1
|
Liang J, Liu Y, Guan Q, Li Y, Zheng MZ, Zhang XL, Chen LX, Li H. Discovery of novel pyrimidinetrione derivatives as DprE1 inhibitors with potent antimycobacterial activities. Eur J Med Chem 2025; 289:117416. [PMID: 39999693 DOI: 10.1016/j.ejmech.2025.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/11/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Tuberculosis (TB) is one of the ten major factors threatening human life and health. At present, many factors limit the application of existing anti-tuberculosis drugs, such as a small range of available drug options, poor treatment compliance, and severe toxic and side effects. It is extremely urgent to develop novel anti-tuberculosis drugs. DprE1 is a potential anti-mycobacterial cell wall target, and some DprE1 inhibitors have entered the clinical research stage. Our research group found DprE1 inhibitor G50 with similar activity as isoniazid through virtual screening in the early stage. To obtain better DprE1 inhibitors, 45 new compounds were designed and synthesized based on the structure of G50. Among them, 12 selected DprE1 enzyme inhibitors could significantly inhibit the growth of Mycobacterium tuberculosis (M.tb) H37Ra and H37Rv growth in vitro. The MIC50 value of compound 42 against M.tb H37Ra is 1.071 ± 0.041 μM, with the selective index (SI) value of 186.74 (the SI value of linezolid is 119.9). Compared to G50, compound 42 exhibits a 5-fold increase in DprE1 enzyme inhibitory activity. In addition, the binding affinity of compound 42 is equivalent to that of G50. This study further enriches the examples of developing DprE1 inhibitors based on the backbone of pyrimidinetrione and also provides potential anti-tuberculosis lead compounds.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Guan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Yan Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Zhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China; Department of Allergy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
2
|
Wang Q, Fu H, Zhang Y, Zhang M, Xu J, Fu J. Bibliometric and Visualization Analysis of DprE1 Inhibitors to Combat Tuberculosis. Drug Des Devel Ther 2025; 19:2577-2596. [PMID: 40196755 PMCID: PMC11974558 DOI: 10.2147/dddt.s515049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/18/2025] [Indexed: 04/09/2025] Open
Abstract
Background Tuberculosis (TB) poses a serious threat to public health, particularly owing to the increase in multidrug-resistant tuberculosis (MDR-TB) and extremely drug-resistant tuberculosis (XDR-TB); thus, there is an imperative need for novel treatments to tackle this issue. Decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) is essential for mycobacterial cell wall integrity and viability. As no relevant bibliometric study has been reported, we performed bibliometric and visual analyses to depict the knowledge framework of research related to the involvement of DprE1 in TB. Methods Relevant studies were sourced from the Web of Science Core Collection database. VOSviewer, CiteSpace, and bibliometrics (http://bibliometric.com/) were used to construct networks based on an analysis of journals, countries, funding, institutions, authors, references, and keywords. Results A total of 184 publications were retrieved; the total citations were 3405 times and the mean citation was 17.28 per article. The annual number of publications on DprE1 in TB has shown a significantly increasing trend. The European Journal of Medicinal Chemistry is the most published journal, with 19 articles. Lu Yu and Bin Wang contributed the most prolific authors with 18 articles. Stratified by the number of publications, India was the most prolific country that cooperated closely with the USA, UK, Japan, and United Arab Emirates. Burstness analysis of references and keywords showed that the developing research trends in this field mainly woven around "Mtb", "DprE1" and "inhibitors" during the past years. Conclusion A systematic bibliometric study indicates that DprE1 remains a focal point in the anti-TB domain. These results can serve as a data-driven reference for future research and offer precise insights into the development of anti-TB agents associated with DprE1. To the best of our knowledge, this study is the first to comprehensively investigate DprE1 in TB by means of bibliometric analysis.
Collapse
Affiliation(s)
- Qingqing Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine/National Engineering Technology Research Center for Miao Medicine/Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guiyang, People’s Republic of China
| | - Huixiao Fu
- Department of Science and Education, The First People’s Hospital of Guiyang, Guiyang, People’s Republic of China
| | - Yining Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Man Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine/National Engineering Technology Research Center for Miao Medicine/Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guiyang, People’s Republic of China
| | - Jian Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine/National Engineering Technology Research Center for Miao Medicine/Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guiyang, People’s Republic of China
| | - Jian Fu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine/National Engineering Technology Research Center for Miao Medicine/Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guiyang, People’s Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People’s Republic of China
| |
Collapse
|
3
|
Sonawane K, Said R, Lele M, Chaudhari H, Hatvate N. Recent Advancements in Benzothiazinones (BTZ) Analogs as DprE1 Inhibitor for Potent Antitubercular Therapeutics. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202404094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/30/2024] [Indexed: 01/05/2025]
Abstract
AbstractBenzothiazinone analogs have emerged as a promising class of compounds having potent antimycobacterial activity, particularly against Mycobacterium tuberculosis, the pathogen responsible for tuberculosis. This review highlights the development of benzothiazinone analogs as potential antitubercular agents from the beginning to the recent advancement in the past decade. These compounds have shown potent activity, including drug‐resistant strains of Mycobacterium tuberculosis. Structure–activity relationship studies and modifications have improved their efficacy. Benzothiazinone analogs have favorable pharmacokinetic profiles and show promise in preclinical studies. Challenges include addressing resistance mechanisms and ensuring safety. Their unique mode of action and promising properties make them attractive candidates for the battle against drug‐resistant tuberculosis.
Collapse
Affiliation(s)
- Kalyani Sonawane
- Department of Pharmaceutical Technology Institute of Chemical Technology Mumbai Marathwada Campus Jalna Maharashtra 431203 India
| | - Rushikesh Said
- Department of Pharmaceutical Technology Institute of Chemical Technology Mumbai Marathwada Campus Jalna Maharashtra 431203 India
| | - Mukta Lele
- Department of Pharmaceutical Technology Institute of Chemical Technology Mumbai Marathwada Campus Jalna Maharashtra 431203 India
| | - Hemchandra Chaudhari
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Mumbai Maharashtra 400019 India
| | - Navnath Hatvate
- Department of Pharmaceutical Technology Institute of Chemical Technology Mumbai Marathwada Campus Jalna Maharashtra 431203 India
| |
Collapse
|
4
|
Paoli-Lombardo R, Primas N, Vanelle P. DprE1 and Ddn as promising therapeutic targets in the development of novel anti-tuberculosis nitroaromatic drugs. Eur J Med Chem 2024; 274:116559. [PMID: 38850856 DOI: 10.1016/j.ejmech.2024.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Abstract
Tuberculosis remains the second deadliest infectious disease in humans and a public health threat due to the emergence of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains. Therefore, it is urgent to identify new anti-tuberculosis treatments and novel therapeutic targets to prevent the emergence of resistance. In recent years, the study of anti-tuberculosis properties of nitroaromatic compounds has led to the identification of two novel biological targets, the deazaflavin (F420)-dependent nitroreductase Ddn and the decaprenylphosphoryl-β-d-ribose 2'-epimerase DprE1. This review aims to show why Ddn and DprE1 are promising therapeutic targets and highlight nitroaromatic compounds interest in developing new anti-tuberculosis treatments active against MDR-TB and XDR-TB. Despite renewed interest in the development of new anti-tuberculosis nitroaromatic compounds, pharmaceutical companies often exclude nitro-containing molecules from their drug discovery programs because of their toxic and mutagenic potential. This exclusion results in missed opportunities to identify new nitroaromatic compounds and promising therapeutic targets.
