In vitro and in vivo antiherpetic effects of (1R,2R)-1-(5'-methylful-3'-yl)propane-1,2,3-triol.
J Nat Med 2016;
70:217-24. [PMID:
26763002 DOI:
10.1007/s11418-016-0964-6]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
In this study, we demonstrated the in vitro and in vivo antiherpetic activities of a stable furan derivative, (1R,2R)-1-(5'-methylful-3'-yl)propane-1,2,3-triol (MFPT), which had originally been isolated from Streptomyces sp. strain FV60. In the present study, we synthesized MFPT from (5-methylfuran-3-yl)methanol in 6 steps for use in the experiments. MFPT showed potent in vitro antiviral activities against two acyclovir (ACV)-sensitive (KOS and HF) strains and an ACV-resistant (A4-3) strain of herpes simplex virus type 1 (HSV-1) and an ACV-sensitive HSV type 2 (HSV-2) UW 268 strain, their selectivity indices ranging from 310 to 530. By intravaginal application of MFPT to mice, the virus yields decreased dose-dependently against the three strains of HSV-1 and HSV-2. When MFPT was applied at a dose of 1.0 mg/day, the lesion scores, as clinical signs manifested by viral infection, were extensively suppressed in HSV-1-infected mice, whereas the lesion scores in HSV-2-infected mice were not markedly decreased. Interestingly, MFPT exerted an inhibitory effect against ACV-resistant HSV-1 in mice to a similar degree as in ACV-sensitive HSV-1-infected mice. Therefore, the compound might have potential for developing a topical antiviral agent that could be also applied to the infections caused by ACV-resistant viruses.
Collapse