1
|
Rolband LA, Ke W, Afonin KA. Aptamer Conjugated RNA/DNA Hybrid Nanostructures Designed for Efficient Regulation of Blood Coagulation. Methods Mol Biol 2023; 2709:277-286. [PMID: 37572288 PMCID: PMC10498824 DOI: 10.1007/978-1-0716-3417-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Disruptions to the hemostatic pathway can cause a variety of serious or even life-threatening complications. Situations in which the coagulation of blood has become disturbed necessitate immediate care. Thrombin-binding aptamers are single-stranded nucleic acids that bind to thrombin with high specificity and affinity. While they can effectively inhibit thrombin, they suffer from rapid degradation and clearance in vivo. These issues are resolved, however, by attaching the therapeutic aptamer to a nucleic acid nanostructure. The increased size of the nanostructure-aptamer complex elongates the post-infusion half-life of the aptamer. These complexes are also immunoquiescent. A significant benefit of using nucleic acids as anticoagulants is their rapid deactivation by the introduction of a nanostructure made fully from the reverse complement of the therapeutically active nanostructure. These advantages make nanoparticle conjugated antithrombin aptamers a promising candidate for a rapidly reversible anticoagulant therapy.
Collapse
Affiliation(s)
- Lewis A Rolband
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Weina Ke
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Kirill A Afonin
- University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
2
|
Inhibition of Human Urokinase-Type Plasminogen Activator (uPA) Enzyme Activity and Receptor Binding by DNA Aptamers as Potential Therapeutics through Binding to the Different Forms of uPA. Int J Mol Sci 2022; 23:ijms23094890. [PMID: 35563278 PMCID: PMC9100121 DOI: 10.3390/ijms23094890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Urokinase-type plasminogen activator is widely discussed as a marker for cancer prognosis and diagnosis and as a target for cancer therapies. Together with its receptor, uPA plays an important role in tumorigenesis, tumor progression and metastasis. In the present study, systematic evolution of ligands by exponential enrichment (SELEX) was used to select single-stranded DNA aptamers targeting different forms of human uPA. Selected aptamers allowed the distinction between HMW-uPA and LMW-uPA, and therefore, presumably, have different binding regions. Here, uPAapt-02-FR showed highly affine binding with a KD of 0.7 nM for HMW-uPA and 21 nM for LMW-uPA and was also able to bind to pro-uPA with a KD of 14 nM. Furthermore, no cross-reactivity to mouse uPA or tissue-type plasminogen activator (tPA) was measured, demonstrating high specificity. Suppression of the catalytic activity of uPA and inhibition of uPAR-binding could be demonstrated through binding with different aptamers and several of their truncated variants. Since RNA aptamers are already known to inhibit uPA-uPAR binding and other pathological functions of the uPA system, these aptamers represent a novel, promising tool not only for detection of uPA but also for interfering with the pathological functions of the uPA system by additionally inhibiting uPA activity.
Collapse
|
3
|
Asadzadeh H, Moosavi A, Alexandrakis G, Mofrad MRK. Atomic Scale Interactions between RNA and DNA Aptamers with the TNF- α Protein. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9926128. [PMID: 34327241 PMCID: PMC8310448 DOI: 10.1155/2021/9926128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/05/2021] [Indexed: 01/13/2023]
Abstract
Interest in the design and manufacture of RNA and DNA aptamers as apta-biosensors for the early diagnosis of blood infections and other inflammatory conditions has increased considerably in recent years. The practical utility of these aptamers depends on the detailed knowledge about the putative interactions with their target proteins. Therefore, understanding the aptamer-protein interactions at the atomic scale can offer significant insights into the optimal apta-biosensor design. In this study, we consider one RNA and one DNA aptamer that were previously used as apta-biosensors for detecting the infection biomarker protein TNF-α, as an example of a novel computational workflow for selecting the aptamer candidate with the highest binding strength to a target. We combine information from the binding free energy calculations, molecular docking, and molecular dynamics simulations to investigate the interactions of both aptamers with TNF-α. The results reveal that the RNA aptamer has a more stable structure relative to the DNA aptamer. Interaction of aptamers with TNF-α does not have any negative effect on its structure. The results of molecular docking and molecular dynamics simulations suggest that the RNA aptamer has a stronger interaction with the protein. Also, these findings illustrate that basic residues of TNF-α establish more atomic contacts with the aptamers compared to acidic or pH-neutral ones. Furthermore, binding energy calculations show that the interaction of the RNA aptamer with TNF-α is thermodynamically more favorable. In total, the findings of this study indicate that the RNA aptamer is a more suitable candidate for using as an apta-biosensor of TNF-α and, therefore, of greater potential use for the diagnosis of blood infections. Also, this study provides more information about aptamer-protein interactions and increases our understanding of this phenomenon.
