1
|
Cuénod A, Aerni M, Bagutti C, Bayraktar B, Boz ES, Carneiro CB, Casanova C, Coste AT, Damborg P, van Dam DW, Demirci M, Drevinek P, Dubuis O, Fernandez J, Greub G, Hrabak J, Hürkal Yiğitler G, Hurych J, Jensen TG, Jost G, Kampinga GA, Kittl S, Lammens C, Lang C, Lienhard R, Logan J, Maffioli C, Mareković I, Marschal M, Moran-Gilad J, Nolte O, Oberle M, Pedersen M, Pflüger V, Pranghofer S, Reichl J, Rentenaar RJ, Riat A, Rodríguez-Sánchez B, Schilt C, Schlotterbeck AK, Schrenzel J, Troib S, Willems E, Wootton M, Ziegler D, Egli A. Quality of MALDI-TOF mass spectra in routine diagnostics: results from an international external quality assessment including 36 laboratories from 12 countries using 47 challenging bacterial strains. Clin Microbiol Infect 2023; 29:190-199. [PMID: 35623578 DOI: 10.1016/j.cmi.2022.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is a widely used method for bacterial species identification. Incomplete databases and mass spectral quality (MSQ) still represent major challenges. Important proxies for MSQ are the number of detected marker masses, reproducibility, and measurement precision. We aimed to assess MSQs across diagnostic laboratories and the potential of simple workflow adaptations to improve it. METHODS For baseline MSQ assessment, 47 diverse bacterial strains, which are challenging to identify by MALDI-TOF MS, were routinely measured in 36 laboratories from 12 countries, and well-defined MSQ features were used. After an intervention consisting of detailed reported feedback and instructions on how to acquire MALDI-TOF mass spectra, measurements were repeated and MSQs were compared. RESULTS At baseline, we observed heterogeneous MSQ between the devices, considering the median number of marker masses detected (range = [2-25]), reproducibility between technical replicates (range = [55%-86%]), and measurement error (range = [147 parts per million (ppm)-588 ppm]). As a general trend, the spectral quality was improved after the intervention for devices, which yielded low MSQs in the baseline assessment as follows: for four out of five devices with a high measurement error, the measurement precision was improved (p-values <0.001, paired Wilcoxon test); for six out of ten devices, which detected a low number of marker masses, the number of detected marker masses increased (p-values <0.001, paired Wilcoxon test). DISCUSSION We have identified simple workflow adaptations, which, to some extent, improve MSQ of poorly performing devices and should be considered by laboratories yielding a low MSQ. Improving MALDI-TOF MSQ in routine diagnostics is essential for increasing the resolution of bacterial identification by MALDI-TOF MS, which is dependent on the reproducible detection of marker masses. The heterogeneity identified in this external quality assessment (EQA) requires further study.
Collapse
Affiliation(s)
- Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
| | | | | | - Banu Bayraktar
- University of Health Sciences, Sisli Hamidiye Etfal Teaching and Research Hospital, Istanbul, Turkey
| | - Efe Serkan Boz
- Department of Medical Microbiology, University of Health Sciences, Haydarpasa Numune Teaching and Research Hospital, Istanbul, Turkey
| | | | - Carlo Casanova
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Alix T Coste
- Institute of Microbiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Mehmet Demirci
- Department of Medical Microbiology, Kirklareli University, Kirklareli, Turkey
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - José Fernandez
- Division of Laboratory Medicine, Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Lausanne, Lausanne, Switzerland
| | - Jaroslav Hrabak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Gülen Hürkal Yiğitler
- University of Health Sciences, Sisli Hamidiye Etfal Teaching and Research Hospital, Istanbul, Turkey
| | - Jakub Hurych
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Thøger Gorm Jensen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | | | - Greetje A Kampinga
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sonja Kittl
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | | | | | - Julie Logan
- Reference Services Division, UK Health Security Agency, London, United Kingdom
| | | | - Ivana Mareković
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Matthias Marschal
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Jacob Moran-Gilad
- School of Public Health, Ben Gurion University of the Negev and Soroka University Medical Center, Beer Sheva, Israel
| | - Oliver Nolte
- Center for Laboratory Medicine, St. Gallen, Switzerland
| | | | - Michael Pedersen
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | | | | | - Julia Reichl
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | - Arnaud Riat
- Division of Laboratory Medicine, Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | | | | | | | - Jacques Schrenzel
- Division of Laboratory Medicine, Laboratory of Bacteriology, University Hospital of Geneva, Geneva, Switzerland
| | - Shani Troib
- School of Public Health, Ben Gurion University of the Negev and Soroka University Medical Center, Beer Sheva, Israel
| | - Elise Willems
- Clinical Laboratory AZNikolaas, Sint-Niklaas, Belgium