Collapse
Affiliation(s)
- Romain Paoli-Lombardo
- Aix Marseille Univ, CNRS, ICR UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, 13385, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, 13385, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Laboratoire de Pharmaco-Chimie Radicalaire, 13385, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, 13005, Marseille, France.
| |
Collapse
|
5
|
Dash S, Rathi E, Kumar A, Chawla K, Joseph A, Kini SG. Structure-activity relationship mediated molecular insights of DprE1 inhibitors: A Comprehensive Review. J Biomol Struct Dyn 2024; 42:6472-6522. [PMID: 37395797 DOI: 10.1080/07391102.2023.2230312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Emerging threats of multi-drug resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) tuberculosis led to the discovery of a novel target which was entitled Decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) enzyme. DprE1 is composed of two isoforms, decaprenylphosphoryl-β-D-ribose oxidase (DprE1) and decaprenylphosphoryl-D-2-keto erythro pentose reductase (DprE2). The enzymes, DprE1 and DprE2, regulate the two-step epimerization process to form DPA (Decaprenylphosphoryl arabinose) from DPX (Decaprenylphosphoryl-D-ribose), which is the sole precursor in the cell wall synthesis of arabinogalactan (AG) and lipoarabinomannan (LAM). Target-based and whole-cell-based screening played an imperative role in the identification of the druggable target, DprE1, whereas the druggability of the DprE2 enzyme is not proved yet. To date, diverse scaffolds of heterocyclic and aromatic ring systems have been reported as DprE1 inhibitors based on their interaction mode, i.e. covalent, and non-covalent inhibitors. This review describes the structure-activity relationship (SAR) of reported covalent and non-covalent inhibitors to enlighten about the crucial pharmacophoric features required for DprE1 inhibition, along with in-silico studies which characterize the amino acid residues responsible for covalent and non-covalent interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Swagatika Dash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Manipal Mc Gill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
7
|
Chen K, Xu R, Hu X, Li D, Hou T, Kang Y. Recent advances in the development of DprE1 inhibitors using AI/CADD approaches. Drug Discov Today 2024; 29:103987. [PMID: 38670256 DOI: 10.1016/j.drudis.2024.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Tuberculosis (TB) is a global lethal disease caused by Mycobacterium tuberculosis (Mtb). The flavoenzyme decaprenylphosphoryl-β-d-ribose 2'-oxidase (DprE1) plays a crucial part in the biosynthesis of lipoarabinomannan and arabinogalactan for the cell wall of Mtb and represents a promising target for anti-TB drug development. Therefore, there is an urgent need to discover DprE1 inhibitors with novel scaffolds, improved bioactivity and high drug-likeness. Recent studies have shown that artificial intelligence/computer-aided drug design (AI/CADD) techniques are powerful tools in the discovery of novel DprE1 inhibitors. This review provides an overview of the discovery of DprE1 inhibitors and their underlying mechanism of action and highlights recent advances in the discovery and optimization of DprE1 inhibitors using AI/CADD approaches.
Collapse
Affiliation(s)
- Kepeng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ruolan Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Xia F, Zhang H, Yang H, Zheng M, Min W, Sun C, Yuan K, Yang P. Targeting polyketide synthase 13 for the treatment of tuberculosis. Eur J Med Chem 2023; 259:115702. [PMID: 37544185 DOI: 10.1016/j.ejmech.2023.115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/15/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Tuberculosis (TB) is one of the most threatening diseases for humans, however, the drug treatment strategy for TB has been stagnant and inadequate, which could not meet current treatment needs. TB is caused by Mycobacterial tuberculosis, which has a unique cell wall that plays a crucial role in its growth, virulence, and drug resistance. Polyketide synthase 13 (Pks13) is an essential enzyme that catalyzes the biosynthesis of the cell wall and its critical role is only found in Mycobacteria. Therefore, Pks13 is a promising target for developing novel anti-TB drugs. In this review, we first introduced the mechanism of targeting Pks13 for TB treatment. Subsequently, we focused on summarizing the recent advance of Pks13 inhibitors, including the challenges encountered during their discovery and the rational design strategies employed to overcome these obstacles, which could be helpful for the development of novel Pks13 inhibitors in the future.
Collapse
Affiliation(s)
- Fei Xia
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Haoling Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanaoyu Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Mingming Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
9
|
Yadav S, Soni A, Tanwar O, Bhadane R, Besra GS, Kawathekar N. DprE1 Inhibitors: Enduring Aspirations for Future Antituberculosis Drug Discovery. ChemMedChem 2023; 18:e202300099. [PMID: 37246503 DOI: 10.1002/cmdc.202300099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
DprE1 is a crucial enzyme involved in the cell wall synthesis of Mycobacterium tuberculosis and a promising target for antituberculosis drug development. However, its unique structural characteristics for ligand binding and association with DprE2 make developing new clinical compounds challenging. This review provides an in-depth analysis of the structural requirements for both covalent and non-covalent inhibitors, their 2D and 3D binding patterns, as well as their biological activity data in vitro and in vivo, including pharmacokinetic information. We also introduce a protein quality score (PQS) and an active-site map of the DprE1 enzyme to help medicinal chemists better understand DprE1 inhibition and develop new and effective anti-TB drugs. Furthermore, we examine the resistance mechanisms associated with DprE1 inhibitors to understand future developments due to resistance emergence. This comprehensive review offers insight into the DprE1 active site, including protein-binding maps, PQS, and graphical representations of known inhibitors, making it a valuable resource for medicinal chemists working on future antitubercular compounds.