Collapse
Affiliation(s)
- Homayoun Asadzadeh
- Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9567, Tehran 11365-9567, Iran
| | - Ali Moosavi
- Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9567, Tehran 11365-9567, Iran
| | - Georgios Alexandrakis
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Hamedani NS, Müller J, Tolle F, Rühl H, Pezeshkpoor B, Liphardt K, Oldenburg J, Mayer G, Pötzsch B. Selective Modulation of the Protease Activated Protein C Using Exosite Inhibiting Aptamers. Nucleic Acid Ther 2020; 30:276-288. [PMID: 32486960 DOI: 10.1089/nat.2020.0844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Activated protein C (APC) is a serine protease with anticoagulant and cytoprotective activities. Nonanticoagulant APC mutants show beneficial effects as cytoprotective agents. To study, if such biased APC signaling can be achieved by APC-binding ligands, the aptamer technology has been used. A G-quadruplex-containing aptamer, G-NB3, has been selected that binds to the basic exosite of APC with a KD of 0.2 nM and shows no binding to APC-related serine proteases or the zymogen protein C. G-NB3 inhibits the inactivation of activated cofactors V and VIII with IC50 values of 11.6 and 13.1 nM, respectively, without inhibiting the cytoprotective and anti-inflammatory functions of APC as tested using a staurosporine-induced apoptosis assay and a vascular barrier protection assay. In addition, G-NB3 prolongs the plasma half-life of APC through inhibition of APC-serine protease inhibitor complex formation. These physicochemical and functional characteristics qualify G-NB3 as a promising therapeutic agent usable to enhance the cytoprotective functions of APC without increasing the risk of APC-related hemorrhage.
Collapse
Affiliation(s)
- Nasim Shahidi Hamedani
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Jens Müller
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Fabian Tolle
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Heiko Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Behnaz Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Kerstin Liphardt
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| | - Günter Mayer
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Bernd Pötzsch
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
5
|
Sinha A, Tai TY, Li KH, Gopinathan P, Chung YD, Sarangadharan I, Ma HP, Huang PC, Shiesh SC, Wang YL, Lee GB. An integrated microfluidic system with field-effect-transistor sensor arrays for detecting multiple cardiovascular biomarkers from clinical samples. Biosens Bioelectron 2019; 129:155-163. [PMID: 30703568 DOI: 10.1016/j.bios.2019.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022]
Abstract
Certain blood-borne biomarkers offer a potent methodology for understanding the risk of cardiovascular diseases (CVDs) with clinicians generally advocating the use of multiple biomarkers for proper risk assessment of CVDs. Herein four such CVDs biomarkers- C-reactive protein (CRP), N-terminal pro b-type natriuretic peptide (NT-proBNP), cardiac troponin I (cTnI), and fibrinogen- were rapidly (5 min) analyzed from clinical samples (~ 4 µL) on an integrated microfluidic platform equipped with 1) immobilized highly specific aptamer probes and 2) field-effect transistor (FET)-based sensor arrays. The calibration curve from the FET sensor arrays showed good agreement in the physiological concentration ranges for CRP (0.1-50 mg/L), NT-proBNP (50-10,000 pg/mL), cTnI (1-10,000 pg/mL), and fibrinogen (0.1-5 mg/mL). The developed prototype of this fully automated portable device requires minimal reagent and sample inputs and consequently shows great promise for next-generation point-of-care devices assaying multiple CVDs biomarkers in clinical samples.