| | - Mandy Wootton
- University Hospital of Wales, Cardiff, United Kingdom
| | | | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
2
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
3
|
Cuénod A, Foucault F, Pflüger V, Egli A. Factors Associated With MALDI-TOF Mass Spectral Quality of Species Identification in Clinical Routine Diagnostics. Front Cell Infect Microbiol 2021; 11:646648. [PMID: 33796488 PMCID: PMC8007975 DOI: 10.3389/fcimb.2021.646648] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background An accurate and timely identification of bacterial species is critical in clinical diagnostics. Species identification allows a potential first adaptation of empiric antibiotic treatments before the resistance profile is available. Matrix assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-TOF MS) is a widely used method for bacterial species identification. However, important challenges in species identification remain. These arise from (i) incomplete databases, (ii) close relatedness of species of interest, and (iii) spectral quality, which is currently vaguely defined. Methods We selected 47 clinically relevant bacterial isolates from 39 species, which can be challenging to identify by MALDI-TOF MS. We measured these isolates under various analytical conditions on two MALDI-TOF MS systems. First, we identified spectral features, which were associated with correct species identification in three different databases. Considering these features, we then systematically compared spectra produced with three different sample preparation protocols. In addition, we varied quantities of bacterial colony material applied and bacterial colony age. Results We identified (i) the number of ribosomal marker peaks detected, (ii) the median relative intensity of ribosomal marker peaks, (iii) the sum of the intensity of all detected peaks, (iv) a high measurement precision, and (v) reproducibility of peaks to act as good proxies of spectral quality. We found that using formic acid, measuring bacterial colonies at a young age, and frequently calibrating the MALDI-TOF MS device increase mass spectral quality. We further observed significant differences in spectral quality between different bacterial taxa and optimal measurement conditions vary per taxon. Conclusion We identified and applied quality measures for MALDI-TOF MS and optimized spectral quality in routine settings. Phylogenetic marker peaks can be reproducibly detected and provide an increased resolution and the ability to distinguish between challenging species such as those within the Enterobacter cloacae complex, Burkholderia cepacia complex, or viridans streptococci.
Collapse
Affiliation(s)
- Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | | | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
4
|
Tsypin M, Asmellash S, Meyer K, Touchet B, Roder H. Extending the information content of the MALDI analysis of biological fluids via multi-million shot analysis. PLoS One 2019; 14:e0226012. [PMID: 31815946 PMCID: PMC6901224 DOI: 10.1371/journal.pone.0226012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Reliable measurements of the protein content of biological fluids like serum or plasma can provide valuable input for the development of personalized medicine tests. Standard MALDI analysis typically only shows high abundance proteins, which limits its utility for test development. It also exhibits reproducibility issues with respect to quantitative measurements. In this paper we show how the sensitivity of MALDI profiling of intact proteins in unfractionated human serum can be substantially increased by exposing a sample to many more laser shots than are commonly used. Analytical reproducibility is also improved. METHODS To assess what is theoretically achievable we utilized spectra from the same samples obtained over many years and combined them to generate MALDI spectral averages of up to 100,000,000 shots for a single sample, and up to 8,000,000 shots for a set of 40 different serum samples. Spectral attributes, such as number of peaks and spectral noise of such averaged spectra were investigated together with analytical reproducibility as a function of the number of shots. We confirmed that results were similar on MALDI instruments from different manufacturers. RESULTS We observed an expected decrease of noise, roughly proportional to the square root of the number of shots, over the whole investigated range of the number of shots (5 orders of magnitude), resulting in an increase in the number of reliably detected peaks. The reproducibility of the amplitude of these peaks, measured by CV and concordance analysis also improves with very similar dependence on shot number, reaching median CVs below 2% for shot numbers > 4 million. Measures of analytical information content and association with biological processes increase with increasing number of shots. CONCLUSIONS We demonstrate that substantially increasing the number of laser shots in a MALDI-TOF analysis leads to more informative and reliable data on the protein content of unfractionated serum. This approach has already been used in the development of clinical tests in oncology.
