1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Yu L, Peng Y, Jiang L, Qiu L. Sequential Diagnosis and Treatment for Colon Cancer via Derived Iridium and Indocyanine Green Hybrid Nanomicelles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37437265 DOI: 10.1021/acsami.3c07742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Indocyanine green (ICG) has been widely explored for the theranostics of tumors. However, ICG mainly accumulates in the liver, spleen, or kidney in addition to in tumors, causing inaccurate diagnoses and impaired therapeutic effects under NIR irradiation. Herein, a hybrid nanomicelle was constructed by integrating hypoxia-sensitive iridium(III) and ICG for precise tumor localization and photothermal therapy in sequence. In this nanomicelle, the amphiphilic iridium(III) complex (BTPH)2Ir(SA-PEG) was synthesized through the coordination substitution of hydrophobic (BTPH)2IrCl2 and hydrophilic PEGlyated succinylacetone (SA-PEG). Meanwhile, PEGlyated ICG (ICG-PEG) as a derivative of the photosensitizer ICG was also synthesized. (BTPH)2Ir(SA-PEG) and ICG-PEG were coassembled by dialysis to form the hybrid nanomicelle M-Ir-ICG. Hypoxia-sensitive fluorescence, ROS generation, and the photothermal effect of M-Ir-ICG were investigated in vitro and in vivo. The experimental results indicated that M-Ir-ICG nanomicelles could locate at the tumor site first and then perform photothermal therapy with 83.90% TIR, demonstrating great potential for clinical applications.
Collapse
Affiliation(s)
- Liang Yu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yan Peng
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linping Jiang
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Samandarsangari M, Kozina DO, Sokolov VV, Komarova AD, Shirmanova MV, Kritchenkov IS, Tunik SP. Biocompatible Phosphorescent O 2 Sensors Based on Ir(III) Complexes for In Vivo Hypoxia Imaging. BIOSENSORS 2023; 13:680. [PMID: 37504079 PMCID: PMC10377268 DOI: 10.3390/bios13070680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
In this work, we obtained three new phosphorescent iridium complexes (Ir1-Ir3) of general stoichiometry [Ir(N^C)2(N^N)]Cl decorated with oligo(ethylene glycol) fragments to make them water-soluble and biocompatible, as well as to protect them from aggregation with biomolecules such as albumin. The major photophysical characteristics of these phosphorescent complexes are determined by the nature of two cyclometallating ligands (N^C) based on 2-pyridine-benzothiophene, since quantum chemical calculations revealed that the electronic transitions responsible for the excitation and emission are localized mainly at these fragments. However, the use of various diimine ligands (N^N) proved to affect the quantum yield of phosphorescence and allowed for changing the complexes' sensitivity to oxygen, due to the variations in the steric accessibility of the chromophore center for O2 molecules. It was also found that the N^N ligands made it possible to tune the biocompatibility of the resulting compounds. The wavelengths of the Ir1-Ir3 emission maxima fell in the range of 630-650 nm, the quantum yields reached 17% (Ir1) in a deaerated solution, and sensitivity to molecular oxygen, estimated as the ratio of emission lifetime in deaerated and aerated water solutions, displayed the highest value, 8.2, for Ir1. The obtained complexes featured low toxicity, good water solubility and the absence of a significant effect of biological environment components on the parameters of their emission. Of the studied compounds, Ir1 and Ir2 were chosen for in vitro and in vivo biological experiments to estimate oxygen concentration in cell lines and tumors. These sensors have demonstrated their effectiveness for mapping the distribution of oxygen and for monitoring hypoxia in the biological objects studied.
Collapse
Affiliation(s)
- Mozhgan Samandarsangari
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Daria O Kozina
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Victor V Sokolov
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Anastasia D Komarova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhskiy Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarina Av., 23, 603950 Nizhny Novgorod, Russia
| | - Marina V Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhskiy Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Zeng Y, Chang P, Ma J, Li K, Zhang C, Guo Y, Li H, Zhu Q, Liu H, Wang W, Chen Y, Chen D, Cao X, Zhan Y. DNA Origami-Anthraquinone Hybrid Nanostructures for In Vivo Quantitative Monitoring of the Progression of Tumor Hypoxia Affected by Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6387-6403. [PMID: 35077131 DOI: 10.1021/acsami.1c22620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hypoxia is a well-known feature of malignant solid tumors. To explain the misinterpretation of tumor hypoxia variation during chemotherapy, we developed a DNA origami-based theranostic nanoplatform with an intercalated anticancer anthraquinone as both the chemotherapeutic drug and the photoacoustic contrast agent. The size distribution of the DNA origami nanostructure is 44.5 ± 2.3 nm, whereas the encapsulation efficiency of the drug is 90.7 ± 1.0%, and the drug loading content is 92.2 ± 0.1%. The controlled cumulative release rates were measured in vitro, showing an acidic environment induced rapid drug release. The values of free energy of binding between the drugs and the DNA double helix were calculated through molecular simulations. The cell viability assay was used to characterize cytotoxicity, and fluorescence confocal cell imaging illustrates the biodistribution of the probe in vitro. Photoacoustic and fluorescence imaging were used to indicate drug delivery, release, and biodistribution to predict the drug's chemotherapeutic effect in vivo, whereas the photoacoustic signals were compared with those of deoxygenated/oxygenated hemoglobin to represent the tissue hypoxia/normoxia maps during the chemotherapeutic process and indicate alleviated tumor hypoxia. Staining of tissue sections taken from organs and tumors was used to verify the results of photoacoustic imaging. Our results suggest that photoacoustic imaging can visualize this DNA origami-based theranostic nanoplatform and reveal the mechanisms of chemotherapy on tumor hypoxia.