Collapse
Affiliation(s)
- Anirban Sinha
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Tse-Yu Tai
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Kuang-Hsien Li
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Priya Gopinathan
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Indu Sarangadharan
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsi-Pin Ma
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Chiun Huang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chu Shiesh
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Lin Wang
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Gwo-Bin Lee
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Cai S, Yan J, Xiong H, Liu Y, Peng D, Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 2019; 143:5317-5338. [PMID: 30357118 DOI: 10.1039/c8an01467a] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA of 20-100 nucleotides in length that have attracted substantial scientific interest due to their ability to specifically bind to target molecules via the formation of three-dimensional structures. Compared to traditional protein antibodies, aptamers have several advantages, such as their small size, high binding affinity, specificity, flexible structure, being chemical synthesizable and modifiable, good biocompatibility, high stability and low immunogenicity, which all contribute to their widely applications in the biomedical field. To date, much progress has been made in the study and applications of aptamers, however, detailed information on how aptamers bind to their targets is still scarce. Over the past few decades, many methods have been introduced to investigate the aptamer-target binding process, such as measuring the main kinetic or thermodynamic parameters, detecting the structural changes of the binding complexes, etc. Apart from traditional physicochemical methods, various types of molecular docking programs have been applied to simulate the aptamer-target interactions, while these simulations also have limitations. To facilitate the further research on the interactions, herein, we provide a brief review to illustrate the recent advances in the study of aptamer-target interactions. We summarize the binding targets of aptamers, such as small molecules, macromolecules, and even cells. Their binding constants (KD) are also summarized. Methods to probe the aptamer-target binding process, such as surface plasmon resonance (SPR), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), footprinting assay, truncation and mutation assay, nuclear magnetic resonance spectroscopy (NMR), X-ray crystallography and molecular docking simulation are indicated. The binding forces mediating the aptamer-target interactions, such as hydrogen bonding, electrostatic interaction, the hydrophobic effect, π-π stacking and van der Waals forces are summarized. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China.
| | | | | | | | | | | |
Collapse
|
7
|
Bucciarelli S, Midtgaard SR, Nors Pedersen M, Skou S, Arleth L, Vestergaard B. Size-exclusion chromatography small-angle X-ray scattering of water soluble proteins on a laboratory instrument. J Appl Crystallogr 2018; 51:1623-1632. [PMID: 30546289 PMCID: PMC6276278 DOI: 10.1107/s1600576718014462] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/13/2018] [Indexed: 11/16/2022] Open
Abstract
Coupling of size-exclusion chromatography with biological solution small-angle X-ray scattering (SEC-SAXS) on dedicated synchrotron beamlines enables structural analysis of challenging samples such as labile proteins and low-affinity complexes. For this reason, the approach has gained increased popularity during the past decade. Transportation of perishable samples to synchrotrons might, however, compromise the experiments, and the limited availability of synchrotron beamtime renders iterative sample optimization tedious and lengthy. Here, the successful setup of laboratory-based SEC-SAXS is described in a proof-of-concept study. It is demonstrated that sufficient quality data can be obtained on a laboratory instrument with small sample consumption, comparable to typical synchrotron SEC-SAXS demands. UV/vis measurements directly on the SAXS exposure cell ensure accurate concentration determination, crucial for direct molecular weight determination from the scattering data. The absence of radiation damage implies that the sample can be fractionated and subjected to complementary analysis available at the home institution after SEC-SAXS. Laboratory-based SEC-SAXS opens the field for analysis of biological samples at the home institution, thus increasing productivity of biostructural research. It may further ensure that synchrotron beamtime is used primarily for the most suitable and optimized samples.
Collapse
Affiliation(s)
- Saskia Bucciarelli
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Søren Roi Midtgaard
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Denmark
| | - Martin Nors Pedersen
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Denmark
| | | | - Lise Arleth
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Sinha A, Gopinathan P, Chung YD, Lin HY, Li KH, Ma HP, Huang PC, Shiesh SC, Lee GB. An integrated microfluidic platform to perform uninterrupted SELEX cycles to screen affinity reagents specific to cardiovascular biomarkers. Biosens Bioelectron 2018; 122:104-112. [PMID: 30245322 DOI: 10.1016/j.bios.2018.09.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
As cardiovascular diseases (CVD) are responsible for millions of deaths annually, there is a need for rapid and sensitive diagnosis of CVD at earlier stages. Aptamers generated by systematic evolution of ligands by exponential enrichment (SELEX) processes have been shown to be superior to conventional antibody-based cardiac biomarker detection. However, SELEX is a complicated, lengthy procedure requiring multiple rounds of extraction/amplification and well-trained personnel. To circumvent such issue, we designed an automated, miniaturized SELEX platform for the screening of aptamers towards three protein biomarkers associated with CVDs: N-terminal pro-peptide of B-type natriuretic peptide, human cardiac troponin I, and fibrinogen. The developed microfluidic platform was equipped with microfluidic devices capable of sample transport and mixing along with an on-chip nucleic acid amplification module such that the entire screening process (5 rounds of selection in 8 h.) could be performed consecutively on a single chip while consuming only 35 µL of reagents in each cycle. This system may therefore serve as a promising, sensitive, cost-effective platform for the selection of aptamers specific for CVD biomarkers.