Collapse
Affiliation(s)
- Maxim Tsypin
- Biodesix Inc., Boulder, Colorado, United States of America
| | | | - Krista Meyer
- Biodesix Inc., Boulder, Colorado, United States of America
| | | | - Heinrich Roder
- Biodesix Inc., Boulder, Colorado, United States of America
| |
Collapse
|
6
|
Penny C, Grothendick B, Zhang L, Borror CM, Barbano D, Cornelius AJ, Gilpin BJ, Fagerquist CK, Zaragoza WJ, Jay-Russell MT, Lastovica AJ, Ragimbeau C, Cauchie HM, Sandrin TR. A Designed Experiments Approach to Optimizing MALDI-TOF MS Spectrum Processing Parameters Enhances Detection of Antibiotic Resistance in Campylobacter jejuni. Front Microbiol 2016; 7:818. [PMID: 27303397 PMCID: PMC4885823 DOI: 10.3389/fmicb.2016.00818] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was to enhance strain level resolution for Campylobacter jejuni through the optimization of spectrum processing parameters using a series of designed experiments. A collection of 172 strains of C. jejuni were collected from Luxembourg, New Zealand, North America, and South Africa, consisting of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to cefoperazone, teicoplanin, amphotericin, B and cephalothin. Initially, a model set of 16 strains (three biological replicates and three technical replicates per isolate, yielding a total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance detection of antibiotic resistance. The most optimal parameters were applied to the larger collection of 172 isolates (two biological replicates and three technical replicates per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic resistance detection whenever either a curve based similarity coefficient (Pearson or ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized preprocessing parameters were applied. Increases in antimicrobial resistance detection were scored using the jackknife maximum similarity technique following cluster analysis. From the first four groups of antibiotic resistant isolates, the optimized preprocessing parameters increased detection respective to the aforementioned groups by: (1) 5% (2) 9% (3) 10%, and (4) 2%. An additional second categorization was created from the collection consisting of 31 strains resistant to beta-lactams and 141 strains sensitive to beta-lactams. Applying optimal preprocessing parameters, beta-lactam resistance detection was increased by 34%. These results suggest that spectrum processing parameters, which are rarely optimized or adjusted, affect the performance of MALDI-TOF MS-based detection of antibiotic resistance and can be fine-tuned to enhance screening performance.
Collapse
Affiliation(s)
- Christian Penny
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology Esch-sur-Alzette, Luxembourg
| | - Beau Grothendick
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix AZ, USA
| | - Lin Zhang
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix AZ, USA
| | - Connie M Borror
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix AZ, USA
| | - Duane Barbano
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix AZ, USA
| | - Angela J Cornelius
- Institute of Environmental Science and Research Christchurch, New Zealand
| | - Brent J Gilpin
- Institute of Environmental Science and Research Christchurch, New Zealand
| | - Clifton K Fagerquist
- Agricultural Research Service, United States Department of Agriculture, Albany CA, USA
| | - William J Zaragoza
- Agricultural Research Service, United States Department of Agriculture, Albany CA, USA
| | | | - Albert J Lastovica
- Department of Biotechnology, University of the Western Cape Bellville, South Africa
| | - Catherine Ragimbeau
- Epidemiological Surveillance of Infectious Diseases, Laboratoire National de Santé Dudelange, Luxembourg
| | - Henry-Michel Cauchie
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology Esch-sur-Alzette, Luxembourg
| | - Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix AZ, USA
| |
Collapse
|
7
|
Romano P, Profumo A, Rocco M, Mangerini R, Ferri F, Facchiano A. Geena 2, improved automated analysis of MALDI/TOF mass spectra. BMC Bioinformatics 2016; 17 Suppl 4:61. [PMID: 26961516 PMCID: PMC4896264 DOI: 10.1186/s12859-016-0911-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Mass spectrometry (MS) is producing high volumes of data supporting oncological sciences, especially for translational research. Most of related elaborations can be carried out by combining existing tools at different levels, but little is currently available for the automation of the fundamental steps. For the analysis of MALDI/TOF spectra, a number of pre-processing steps are required, including joining of isotopic abundances for a given molecular species, normalization of signals against an internal standard, background noise removal, averaging multiple spectra from the same sample, and aligning spectra from different samples. In this paper, we present Geena 2, a public software tool for the automated execution of these pre-processing steps for MALDI/TOF spectra. Results Geena 2 has been developed in a Linux-Apache-MySQL-PHP web development environment, with scripts in PHP and Perl. Input and output are managed as simple formats that can be consumed by any database system and spreadsheet software. Input data may also be stored in a MySQL database. Processing methods are based on original heuristic algorithms which are introduced in the paper. Three simple and intuitive web interfaces are available: the Standard Search Interface, which allows a complete control over all parameters, the Bright Search Interface, which leaves to the user the possibility to tune parameters for alignment of spectra, and the Quick Search Interface, which limits the number of parameters to a minimum by using default values for the majority of parameters. Geena 2 has been utilized, in conjunction with a statistical analysis tool, in three published experimental works: a proteomic study on the effects of long-term cryopreservation on the low molecular weight fraction of serum proteome, and two retrospective serum proteomic studies, one on the risk of developing breat cancer in patients affected by gross cystic disease of the breast (GCDB) and the other for the identification of a predictor of breast cancer mortality following breast cancer surgery, whose results were validated by ELISA, a completely alternative method. Conclusions Geena 2 is a public tool for the automated pre-processing of MS data originated by MALDI/TOF instruments, with a simple and intuitive web interface. It is now under active development for the inclusion of further filtering options and for the adoption of standard formats for MS spectra. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0911-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Fabio Ferri
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, Università dell'Insubria, Como, Italy.
| | | |
Collapse
|