Collapse
Affiliation(s)
- Saloni Yadav
- Department of Pharmacy, Shri Govindram Seksaria Institute of Technology and Science, 23-Park Road, Indore, Madhya Pradesh, India
| | - Aastha Soni
- Department of Pharmacy, Shri Govindram Seksaria Institute of Technology and Science, 23-Park Road, Indore, Madhya Pradesh, India
| | - Omprakash Tanwar
- Department of Pharmacy, Shri Govindram Seksaria Institute of Technology and Science, 23-Park Road, Indore, Madhya Pradesh, India
| | - Rajendra Bhadane
- Turku Cellular Microbiology Laboratory (TCML), Åbo Akademi University, 20014, Turku, Finland
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Neha Kawathekar
- Department of Pharmacy, Shri Govindram Seksaria Institute of Technology and Science, 23-Park Road, Indore, Madhya Pradesh, India
| |
Collapse
|
10
|
Dube PS, Legoabe LJ, Jordaan A, Sigauke L, Warner DF, Beteck RM. Quinolone analogues of benzothiazinone: Synthesis, antitubercular structure-activity relationship and ADME profiling. Eur J Med Chem 2023; 258:115539. [PMID: 37321107 DOI: 10.1016/j.ejmech.2023.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Mycobacterium tuberculosis (Mtb) has an impermeable cell wall which gives it an inherent ability to resist many antibiotics. DprE1, an essential enzyme in Mtb cell wall synthesis, has been validated as a target for several TB drug candidates. The most potent and developmentally advanced DprE1 inhibitor, PBTZ169, is still undergoing clinical development. With high attrition rate, there is need to populate the development pipeline. Using a scaffold hopping strategy, we imprinted the benzenoid ring of PBTZ169 onto a quinolone nucleus. Twenty-two compounds were synthesised and screened for activity against Mtb, with six compounds exhibiting sub micromolar activity of MIC90 <0.244 μM. Compound 25 further demonstrated sub-micromolar activity when evaluated against wild-type and fluoroquinolone-resistant Mtb strains. This compound maintained its sub-micromolar activity against a DprE1 P116S mutant strain but showed a significant reduction in activity when tested against the DprE1 C387S mutant.
Collapse
Affiliation(s)
- Phelelisiwe S Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| | - Audrey Jordaan
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Lester Sigauke
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
11
|
Computer-assisted discovery of safe and effective DprE1/ aaRSs Inhibitors against TB utilizing Drug Repurposing approach. J Infect Public Health 2023; 16:554-572. [PMID: 36812878 DOI: 10.1016/j.jiph.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The emergence of various drug-resistant strains of Mycobacterium tuberculosis compelled medicinal chemists to expedite the discovery of novel, safer alternatives to present regimens. Decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1), an essential component of arabinogalactan biosynthesis, has been considered a novel target for developing new inhibitors against Tuberculosis. We aimed to discover DprE1 inhibitors utilizing the drug repurposing approach. METHODS A structure-based virtual screening of FDA and world-approved drugs database was carried out, and initially, 30 molecules were selected based on their binding affinity. These compounds were further analyzed by molecular docking with extra-precision mode, MMGBSA binding free energy estimation, and prediction of ADMET profile. RESULTS Based on the docking results and MMGBSA energy values- ZINC000006716957, ZINC000011677911, and ZINC000022448696 were identified to be the top three hit molecules with good binding interactions inside the active site of DprE1. These hit molecules were subjected to molecular dynamics (MD) simulation for a period of 100 ns to study the dynamic nature of the binding complex. MD results were in accordance with molecular docking and MMGBSA analysis showing protein-ligand contacts with key amino acid residues of DprE1. CONCLUSION Based on their stability throughout the 100 ns simulation, ZINC000011677911 was the best in silico hit with an already known safety profile. This molecule could lead to future optimization and development of new DprE1 inhibitors.
Collapse
|
12
|
Choudhary S, Kesavan AK, Juneja V, Thakur S. Molecular modeling, simulation and docking of Rv1250 protein from Mycobacterium tuberculosis. FRONTIERS IN BIOINFORMATICS 2023; 3:1125479. [PMID: 37122997 PMCID: PMC10130521 DOI: 10.3389/fbinf.2023.1125479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Computational prediction and protein structure modeling have come to the aid of various biological problems in determining the structure of proteins. These technologies have revolutionized the biological world of research, allowing scientists and researchers to gain insights into their biological questions and design experimental research much more efficiently. Pathogenic Mycobacterium spp. is known to stay alive within the macrophages of its host. Mycobacterium tuberculosis is an acid-fast bacterium that is the most common cause of tuberculosis and is considered to be the main cause of resistance of tuberculosis as a leading health issue. The genome of Mycobacterium tuberculosis contains more than 4,000 genes, of which the majority are of unknown function. An attempt has been made to computationally model and dock one of its proteins, Rv1250 (MTV006.22), which is considered as an apparent drug-transporter, integral membrane protein, and member of major facilitator superfamily (MFS). The most widely used techniques, i.e., homology modeling, molecular docking, and molecular dynamics (MD) simulation in the field of structural bioinformatics, have been used in the present work to study the behavior of Rv1250 protein from M. tuberculosis. The structure of unknown TB protein, i.e., Rv1250 was retrived using homology modeling with the help of I-TASSER server. Further, one of the sites responsible for infection was identified and docking was done by using the specific Isoniazid ligand which is an inhibitor of this protein. Finally, the stability of protein model and analysis of stable and static interaction between protein and ligand molecular dynamic simulation was performed at 100 ns The designing of novel Rv1250 enzyme inhibitors is likely achievable with the use of proposed predicted model, which could be helpful in preventing the pathogenesis caused by M. tuberculosis. Finally, the MD simulation was done to evaluate the stability of the ligand for the specific protein.
Collapse
Affiliation(s)
- Sumita Choudhary
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anup Kumar Kesavan
- Department of Biotechnology and Microbiology, Kannur University, Dr. E. K. Janaki Ammal Campus, PalayadKannur, Kerala, India
- *Correspondence: Anup Kumar Kesavan, ; Sheetal Thakur,
| | - Vijay Juneja
- Eastern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, United States
| | - Sheetal Thakur
- University Centre for Research & Development, Department of Biotechnology, Chandigarh University, Gharuan-Mohali, Punjab, India
- *Correspondence: Anup Kumar Kesavan, ; Sheetal Thakur,
| |
Collapse
|
13
|
Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Front Microbiol 2022; 13:1056608. [PMID: 36620019 PMCID: PMC9810820 DOI: 10.3389/fmicb.2022.1056608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Xu
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Baoyu Dong
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Peng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Gao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Phylodynamics and Coat Protein Analysis of Babaco Mosaic Virus in Ecuador. PLANTS 2022; 11:plants11131646. [PMID: 35807598 PMCID: PMC9268947 DOI: 10.3390/plants11131646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Babaco is a fast-growing herbaceous shrub with great commercial potential because of the organoleptic properties of its fruit. Babaco mosaic virus (BabMV) is a potexvirus in the family Alphaflexiviridae affecting babaco in all the provinces that produce this crop in Ecuador. BabMV was recently described but it has been affecting babaco for decades and, since many potexviruses are serologically indistinguishable, it may have been previously misidentified as papaya mosaic virus. Based on the coat protein (CP) gene, we aimed to study the distribution and epidemiological patterns of BabMV in babaco and chamburo over the years and to model its three-dimensional structure. Sequences of the CP were obtained from thirty-six isolates from plants collected in the main babaco-producing provinces of Ecuador between 2016 and 2021. The evolution rate of BabMV was estimated at 1.21 × 10−3 nucleotide substitutions site−1 year−1 and a time of origin of the most recent common ancestor around 1958.80. From molecular dynamics simulations, compared to other proteins of BabMV—RDRP, TGB1, and Alkb domain—the CP exhibited a higher flexibility with the C and N terminals as the most flexible regions. The reconstructed viral distribution provides dispersion patterns which have implications for control approaches of BabMV.