Collapse
Affiliation(s)
- Anirban Sinha
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Priya Gopinathan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Ying Lin
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Kuang-Hsien Li
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsi-Pin Ma
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Po-Chiun Huang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chu Shiesh
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | - Gwo-Bin Lee
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
9
|
Kuhlmann M, Hamming JBR, Voldum A, Tsakiridou G, Larsen MT, Schmøkel JS, Sohn E, Bienk K, Schaffert D, Sørensen ES, Wengel J, Dupont DM, Howard KA. An Albumin-Oligonucleotide Assembly for Potential Combinatorial Drug Delivery and Half-Life Extension Applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:284-293. [PMID: 29246307 PMCID: PMC5676087 DOI: 10.1016/j.omtn.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 01/31/2023]
Abstract
The long blood circulatory property of human serum albumin, due to engagement with the cellular recycling neonatal Fc receptor (FcRn), is an attractive drug half-life extension enabling technology. This work describes a novel site-specific albumin double-stranded (ds) DNA assembly approach, in which the 3′ or 5′ end maleimide-derivatized oligodeoxynucleotides are conjugated to albumin cysteine at position 34 (cys34) and annealed with complementary strands to allow single site-specific protein modification with functionalized ds oligodeoxynucleotides. Electrophoretic gel shift assays demonstrated successful annealing of complementary strands bearing Atto488, 6-carboxyfluorescein (6-FAM), or a factor IXa aptamer to the albumin-oligodeoxynucleotide conjugate. A fluorometric factor IXa activity assay showed retained aptamer inhibitory activity upon assembly with the albumin and completely blocked factor IXa at a concentration of 100 nM for 2 hr. The assembled construct exhibited stability in serum-containing buffer and FcRn engagement that could be increased using an albumin variant engineered for higher FcRn affinity. This work presents a novel albumin-oligodeoxynucleotide assembly technology platform that offers potential combinatorial drug delivery and half-life extension applications.
Collapse
Affiliation(s)
- Matthias Kuhlmann
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonas B R Hamming
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Anders Voldum
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Georgia Tsakiridou
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Maja T Larsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Julie S Schmøkel
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Emil Sohn
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Konrad Bienk
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - David Schaffert
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Esben S Sørensen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Daniel M Dupont
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
10
|
Mallik PK, Shi H, Pande J. RNA aptamers targeted for human αA-crystallin do not bind αB-crystallin, and spare the α-crystallin domain. Biochem Biophys Res Commun 2017; 491:423-428. [PMID: 28720498 DOI: 10.1016/j.bbrc.2017.07.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 11/27/2022]
Abstract
The molecular chaperones, α-crystallins, belong to the small heat shock protein (sHSP) family and prevent the aggregation and insolubilization of client proteins. Studies in vivo have shown that the chaperone activity of the α-crystallins is raised or lowered in various disease states. Therefore, the development of tools to control chaperone activity may provide avenues for therapeutic intervention, as well as enable a molecular understanding of chaperone function. The major human lens α-crystallins, αA- (HAA) and αB- (HAB), share 57% sequence identity and show similar activity towards some clients, but differing activities towards others. Notably, both crystallins contain the "α-crystallin domain" (ACD, the primary client binding site), like all other members of the sHSP family. Here we show that RNA aptamers selected for HAA, in vitro, exhibit specific affinity to HAA but do not bind HAB. Significantly, these aptamers also exclude the ACD. This study thus demonstrates that RNA aptamers against sHSPs can be designed that show high affinity and specificity - yet exclude the primary client binding region - thereby facilitating the development of RNA aptamer-based therapeutic intervention strategies.