Collapse
Affiliation(s)
- Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Peng Chang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Jingwen Ma
- Radiology Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, P. R. China
| | - Ke Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi Province, P. R. China
| | - Chunhong Zhang
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi Province, P. R. China
| | - Yingying Guo
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Hanrui Li
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Qingxia Zhu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Huifang Liu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Wenjing Wang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Yuwei Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Xu Cao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| |
Collapse
|
5
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
6
|
Geng W, Jia S, Zheng Z, Li Z, Ding D, Guo D. A Noncovalent Fluorescence Turn‐on Strategy for Hypoxia Imaging. Angew Chem Int Ed Engl 2019; 58:2377-2381. [DOI: 10.1002/anie.201813397] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/08/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Wen‐Chao Geng
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Shaorui Jia
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai University Tianjin 300071 China
| | - Zhe Zheng
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Zhihao Li
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Dan Ding
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
7
|
Liu J, Liu Z, Wu D. Multifunctional hypoxia imaging nanoparticles: multifunctional tumor imaging and related guided tumor therapy. Int J Nanomedicine 2019; 14:707-719. [PMID: 30705587 PMCID: PMC6342223 DOI: 10.2147/ijn.s192048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hypoxia is a common feature of most solid tumors. Having a comprehensive understanding of tumor hypoxia condition is a key to tumor therapy. Many hypoxia imaging nanoparticles have been used for tumor detection. However, simple optical hypoxia imaging is not enough for tumor diagnosis. Also, the tumor therapy process needs the information about the tumor hypoxia condition. Recently, researchers developed multimodal hypoxia tumor imaging nanoparticles and multifunctional hypoxia imaging-guided tumor therapy nanoparticles. The multimodal hypoxia imaging could produce more tumor region information and engage in functional tumor imaging to better understand the tumor condition. The multifunctional hypoxia imaging-guided tumor therapy could monitor the tumor therapy process and evaluate tumor therapeutic effect. Meanwhile, many challenges and limitations are still remaining in the application of multifunctional hypoxia nanoparticles. In this review, we first introduce the types of multifunctional hypoxia imaging nanoparticles. Then we focus on multimodal hypoxia imaging nanoparticles and hypoxia imaging-guided tumor therapy nanoparticles. We also discuss the challenges and future perspectives of this field. There has not been many studies in this field for now. We hope this review would bring more researchers' attention to this field so that it would substantially contribute to tumor precise therapy.
Collapse
Affiliation(s)
- Jiajun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China,
| | - Zeying Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China,
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China,
| |
Collapse
|
8
|
Li J, Qiao Y, Pan T, Zhong K, Wen J, Wu S, Su F, Tian Y. Amphiphilic Fluorine-Containing Block Copolymers as Carriers for Hydrophobic PtTFPP for Dissolved Oxygen Sensing, Cell Respiration Monitoring and In Vivo Hypoxia Imaging with High Quantum Efficiency and Long Lifetime. SENSORS 2018; 18:s18113752. [PMID: 30400255 PMCID: PMC6263385 DOI: 10.3390/s18113752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 01/17/2023]
Abstract
New amphiphilic star or multi-arm block copolymers with different structures were synthesized for enabling the use of hydrophobic oxygen probe of platinum (II)-tetrakis (pentafluorophenyl) porphyrin (PtTFPP) for bioanalysis. The amphiphilic star polymers were prepared through the Atom Transfer Radical Polymerization (ATRP) method by using hydrophilic 4-arm polyethylene glycol (4-arm-PEG) as an initiator. Among the five block copolymers, P1 series (P1a, P1b, and P1c) and P3 possess fluorine-containing moieties to improve the oxygen sensitivity with its excellent capacity to dissolve and carry oxygen. A polymer P2 without fluorine units was also synthesized for comparison. The structure-property relationship was investigated. Under nitrogen atmosphere, high quantum efficiency of PtTFPP in fluorine-containing micelles could reach to 22% and long lifetime could reach to 76 μs. One kind of representative PtTFPP-containing micelles was used to detect the respiration of Escherichia coli (E. coli) JM109 and macrophage cell J774A.1 by a high throughput plate reader. In vivo hypoxic imaging of tumor-bearing mice was also achieved successfully. This study demonstrated that using well-designed fluoropolymers to load PtTFPP could achieve high oxygen sensing properties, and long lifetime, showing the great capability for further in vivo sensing and imaging.