Collapse
|
15
|
Snizhko AD, Kyrychenko AV, Gladkov ES. Synthesis of Novel Derivatives of 5,6,7,8-Tetrahydroquinazolines Using α-Aminoamidines and In Silico Screening of Their Biological Activity. Int J Mol Sci 2022; 23:3781. [PMID: 35409144 PMCID: PMC8999073 DOI: 10.3390/ijms23073781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
α-Aminoamidines are promising reagents for the synthesis of a diverse family of pyrimidine ring derivatives. Here, we demonstrate the use of α-aminoamidines for the synthesis of a new series of 5,6,7,8-tetrahydroquinazolines by their reaction with bis-benzylidene cyclohexanones. The reaction occurs in mild conditions and is characterized by excellent yields. It has easy workup, as compared to the existing methods of tetrahydroquinazoline preparation. Newly synthesized derivatives of 5,6,7,8-tetrahydroquinazoline bear protecting groups at the C2-tert-butyl moiety of a quinazoline ring, which can be easily cleaved, opening up further opportunities for their functionalization. Moreover, molecular docking studies indicate that the synthesized compounds reveal high binding affinity toward some essential enzymes of Mycobacterial tuberculosis, such as dihydrofolate reductase (DHFR), pantothenate kinase (MtPanK), and FAD-containing oxidoreductase DprE1 (MtDprE1), so that they may be promising candidates for the molecular design and the development of new antitubercular agents against multidrug-resistant strains of the Tubercle bacillus. Finally, the high inhibition activity of the synthesized compounds was also predicted against β-glucosidase, suggesting a novel tetrahydroquinazoline scaffold for the treatment of diabetes.
Collapse
Affiliation(s)
- Arsenii D. Snizhko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
| | - Alexander V. Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
| | - Eugene S. Gladkov
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine; (A.D.S.); (A.V.K.)
- State Scientific Institution “Institute for Single Crystals”, National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072 Kharkiv, Ukraine
| |
Collapse
|
16
|
Sammartino JC, Morici M, Stelitano G, Degiacomi G, Riccardi G, Chiarelli LR. Functional investigation of the antitubercular drug target Decaprenylphosphoryl-β-D-ribofuranose-2-epimerase DprE1/DprE2 complex. Biochem Biophys Res Commun 2022; 607:49-53. [PMID: 35366543 DOI: 10.1016/j.bbrc.2022.03.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 11/02/2022]
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, due to a single pathogen, Mycobacterium tuberculosis. To eradicate TB, management of drug-resistant strains is fundamental, therefore, the identification and characterization of drug targets is pivotal. In this work we aim at describing the relationships with the well-known drug target DprE1 and DprE2, working in association for the biosynthesis of the arabinogalactan precursor, essential component of mycobacterial cell wall. We demonstrated that the enzymes behave as a stable heterodimeric complex, once co-expressed into the same system. This complex showed improved catalytic properties, compared to the singularly expressed enzymes, demonstrating that co-expression is fundamental to achieve the proper folding of the active sites. Our results represent an important step forward in deciphering the functional properties of these enzymes, and lay the foundations for structural studies, useful for development of more specific inhibitors helpful to contrast the spreading of drug-resistant strains.
Collapse
Affiliation(s)
- Josè Camilla Sammartino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Martino Morici
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Giulia Degiacomi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Giovanna Riccardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
17
|
Yimcharoen M, Saikaew S, Wattananandkul U, Phunpae P, Intorasoot S, Kasinrerk W, Tayapiwatana C, Butr-Indr B. The Regulation of ManLAM-Related Gene Expression in Mycobacterium tuberculosis with Different Drug Resistance Profiles Following Isoniazid Treatment. Infect Drug Resist 2022; 15:399-412. [PMID: 35153492 PMCID: PMC8828085 DOI: 10.2147/idr.s346869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) remains a global health concern because of the development of drug resistance. The adaptability of MTB in response to a variety of environmental stresses is a crucial strategy that supports their survival and evades host defense mechanisms. Stress regulates gene expression, particularly virulence genes, leading to the development of drug tolerance. Mannose-capped lipoarabinomannan (ManLAM) is a critical component of the cell wall, functions as a virulence factor and influences host defense mechanisms. Purpose This study focuses on the effect of isoniazid (INH) stress on the regulation of ManLAM-related genes, to improve our understanding of virulence and drug resistance development in MTB. Materials and Methods MTB with distinct drug resistance profiles were used for gene expression analysis. Multiplex-real time PCR assay was performed to monitor stress-related genes (hspX, tgs1, and sigE). The expression levels of ManLAM-related genes (pimB, mptA, mptC, dprE1, dprE2, and embC) were quantified by qRT-PCR. Sequence analysis of drug resistance-associated genes (inhA, katG, and rpoB) and ManLAM-related genes were performed to establish a correlation between genetic variation and gene expression. Results INH treatment activates the stress response mechanism in MTB, resulting in a distinct gene expression pattern between drug resistance and drug-sensitive TB. In response to INH, hspX was up-regulated in RIF-R and MDR. tgs1 was strongly up-regulated in MDR, whereas sigE was dramatically up-regulated in the drug-sensitive TB. Interestingly, ManLAM-related genes were most up-regulated in drug resistance, notably MDR (pimB, mptA, dprE1, and embC), implying a role for drug resistance and adaptability of MTB via ManLAM modulation. Conclusion This study establishes a relationship between the antibiotic stress response mechanism and the expression of ManLAM-related genes in MTB samples with diverse drug resistance profiles. The novel gene expression pattern in this work is valuable knowledge that can be applied for TB monitoring and treatment in the future.