Collapse
Affiliation(s)
- Prabhat K Mallik
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany 12222, N.Y, United States
| | - Hua Shi
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany 12222, N.Y, United States
| | - Jayanti Pande
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany 12222, N.Y, United States.
| |
Collapse
|
11
|
Bao DT, Kim DTH, Park H, Cuc BT, Ngoc NM, Linh NTP, Huu NC, Tien TTT, Anh NTV, Duy TD, Chong CK, Yu ST, Choi DY, Yeo SJ. Rapid Detection of Avian Influenza Virus by Fluorescent Diagnostic Assay using an Epitope-Derived Peptide. Theranostics 2017. [PMID: 28638471 PMCID: PMC5479272 DOI: 10.7150/thno.18857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Currently, the point of care testing (POCT) is not fully developed for subtype-specific avian influenza virus detection. In this study, an H5N1 hemaglutinin 1 (HA1) epitope (P0: KPNDAINF) and three modified peptides (P1: KPNTAINF, P2: KPNGAINF, P3: KPNDAINDAINF) were evaluated as POCT elements for rapid detection of avian influenza virus. Based on modeling predictions by Autodock Vina, binding affinity varied depending on alteration of one amino acid in these peptides. The binding energy of P2 indicated its potential for a strong interaction with HA. Fluorescence-linked immunosorbent assay experimentally demonstrated the interaction between these peptides and virus. The four peptides interacted with HA1 of H5N3 with different binding affinities with P2 showing the strongest binding affinity. When P0 and P2 peptides were used in rapid fluorescent immunochromatographic test (FICT) as detection elements, the inter-assay coefficients of variation (CV) indicated that P2-linked FICT was more acceptable than the P0-linked FICT in the presence of human specimens. Antibody pair-linked FICT was influenced by clinical samples more than the P2-linked FICT assay, which showed a 4-fold improvement in the detection limit of H5N3 and maintained H5 subtype-specificity. Compared to the rapid diagnostic test (RDT) which is not specific for influenza subtypes, P2-linked FICT could increase virus detection. In conclusion, results of this study suggest that HA epitope-derived peptides can be used as alternatives to antibodies for a rapid fluorescent diagnostic assay to detect avian influenza virus.
Collapse
|
12
|
Santamaria S, Fedorov O, McCafferty J, Murphy G, Dudhia J, Nagase H, Yamamoto K. Development of a monoclonal anti-ADAMTS-5 antibody that specifically blocks the interaction with LRP1. MAbs 2017; 9:595-602. [PMID: 28306378 PMCID: PMC5419085 DOI: 10.1080/19420862.2017.1304341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The potent aggrecanase ADAMTS-5 is constitutively secreted by chondrocytes, but it is rapidly endocytosed in normal cartilage via the cell surface endocytic receptor LRP1. Therefore it is difficult to detect the total ADAMTS-5 activity produced. In this study, we isolated a monoclonal anti-ADAMTS-5 antibody 1B7 that blocks LRP1-mediated internalization without affecting the aggrecanolytic activity. Addition of 1B7 to cultured human chondrocytes revealed the full aggrecanolytic activity of ADAMTS-5 generated by the cells. 1B7 is a useful tool to estimate the ADAMTS-5 activity and to identify its potential roles in the tissues.