Collapse
Affiliation(s)
- Jiaze Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin 150001, China.
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| | - Yuan Qiao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| | - Tingting Pan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| | - Ke Zhong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| | - Jiaxing Wen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| | - Shanshan Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
- Light Chemical Technology College, Guangdong Industry Polytechnic, Haizhu District, Guangzhou 510300, China.
| | - Fengyu Su
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Xili, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
9
|
Shaikh S, Rehman FU, Du T, Jiang H, Yin L, Wang X, Chai R. Real-Time Multimodal Bioimaging of Cancer Cells and Exosomes through Biosynthesized Iridium and Iron Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26056-26063. [PMID: 30011179 DOI: 10.1021/acsami.8b08975] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Multimodal bioimaging is a powerful tool for visualizing the abnormal state at the target site of the related disease. In this study, we used multimodal imaging techniques such as computed tomography, fluorescence, and magnetic resonance imaging to improve early and precise diagnosis of tumor. Herein, we reported the facile in situ biosynthesis of iridium and iron oxide nanoclusters (NCs) in cancer cells or tumor tissue. These NCs are used as a multimodal bioimaging probe to improve the image sensitivity and specificity toward the tumor. These NCs are applied for the in vivo multimodal imaging in the form of an imaging probe capable of enhancing the sensitivity of the image and specificity toward the tumor tissue. Our observation demonstrates that highly luminescent and magnetic NCs are not only biocompatible but also tumor-targeted because NC formation does not take place in normal cells and tissues. In addition, we isolated exosomes and the biosynthesized NCs internalized within exosomes, and these exosomes can be used as cancer biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health , Southeast University , Nanjing 210009 , China
| | | | - Renjie Chai
- Co-innovation Center of Neuroregeneration , Nantong University , Nantong 226001 , China
| |
Collapse
|
10
|
|
11
|
You Y. Recent Progress on the Exploration of the Biological Utility of Cyclometalated Iridium(III) Complexes. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Youngmin You
- Division of Chemical Engineering and Materials Science; Ewha Womans University; Seoul 03760 Republic of Korea
| |
Collapse
|
12
|
Liu J, Wu Y, Yu Y, Li K, Ji Y, Wu D. Quantitative ratiometric phosphorescence hypoxia-sensing nanoprobes based on quantum dots/Ir(III) glycerol monoolein cubic-phase nanoparticles. Biosens Bioelectron 2017; 98:119-125. [PMID: 28667838 DOI: 10.1016/j.bios.2017.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
A novel protocol is developed to prepare quantum dot (QD)/Ir(III) complex glycerol monoolein (GMO) cubic-phase nanoparticles (Qd/Ir GMCPNPs) as hypoxia nanoprobes, in which hypoxia probe Tris [1-phenylisoquinoline-C2, N] Iridium(III) [Ir(piq)3] and the reference QDs are separately loaded at hydrophilic and hydrophobic channels to avoid interference. Qd/Ir GMCPNPs were nearly spherical in shape, with an average size of 20-30nm. Their phosphorescence spectra showed that nanoprobes have a wide excited wave length range of 360-500nm, which is suitable for different types of measurement instruments. When the oxygen content decreased from 21% to 1%, the luminescent intensity ratio of Qd/Ir GMCPNPs in the solution and cells increased 4-fold and 2.8-fold, respectively, with an acceptable linear relationship. Particularly, extensive preliminary quantitative ratiometric oxygen sensing and long tumor imaging monitoring can be achieved with these nanoprobes.
Collapse
Affiliation(s)
- Jiajun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Youshen Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yao Yu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ke Li
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuanyuan Ji
- Scientific Research Center, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
13
|
Ma J, Zeng Y, Liu Y, Wu D. Thermostable polymeric nanomicelles of iridium(iii) complexes with aggregation-induced phosphorescence emission characteristics and their recyclable double-strand DNA monitoring. J Mater Chem B 2017; 5:123-133. [DOI: 10.1039/c6tb02336c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thermostable polymeric nanomicelles of iridium(iii) complexes with AIPE characteristics were synthesized, which can be recycled and used for DNA monitoring.
Collapse
Affiliation(s)
- Jingwen Ma
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Yun Zeng
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Yongchun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| |
Collapse
|
14
|
Intracellular and in vivo oxygen sensing using phosphorescent iridium(III) complexes. Curr Opin Chem Biol 2016; 33:39-45. [DOI: 10.1016/j.cbpa.2016.05.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2022]
|
15
|
Correction: phosphorescence monitoring of hypoxic microenvironment in solid-tumors to evaluate chemotherapeutic effects using the hypoxia-sensitive Iridium (III) coordination compound. PLoS One 2015; 10:e0126302. [PMID: 25875849 PMCID: PMC4395457 DOI: 10.1371/journal.pone.0126302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|