Collapse
Affiliation(s)
- Manita Yimcharoen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sukanya Saikaew
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Usanee Wattananandkul
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sorasak Intorasoot
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at The Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at The Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Correspondence: Bordin Butr-Indr, Tel +66 53945086 ext. 15, Fax +66 53217143, Email ;
| |
Collapse
|
18
|
Sharma K, Hema K, Bhatraju NK, Kukreti R, Das RS, Gupta MD, Syed MA, Pasha MAQ. The deleterious impact of a non-synonymous SNP on protein structure and function is apparent in hypertension. J Mol Model 2021; 28:14. [PMID: 34961886 DOI: 10.1007/s00894-021-04997-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022]
Abstract
Essential hypertension (EH) is a significant health issue around the globe. The indifferent therapy regimen suggests varied physiological functions due to the lifestyle and genetic presentations of an individual. The endothelial nitric oxide synthase (NOS3) gene is a crucial vascular system marker in EH that contributes significantly to the phenotype. Hence, the present study aimed to employ the candidate gene approach and investigate the association between NOS3 single nucleotide polymorphism (SNP) E298D (G894T/rs1799983) by applying several in silico tools and validation through human samples screening. We corroborated computational findings through a case-control study comprising 294 controls and 299 patients; the 894T allele emerged significantly as the risk allele (odds ratio=2.07; P=6.38E-05). The in silico analyses highlighted the significance of E298D on the native structure and function of NOS3. The dynamics simulation study revealed that the variant type 298D caused structural destabilization of the protein to alter its function. Plasma nitrite levels were reduced in patients (P=0.0002), and the same correlated with the 894T allele. Furthermore, correlations were apparent between clinical, genotype, and routine biochemical parameters. To conclude, the study demonstrated a perceptible association between the SNP E298D and NOS3 protein structure stability that appears to have a bearing on the enzyme's function with a deleterious role in EH.
Collapse
Affiliation(s)
- Kavita Sharma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India.,Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Kanipakam Hema
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
| | - Naveen Kumar Bhatraju
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
| | - Rajat Subhra Das
- All India Institute of Medical Sciences, Raebareli, Uttar Pradesh, 229405, India.,Agartala Government Medical College, Kunjaban, Agartala, Tripura, India
| | - Mohit Dayal Gupta
- GB Pant Institute of Post Graduate Medical Education and Research, New Delhi, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| | - M A Qadar Pasha
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India.
| |
Collapse
|
19
|
Chhabra S, Kumar S, Parkesh R. Chemical Space Exploration of DprE1 Inhibitors Using Chemoinformatics and Artificial Intelligence. ACS OMEGA 2021; 6:14430-14441. [PMID: 34124465 PMCID: PMC8190903 DOI: 10.1021/acsomega.1c01314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 05/27/2023]
Abstract
Tuberculosis (TB), entrained by Mycobacterium tuberculosis, continues to be an enfeebling disease, killing nearly 1.5 million people in 2019, with 2 billion people worldwide affected by latent TB. The multidrug-resistant and totally drug-resistant emerging strains further exacerbate the TB infection. The cell wall of bacteria provides critical virulence components such as cell surface proteins, regulators, signal transduction proteins, and toxins. The cell wall biosynthesis pathway of Mycobacterium tuberculosis is exhaustively studied to discover novel drug targets. Decaprenylphosphoryl-β-d-ribose-2'-epimerase (DprE1) is an important enzyme involved in the arabinogalactan biosynthetic pathway of Mycobacterium tuberculosis cell wall and is essential for both latent and persistent bacterial infection. We analyzed all known ∼1300 DprE1 inhibitors to gain deep insights into the chemogenomic space of DprE1-ligand complexes. Physicochemical descriptors of the DprE1 inhibitors showed a marked lipophilic character forming a cluster distinct from the existing TB drugs, as revealed by the principal component analysis. Similarity analysis using Murcko scaffolds and rubber band scaling revealed scarce representation of the chemical space. Further, Murcko scaffold analysis uncovered favorable and unfavorable scaffolds, where benzo and pyridine-based core scaffolds exhibit the highest biological activity, as evidenced by their MIC and IC50 values. Automatic SAR and R-group decomposition analysis resulted in the identification of substructures responsible for the inhibitory activity of the DprE1 enzyme. Further, with activity cliff analysis, we observed prominent discontinuity in the SAR of DprE1 inhibitors, where even simple structural modification in the chemical scaffold resulted in significant potency difference, presumably due to the binding orientation and interaction in the active site. Thiophene, 6-membered aromatic rings, and unsubstituted benzene ring-based toxicophores were identified in the DprE1 chemical space using an artificial intelligence approach based on inductive logic programming. This paper, hence, ushers in new insights for the design and development of potent covalent and non-covalent DprE1 inhibitors and guides hit and lead optimization for the development of non-hazardous small molecule therapeutics for Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Sonali Chhabra
- CSIR-Institute
of Microbial Technology, Chandigarh 160036, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Sunil Kumar
- CSIR-Institute
of Microbial Technology, Chandigarh 160036, India
| | - Raman Parkesh
- CSIR-Institute
of Microbial Technology, Chandigarh 160036, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
20
|
Kim SS, Alves MJ, Gygli P, Otero J, Lindert S. Identification of Novel Cyclin A2 Binding Site and Nanomolar Inhibitors of Cyclin A2-CDK2 Complex. Curr Comput Aided Drug Des 2021; 17:57-68. [PMID: 31889491 DOI: 10.2174/1573409916666191231113055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Given the diverse roles of cyclin A2 both in cell cycle regulation and in DNA damage response, identifying small molecule regulators of cyclin A2 activity carries significant potential to regulate diverse cellular processes in both ageing/neurodegeneration and in cancer. OBJECTIVE Based on cyclin A2's recently discovered role in DNA repair, we hypothesized that small molecule inhibitors that were predicted to bind to both cyclin A2 and CDK2 will be useful as a radiosensitizer of cancer cells. In this study, we used structure-based drug discovery to find inhibitors that target both cyclin A2 and CDK2. METHODS Molecular dynamics simulations were used to generate diverse binding pocket conformations for application of the relaxed complex scheme. We then used structure-based virtual screening to find potential dual cyclin A2 and CDK2 inhibitors. Based on a consensus score of docked poses from Glide and AutoDock Vina, we identified about 40 promising hit compounds, where all PAINS scaffolds were removed from consideration. A biochemical luminescence assay of cyclin A2-CDK2 function was used for experimental verification. RESULTS Four lead inhibitors of cyclin A2-CDK2 complex have been identified using a relaxed complex scheme virtual screen have been verified in a biochemical luminescence assay of cyclin A2- CDK2 function. Two of the four lead inhibitors had inhibitory concentrations in the nanomolar range. CONCLUSION The four cyclin A2-CDK2 complex inhibitors are the first reported inhibitors that were specifically designed not to target the cyclin A2-CDK2 protein-protein interface. Overall, our results highlight the potential of combined advanced computational tools and biochemical verification to discover novel binding scaffolds.