Collapse
Affiliation(s)
- Salvatore Santamaria
- a Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford , Headington , Oxford , UK
| | - Oleg Fedorov
- b Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford , Headington, Oxford , UK
| | | | - Gillian Murphy
- d Cancer Research UK Cambridge Institute, Department of Oncology, University of Cambridge, Li Ka Shing Centre , Cambridge , UK
| | - Jayesh Dudhia
- e Department of Clinical Sciences and Services , Royal Veterinary College, North Mymms , Hatfield , Herts , UK
| | - Hideaki Nagase
- a Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford , Headington , Oxford , UK
| | - Kazuhiro Yamamoto
- a Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford , Headington , Oxford , UK
| |
Collapse
|
13
|
Bjerregaard N, Dupont DM, Andreasen PA. A Conjugate of Two tPA-Binding RNA Aptamers Efficiently Inhibits Fibrinolysis. Nucleic Acid Ther 2017; 27:95-104. [PMID: 28051346 DOI: 10.1089/nat.2016.0637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Uncontrolled bleeding is a major cause of mortality. Lysine analogues are routinely used in the management of bleeding, but several studies indicate a risk of serious detrimental effects upon their administration. In this study, we report a bivalent conjugate "3218" of two RNA aptamers selected for binding to the serine protease tissue-type plasminogen activator (tPA), the principal initiator of fibrinolysis in mammals. The constituent monomeric aptamers, K32v2 and K18v2, were previously demonstrated to weakly inhibit fibrinolysis. We now show that K32v2 and K18v2 recognize distinct binding sites, presumably in the A- and B-chain of tPA, respectively. Both aptamers bind tPA with low nanomolar affinity and inhibit tPA-mediated activities in a way that is consistent with the proposed localization of their binding sites. The 3218 conjugate possesses the inhibitory activities of both K32v2 and K18v2 and additionally exhibits increased inhibitory efficiency relative to the monomeric aptamers. The 3218 conjugate proved an efficient inhibitor of fibrinolysis and may find application in the management of bleeding as a substitute for, or in combination with, currently used lysine analogues.
Collapse
Affiliation(s)
- Nils Bjerregaard
- 1 Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark
| | - Daniel M Dupont
- 1 Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark .,2 Interdisciplinary Nanoscience Center (iNANO), Aarhus University , Aarhus, Denmark
| | - Peter A Andreasen
- 1 Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark
| |
Collapse
|
14
|
Madsen JB, Andersen LM, Dupont DM, Trelle MB, Johansen JS, Jensen JK, Jørgensen TJD, Andreasen PA. An RNA Aptamer Inhibits a Mutation-Induced Inactivating Misfolding of a Serpin. Cell Chem Biol 2016; 23:700-8. [PMID: 27265748 DOI: 10.1016/j.chembiol.2016.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
Most serpins are fast and specific inhibitors of extracellular serine proteases controlling biological processes such as blood coagulation, fibrinolysis, tissue remodeling, and inflammation. The inhibitory activity of serpins is based on a conserved metastable structure and their conversion to a more stable state during reaction with the target protease. However, the metastable state also makes serpins vulnerable to mutations, resulting in disease caused by inactive and misfolded monomeric or polymeric forms ("serpinopathy"). Misfolding can occur either intracellularly (type-I serpinopathies) or extracellularly (type-II serpinopathies). We have isolated a 2'-fluoropyrimidine-modified RNA aptamer, which inhibits a mutation-induced inactivating misfolding of the serpin α1-antichymotrypsin. It is the first agent able to stabilize a type-II mutation of a serpin without interfering with the inhibitory mechanism, thereby presenting a solution for the long-standing challenge of preventing pathogenic misfolding without compromising the inhibitory function.
Collapse
Affiliation(s)
- Jeppe B Madsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Lisbeth M Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Daniel M Dupont
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Morten B Trelle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper S Johansen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Jan K Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
15
|
Bjerregaard N, Andreasen PA, Dupont DM. Expected and unexpected features of protein-binding RNA aptamers. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:744-757. [PMID: 27173731 DOI: 10.1002/wrna.1360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022]
Abstract
RNA molecules with high affinity to specific proteins can be isolated from libraries of up to 1016 different RNA sequences by systematic evolution of ligands by exponential enrichment (SELEX). These so-called protein-binding RNA aptamers are often interesting, e.g., as modulators of protein function for therapeutic use, for probing the conformations of proteins, for studies of basic aspects of nucleic acid-protein interactions, etc. Studies on the interactions between RNA aptamers and proteins display a number of expected and unexpected features, including the chemical nature of the interacting RNA-protein surfaces, the conformation of protein-bound aptamer versus free aptamer, the conformation of aptamer-bound protein versus free protein, and the effects of aptamers on protein function. Here, we review current insights into the details of RNA aptamer-protein interactions. WIREs RNA 2016, 7:744-757. doi: 10.1002/wrna.1360 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Nils Bjerregaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Daniel M Dupont
