrison
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Pediatrics, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - S D McDonald
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada.,Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - S A Atkinson
- Department of Pediatrics, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - K K Teo
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - D Meyre
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Giuranna J, Diebels I, Hinney A. Polygene Varianten und Epigenetik bei Adipositas. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-017-0156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zusammenfassung
Hintergrund
Durch molekulargenetische Analysen wurde eine kleine Anzahl von Hauptgenen identifiziert, die Übergewicht (Body Mass Index, BMI ≥ 25 kg/m2) und Adipositas (BMI ≥ 30 kg/m2) bei Menschen mit bedingen können. Die zugrunde liegenden Mutationen sind selten. Die genetische Prädisposition zur Entwicklung einer Adipositas ist meist polygener Natur.
Ziel der Arbeit
Darstellung der polygenen Formen der Adipositas und epigenetischer Befunde.
Material und Methoden
Literaturübersicht.
Ergebnisse und Diskussion
Metaanalysen genomweiter Assoziationsstudien (GWAMA) haben bisher mehr als 100 Polygene oder polygene Loci identifiziert, die genomweit mit dem BMI assoziiert sind. Jedes einzelne Polygen leistet nur einen kleinen Beitrag zur Entwicklung einer Adipositas. Effektstärken liegen im Bereich von ca. 100 g bis 1,5 kg. Eine Reihe solcher prädisponierenden Genvarianten (Allele) findet sich bei adipösen Probanden. Allerdings tragen auch normalgewichtige und schlanke Individuen diese Allele, wenn auch in geringerer Frequenz. Diese Allele können durch statistische Analysen als Adipositas-Risikoallele identifiziert und validiert werden. Vor Kurzem haben sogenannte Cross-Disorder- und Cross-Phänotyp-Analysen zur Identifizierung von Genen geführt, die nicht allein durch Analysen der einzelnen Erkrankungen/Phänotypen nachgewiesen werden konnten. Funktionelle in-vitro- und in-vivo-Studien der GWAS-abgeleiteten Polygene könnten zu einem besseren Verständnis der molekulargenetischen Mechanismen der Körpergewichtsregulation führen. Erste genomweite Methylierungsmusteranalysen und Studien zu metastabilen Epiallelen tragen zudem zu einem besseren Verständnis der Pathomechanismen der Adipositas bei.
Collapse
Affiliation(s)
- Johanna Giuranna
- Aff1 0000 0001 2187 5445 grid.5718.b Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Essen (AöR) Universität Duisburg-Essen Virchowstr. 171 45147 Essen Deutschland
| | - Inga Diebels
- Aff1 0000 0001 2187 5445 grid.5718.b Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Essen (AöR) Universität Duisburg-Essen Virchowstr. 171 45147 Essen Deutschland
| | - Anke Hinney
- Aff1 0000 0001 2187 5445 grid.5718.b Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, Universitätsklinikum Essen (AöR) Universität Duisburg-Essen Virchowstr. 171 45147 Essen Deutschland
| |
Collapse
|
5
|
Merkestein M, Sellayah D. Role of FTO in Adipocyte Development and Function: Recent Insights. Int J Endocrinol 2015; 2015:521381. [PMID: 26788058 PMCID: PMC4695642 DOI: 10.1155/2015/521381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/11/2023] Open
Abstract
In 2007, FTO was identified as the first genome-wide association study (GWAS) gene associated with obesity in humans. Since then, various animal models have served to establish the mechanistic basis behind this association. Many earlier studies focussed on FTO's effects on food intake via central mechanisms. Emerging evidence, however, implicates adipose tissue development and function in the causal relationship between perturbations in FTO expression and obesity. The purpose of this mini review is to shed light on these new studies of FTO function in adipose tissue and present a clearer picture of its impact on obesity susceptibility.
Collapse
Affiliation(s)
- Myrte Merkestein
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire OX1 3PT, UK
| | - Dyan Sellayah
- School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6AS, UK
- *Dyan Sellayah:
| |
Collapse
|