Collapse
Affiliation(s)
- Stephanie S Kim
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210, United States
| | - Michele J Alves
- Departments of Neuroscience, Pathology and Neuropathology, Ohio State University, Columbus, OH, 43210, United States
| | - Patrick Gygli
- Departments of Neuroscience, Pathology and Neuropathology, Ohio State University, Columbus, OH, 43210, United States
| | - Jose Otero
- Departments of Neuroscience, Pathology and Neuropathology, Ohio State University, Columbus, OH, 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210, United States
| |
Collapse
|
21
|
Baptista R, Bhowmick S, Shen J, Mur LAJ. Molecular Docking Suggests the Targets of Anti-Mycobacterial Natural Products. Molecules 2021; 26:475. [PMID: 33477495 PMCID: PMC7831053 DOI: 10.3390/molecules26020475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) is a major global threat, mostly due to the development of antibiotic-resistant forms of Mycobacterium tuberculosis, the causal agent of the disease. Driven by the pressing need for new anti-mycobacterial agents several natural products (NPs) have been shown to have in vitro activities against M. tuberculosis. The utility of any NP as a drug lead is augmented when the anti-mycobacterial target(s) is unknown. To suggest these, we used a molecular reverse docking approach to predict the interactions of 53 selected anti-mycobacterial NPs against known "druggable" mycobacterial targets ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13. The docking scores/binding free energies were predicted and calculated using AutoDock Vina along with physicochemical and structural properties of the NPs, using PaDEL descriptors. These were compared to the established inhibitor (control) drugs for each mycobacterial target. The specific interactions of the bisbenzylisoquinoline alkaloids 2-nortiliacorinine, tiliacorine and 13'-bromotiliacorinine against the targets PknB and DprE1 (-11.4, -10.9 and -9.8 kcal·mol-1; -12.7, -10.9 and -10.3 kcal·mol-1, respectively) and the lignan α-cubebin and Pks13 (-11.0 kcal·mol-1) had significantly superior docking scores compared to controls. Our approach can be used to suggest predicted targets for the NP to be validated experimentally, but these in silico steps are likely to facilitate drug optimization.
Collapse
Affiliation(s)
- Rafael Baptista
- Institute of Biological, Environmental and Rural Sciences, Penglais Campus, Aberystwyth University, Aberystwyth, Wales SY23 2DA, UK; (R.B.); (S.B.)
| | - Sumana Bhowmick
- Institute of Biological, Environmental and Rural Sciences, Penglais Campus, Aberystwyth University, Aberystwyth, Wales SY23 2DA, UK; (R.B.); (S.B.)
| | - Jianying Shen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences, Penglais Campus, Aberystwyth University, Aberystwyth, Wales SY23 2DA, UK; (R.B.); (S.B.)
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
22
|
Gopinath K, Jokinen EM, Kurkinen ST, Pentikäinen OT. Screening of Natural Products Targeting SARS-CoV-2-ACE2 Receptor Interface - A MixMD Based HTVS Pipeline. Front Chem 2020; 8:589769. [PMID: 33330376 PMCID: PMC7717977 DOI: 10.3389/fchem.2020.589769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
The COVID-19 pandemic, caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a severe global health crisis now. SARS-CoV-2 utilizes its Spike protein receptor-binding domain (S-protein) to invade human cell through binding to Angiotensin-Converting Enzyme 2 receptor (ACE2). S-protein is the key target for many therapeutics and vaccines. Potential S-protein-ACE2 fusion inhibitor is expected to block the virus entry into the host cell. In many countries, traditional practices, based on natural products (NPs) have been in use to slow down COVID-19 infection. In this study, a protocol was applied that combines mixed solvent molecular dynamics simulations (MixMD) with high-throughput virtual screening (HTVS) to search NPs to block SARS-CoV-2 entry into the human cell. MixMD simulations were employed to discover the most promising stable binding conformations of drug-like probes in the S-protein-ACE2 interface. Detected stable sites were used for HTVs of 612093 NPs to identify molecules that could interfere with the S-protein-ACE2 interaction. In total, 19 NPs were selected with rescoring model. These top-ranked NP-S-protein complexes were subjected to classical MD simulations for 300 ns (3 replicates of 100 ns) to estimate the stability and affinity of binding. Three compounds, ZINC000002128789, ZINC000002159944 and SN00059335, showed better stability in all MD runs, of which ZINC000002128789 was predicted to have the highest binding affinity, suggesting that it could be effective modulator in RBD-ACE2 interface to prevent SARS-CoV-2 infection. Our results support that NPs may provide tools to fight COVID-19.
Collapse
Affiliation(s)
| | | | | | - Olli T. Pentikäinen
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
23
|
Oña Chuquimarca S, Ayala-Ruano S, Goossens J, Pauwels L, Goossens A, Leon-Reyes A, Ángel Méndez M. The Molecular Basis of JAZ-MYC Coupling, a Protein-Protein Interface Essential for Plant Response to Stressors. FRONTIERS IN PLANT SCIENCE 2020; 11:1139. [PMID: 32973821 PMCID: PMC7468482 DOI: 10.3389/fpls.2020.01139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 05/29/2023]
Abstract
The jasmonic acid (JA) signaling pathway is one of the primary mechanisms that allow plants to respond to a variety of biotic and abiotic stressors. Within this pathway, the JAZ repressor proteins and the basic helix-loop-helix (bHLH) transcription factor MYC3 play a critical role. JA is a volatile organic compound with an essential role in plant immunity. The increase in the concentration of JA leads to the decoupling of the JAZ repressor proteins and the bHLH transcription factor MYC3 causing the induction of genes of interest. The primary goal of this study was to identify the molecular basis of JAZ-MYC coupling. For this purpose, we modeled and validated 12 JAZ-MYC3 3D in silico structures and developed a molecular dynamics/machine learning pipeline to obtain two outcomes. First, we calculated the average free binding energy of JAZ-MYC3 complexes, which was predicted to be -10.94 +/-2.67 kJ/mol. Second, we predicted which ones should be the interface residues that make the predominant contribution to the free energy of binding (molecular hotspots). The predicted protein hotspots matched a conserved linear motif SL••FL•••R, which may have a crucial role during MYC3 recognition of JAZ proteins. As a proof of concept, we tested, both in silico and in vitro, the importance of this motif on PEAPOD (PPD) proteins, which also belong to the TIFY protein family, like the JAZ proteins, but cannot bind to MYC3. By mutating these proteins to match the SL••FL•••R motif, we could force PPDs to bind the MYC3 transcription factor. Taken together, modeling protein-protein interactions and using machine learning will help to find essential motifs and molecular mechanisms in the JA pathway.