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
16
|
Dupont DM, Bjerregaard N, Verpaalen B, Andreasen PA, Jensen JK. Building a Molecular Trap for a Serine Protease from Aptamer and Peptide Modules. Bioconjug Chem 2016; 27:918-26. [PMID: 26926041 DOI: 10.1021/acs.bioconjchem.6b00007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In drug development, molecular intervention strategies are usually based on interference with a single protein function, such as enzyme activity or receptor binding. However, in many cases, protein drug targets are multifunctional, with several molecular functions contributing to their pathophysiological actions. Aptamers and peptides are interesting synthetic building blocks for the design of multivalent molecules capable of modulating multiple functions of a target protein. Here, we report a molecular trap with the ability to interfere with the activation, catalytic activity, receptor binding, etc. of the serine protease urokinase-type plasminogen activator (uPA) by a rational combination of two RNA aptamers and a peptide with different inhibitory properties. The assembly of these artificial inhibitors into one molecule enhanced the inhibitory activity between 10- and 10,000-fold toward several functions of uPA. The study highlights the potential of multivalent designs and illustrates how they can easily be constructed from aptamers and peptides using nucleic acid engineering, chemical synthesis, and bioconjugation chemistry. By aptamer to aptamer and aptamer to peptide conjugation, we created, to the best of our knowledge, the first trivalent molecule which combines three artificial inhibitors binding to three different sites in a protein target. We hypothesize that by simultaneously preventing all of the functional interactions and activities of the target protein, this approach may represent an alternative to siRNA technology for a functional knockout.
Collapse
Affiliation(s)
- Daniel M Dupont
- Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Nils Bjerregaard
- Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Ben Verpaalen
- Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University , Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| |
Collapse
|
17
|
Bruetzel LK, Fischer S, Salditt A, Sedlak SM, Nickel B, Lipfert J. A Mo-anode-based in-house source for small-angle X-ray scattering measurements of biological macromolecules. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:025103. [PMID: 26931887 DOI: 10.1063/1.4940936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We demonstrate the use of a molybdenum-anode-based in-house small-angle X-ray scattering (SAXS) setup to study biological macromolecules in solution. Our system consists of a microfocus X-ray tube delivering a highly collimated flux of 2.5 × 10(6) photons/s at a beam size of 1.2 × 1.2 mm(2) at the collimation path exit and a maximum beam divergence of 0.16 mrad. The resulting observable scattering vectors q are in the range of 0.38 Å(-1) down to 0.009 Å(-1) in SAXS configuration and of 0.26 Å(-1) up to 5.7 Å(-1) in wide-angle X-ray scattering (WAXS) mode. To determine the capabilities of the instrument, we collected SAXS data on weakly scattering biological macromolecules including proteins and a nucleic acid sample with molecular weights varying from ∼12 to 69 kDa and concentrations of 1.5-24 mg/ml. The measured scattering data display a high signal-to-noise ratio up to q-values of ∼0.2 Å(-1) allowing for an accurate structural characterization of the samples. Moreover, the in-house source data are of sufficient quality to perform ab initio 3D structure reconstructions that are in excellent agreement with the available crystallographic structures. In addition, measurements for the detergent decyl-maltoside show that the setup can be used to determine the size, shape, and interactions (as characterized by the second virial coefficient) of detergent micelles. This demonstrates that the use of a Mo-anode based in-house source is sufficient to determine basic geometric parameters and 3D shapes of biomolecules and presents a viable alternative to valuable beam time at third generation synchrotron sources.
Collapse
Affiliation(s)
- Linda K Bruetzel
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany and Geschwister-Scholl Platz 1, 80539 Munich, Germany
| | - Stefan Fischer
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany and Geschwister-Scholl Platz 1, 80539 Munich, Germany
| | - Annalena Salditt
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany and Geschwister-Scholl Platz 1, 80539 Munich, Germany
| | - Steffen M Sedlak
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany and Geschwister-Scholl Platz 1, 80539 Munich, Germany
| | - Bert Nickel
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany and Geschwister-Scholl Platz 1, 80539 Munich, Germany
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany and Geschwister-Scholl Platz 1, 80539 Munich, Germany
| |
Collapse
|
18
|
Correction: Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites. PLoS One 2015; 10:e0126782. [PMID: 25886482 PMCID: PMC4401791 DOI: 10.1371/journal.pone.0126782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|