Collapse
Affiliation(s)
- Samara Oña Chuquimarca
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sebastián Ayala-Ruano
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Jonas Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Antonio Leon-Reyes
- Laboratorio de Biotecnología Agrícola y de Alimentos, Ingeniería en Agronomía, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Campus Cumbayá, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Investigaciones Biológicas y Ambientales BIÓSFERA, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Miguel Ángel Méndez
- Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Campus Cumbayá, Quito, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
24
|
Verma N, Srivastava S, Malik R, Yadav JK, Goyal P, Pandey J. Computational investigation for modeling the protein-protein interaction of TasA (28-261)-TapA (33-253): a decisive process in biofilm formation by Bacillus subtilis. J Mol Model 2020; 26:226. [PMID: 32779018 DOI: 10.1007/s00894-020-04507-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/04/2020] [Indexed: 01/27/2023]
Abstract
Biofilms have a significant role in microbial persistence, antibiotic resistance, and chronic infections; consequently, there is a pressing need for development of novel "anti-biofilm strategies." One of the fundamental mechanisms involved in biofilm formation is protein-protein interactions of "amyloid-like proteins" (ALPs) in the extracellular matrix. Such interactions could be potential targets for development of novel anti-biofilm strategies; therefore, assessing the structural features of these interactions could be of great scientific value. Characterization of structural features the of protein-protein interaction with conventional structure biology tools including X-ray diffraction and nuclear magnetic resonance is technically challenging, expensive, and time-consuming. In contrast, modeling such interactions is time-efficient and economical, and might provide deeper understanding of structural basis of interactions. Although it is often acknowledged that molecular modeling methods have varying accuracy, their careful implementation with supplementary verification methods can provide valuable insight and directions for future studies. With this reasoning, during the present study, the protein-protein interaction of TasA(28-261)-TapA(33-253) (which is a decisive process for biofilm formation by Bacillus subtilis) was modeled using in silico approaches, viz., molecular modeling, protein-protein docking, and molecular dynamics simulations. Results obtained here identified amino acid residues present within intrinsically disordered regions of both proteins to be critical for interaction. These results were further supported with principal component analyses (PCA) and free energy landscape (FEL) analyses. Results presented here represent novel finding, and we hypothesize that amino acid residues identified during the present study could be targeted for inhibition of biofilm formation by B. subtilis.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan - Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Shubham Srivastava
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan - Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan - Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan - Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan - Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Janmejay Pandey
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan - Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
25
|
Promiscuous Targets for Antitubercular Drug Discovery: The Paradigm of DprE1 and MmpL3. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020623] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development and spread of Mycobacterium tuberculosis multi-drug resistant strains still represent a great global health threat, leading to an urgent need for novel anti-tuberculosis drugs. Indeed, in the last years, several efforts have been made in this direction, through a number of high-throughput screenings campaigns, which allowed for the identification of numerous hit compounds and novel targets. Interestingly, several independent screening assays identified the same proteins as the target of different compounds, and for this reason, they were named “promiscuous” targets. These proteins include DprE1, MmpL3, QcrB and Psk13, and are involved in the key pathway for M. tuberculosis survival, thus they should represent an Achilles’ heel which could be exploited for the development of novel effective drugs. Indeed, among the last molecules which entered clinical trials, four inhibit a promiscuous target. Within this review, the two most promising promiscuous targets, the oxidoreductase DprE1 involved in arabinogalactan synthesis and the mycolic acid transporter MmpL3 are discussed, along with the latest advancements in the development of novel inhibitors with anti-tubercular activity.
Collapse
|
26
|
Verma H, Choudhary S, Singh PK, Kashyap A, Silakari O. Decoding the signature of molecular mechanism involved in mutation associated resistance to 1, 3-benzothiazin-4-ones (Btzs) based DprE1 inhibitors using BTZ043 as a reference drug. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1659507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Himanshu Verma
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Shalki Choudhary
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Pankaj Kumar Singh
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Aanchal Kashyap
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
27
|
Wang RR, Liu WS, Zhou L, Ma Y, Wang RL. Probing the acting mode and advantages of RMC-4550 as an Src-homology 2 domain-containing protein tyrosine phosphatase (SHP2) inhibitor at molecular level through molecular docking and molecular dynamics. J Biomol Struct Dyn 2019; 38:1525-1538. [DOI: 10.1080/07391102.2019.1613266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wen-Shan Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Liang Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
28
|
Metabolism of SKLB-TB1001, a Potent Antituberculosis Agent, in Animals. Antimicrob Agents Chemother 2018; 62:AAC.02375-17. [PMID: 29686156 DOI: 10.1128/aac.02375-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/27/2018] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis is a major global health problem, and the emergence of multidrug-resistant and extensively drug-resistant strains has increased the difficulty of treating this disease. Among the novel antituberculosis drugs in the pipeline, decaprenylphosphoryl-beta-d-ribose-2-epimerase (DprE1) inhibitors such as BTZ043 and pBTZ169 exhibited extraordinary antituberculosis potency. Here, the metabolites of the new DprE1 inhibitor SKLB-TB1001 in vivo and its inhibition of cytochrome P450 isoforms and plasma protein binding (PPB) in vitro were studied. The results showed that rapid transformation and high PPB resulted in inadequate exposure in vivo and thus led to the moderate potency of SKLB-TB1001 in vivo This study provided explanations for the discrepant potency of this scaffold in vivo and in vitro Meanwhile, it also provides a rationale for lead optimization of this very promising scaffold of antituberculosis agents to prevent them from being metabolized, thus improving their exposure in vivo.
Collapse
|
29
|
Aprahamian ML, Tikunova SB, Price MV, Cuesta AF, Davis JP, Lindert S. Successful Identification of Cardiac Troponin Calcium Sensitizers Using a Combination of Virtual Screening and ROC Analysis of Known Troponin C Binders. J Chem Inf Model 2017; 57:3056-3069. [PMID: 29144742 DOI: 10.1021/acs.jcim.7b00536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium-dependent cardiac muscle contraction is regulated by the protein complex troponin. Calcium binds to the N-terminal domain of troponin C (cNTnC) which initiates the process of contraction. Heart failure is a consequence of a disruption of this process. With the prevalence of this condition, a strong need exists to find novel compounds to increase the calcium sensitivity of cNTnC. Desirable are small chemical molecules that bind to the interface between cTnC and the cTnI switch peptide and exhibit calcium sensitizing properties by possibly stabilizing cTnC in an open conformation. To identify novel drug candidates, we employed a structure-based drug discovery protocol that incorporated the use of a relaxed complex scheme (RCS). In preparation for the virtual screening, cNTnC conformations were identified based on their ability to correctly predict known cNTnC binders using a receiver operating characteristics analysis. Following a virtual screen of the National Cancer Institute's Developmental Therapeutic Program database, a small number of molecules were experimentally tested using stopped-flow kinetics and steady-state fluorescence titrations. We identified two novel compounds, 3-(4-methoxyphenyl)-6,7-chromanediol (NSC600285) and 3-(4-methylphenyl)-7,8-chromanediol (NSC611817), that show increased calcium sensitivity of cTnC in the presence of the regulatory domain of cTnI. The effects of NSC600285 and NSC611817 on the calcium dissociation rate was stronger than that of the known calcium sensitizer bepridil. Thus, we identified a 3-phenylchromane group as a possible key pharmacophore in the sensitization of cardiac muscle contraction. Building on this finding is of interest to researchers working on development of drugs for calcium sensitization.
Collapse
Affiliation(s)
- Melanie L Aprahamian
- Department of Chemistry and Biochemistry, Ohio State University , Columbus, Ohio 43210, United States
| | - Svetlana B Tikunova
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University , Columbus, Ohio 43210, United States
| | - Morgan V Price
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University , Columbus, Ohio 43210, United States
| | - Andres F Cuesta
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University , Columbus, Ohio 43210, United States
| | - Jonathan P Davis
- Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, Ohio State University , Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
30
|
Karan S, Kashyap VK, Shafi S, Saxena AK. Structural and inhibition analysis of novel sulfur-rich 2-mercaptobenzothiazole and 1,2,3-triazole ligands against Mycobacterium tuberculosis DprE1 enzyme. J Mol Model 2017; 23:241. [DOI: 10.1007/s00894-017-3403-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
|
31
|
Verma S, Das S, Mandal A, Ansari MY, Kumari S, Mansuri R, Kumar A, Singh R, Saini S, Abhishek K, Kumar V, Sahoo GC, Das P. Role of inhibitors of serine peptidases in protecting Leishmania donovani against the hydrolytic peptidases of sand fly midgut. Parasit Vectors 2017; 10:303. [PMID: 28645315 PMCID: PMC5481909 DOI: 10.1186/s13071-017-2239-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vector-borne diseases such as leishmaniasis, the sand fly midgut is considered to be an important site for vector-parasite interaction. Digestive enzymes including serine peptidases such as trypsin and chymotrypsin, which are secreted in the midgut are one of the obstacles for Leishmania in establishing a successful infection. The presence of some natural inhibitors of serine peptidases (ISPs) has recently been reported in Leishmania. In the present study, we deciphered the role of these ISPs in the survival of Leishmania donovani in the hostile sand fly midgut environment. METHODS In silico and co-immunoprecipitation studies were performed to observe the interaction of L. donovani ISPs with trypsin and chymotrypsin. Zymography and in vitro enzyme assays were carried out to observe the inhibitory effect of purified recombinant ISPs of L. donovani (rLdISPs) on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of ISPs in the amastigote to promastigote transition stages were studied by semi-quantitative RT-PCR and Western blot. The role of LdISP on the survival of ISP overexpressed (OE) and ISP knocked down (KD) Leishmania parasites inside the sand fly gut was investigated by in vitro and in vivo cell viability assays. RESULTS We identified two ecotin-like genes in L. donovani, LdISP1 and LdISP2. In silico and co-immunoprecipitation results clearly suggest a strong interaction of LdISP molecules with trypsin and chymotrypsin. Zymography and in vitro enzyme assay confirmed the inhibitory effect of rLdISP on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of LdISP2 was found to be strongly associated with the amastigote to promastigote phase transition. The activities of the digestive enzymes were found to be significantly reduced in the infected sand flies when compared to uninfected. To our knowledge, our study is the first report showing the possible reduction of chymotrypsin activity in L. donovani infected sand flies compared to uninfected. Interestingly, during the early transition stage, substantial killing was observed in ISP2 knocked down (ISP2KD) parasites compared to wild type (WT), whereas ISP1 knocked down (ISP1KD) parasites remained viable. Therefore, our study clearly indicates that LdISP2 is a more effective inhibitor of serine peptidases than LdISP1. CONCLUSION Our results suggest that the lack of ISP2 is detrimental to the parasites during the early transition from amastigotes to promastigotes. Moreover, the results of the present study demonstrated for the first time that LdISP2 has an important role in the inhibition of peptidases and promoting L. donovani survival inside the Phlebotomus argentipes midgut.
Collapse
Affiliation(s)
- Sudha Verma
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, Bihar 801105 India
| | - Abhishek Mandal
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Md Yousuf Ansari
- National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844101 India
- MM College of Pharmacy, Maharishi Markandeshwar University, Mullana, Ambala, 133207 India
| | - Sujata Kumari
- Department of Vector Biology, Rajendra Memorial Research Institute of Medical Sciences, (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Rani Mansuri
- National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844101 India
| | - Ajay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Ruby Singh
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Savita Saini
- National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844101 India
| | - Kumar Abhishek
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Vijay Kumar
- Department of Vector Biology, Rajendra Memorial Research Institute of Medical Sciences, (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Ganesh Chandra Sahoo
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agamkuan, Patna, Bihar 800007 India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Agamkuan, Patna, Bihar 800007 India
| |
Collapse
|
32
|
González-Navarro FF, Belanche-Muñoz LA, Gámez-Moreno MG, Flores-Ríos BL, Ibarra-Esquer JE, López-Morteo GA. Gene discovery for facioscapulohumeral muscular dystrophy by machine learning techniques. Genes Genet Syst 2016; 90:343-56. [PMID: 26960968 DOI: 10.1266/ggs.15-00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder that shows a preference for the facial, shoulder and upper arm muscles. FSHD affects about one in 20-400,000 people, and no effective therapeutic strategies are known to halt disease progression or reverse muscle weakness or atrophy. Many genes may be incorrectly regulated in affected muscle tissue, but the mechanisms responsible for the progressive muscle weakness remain largely unknown. Although machine learning (ML) has made significant inroads in biomedical disciplines such as cancer research, no reports have yet addressed FSHD analysis using ML techniques. This study explores a specific FSHD data set from a ML perspective. We report results showing a very promising small group of genes that clearly separates FSHD samples from healthy samples. In addition to numerical prediction figures, we show data visualizations and biological evidence illustrating the potential usefulness of these results.
Collapse
|