1
|
Nussinov R, Zhang W, Liu Y, Jang H. Mitogen signaling strength and duration can control cell cycle decisions. SCIENCE ADVANCES 2024; 10:eadm9211. [PMID: 38968359 PMCID: PMC11809619 DOI: 10.1126/sciadv.adm9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Decades ago, mitogen-promoted signaling duration and strength were observed to be sensed by the cell and to be critical for its decisions: to proliferate or differentiate. Landmark publications established the importance of mitogen signaling not only in the G1 cell cycle phase but also through the S and the G2/M transition. Despite these early milestones, how mitogen signal duration and strength, short and strong or weaker and sustained, control cell fate has been largely unheeded. Here, we center on cardinal signaling-related questions, including (i) how fluctuating mitogenic signals are converted into cell proliferation-differentiation decisions and (ii) why extended duration of weak signaling is associated with differentiation, while bursts of strong and short induce proliferation but, if too strong and long, induce irreversible senescence. Our innovative broad outlook harnesses cell biology and protein conformational ensembles, helping us to define signaling strength, clarify cell cycle decisions, and thus cell fate.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
2
|
Bhushan B, Iranpour R, Eshtiaghi A, da Silva Rosa SC, Lindsey BW, Gordon JW, Ghavami S. Transforming Growth Factor Beta and Alveolar Rhabdomyosarcoma: A Challenge of Tumor Differentiation and Chemotherapy Response. Int J Mol Sci 2024; 25:2791. [PMID: 38474036 DOI: 10.3390/ijms25052791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS), an invasive subtype of rhabdomyosarcoma (RMS), is associated with chromosomal translocation events resulting in one of two oncogenic fusion genes, PAX3-FOXO1 or PAX7-FOXO1. ARMS patients exhibit an overexpression of the pleiotropic cytokine transforming growth factor beta (TGF-β). This overexpression of TGF-β1 causes an increased expression of a downstream transcription factor called SNAIL, which promotes epithelial to mesenchymal transition (EMT). Overexpression of TGF-β also inhibits myogenic differentiation, making ARMS patients highly resistant to chemotherapy. In this review, we first describe different types of RMS and then focus on ARMS and the impact of TGF-β in this tumor type. We next highlight current chemotherapy strategies, including a combination of the FDA-approved drugs vincristine, actinomycin D, and cyclophosphamide (VAC); cabozantinib; bortezomib; vinorelbine; AZD 1775; and cisplatin. Lastly, we discuss chemotherapy agents that target the differentiation of tumor cells in ARMS, which include all-trans retinoic acid (ATRA) and 5-Azacytidine. Improving our understanding of the role of signaling pathways, such as TGF-β1, in the development of ARMS tumor cells differentiation will help inform more tailored drug administration in the future.
Collapse
Affiliation(s)
- Bhavya Bhushan
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Rosa Iranpour
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Amirmohammad Eshtiaghi
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Benjamin W Lindsey
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
3
|
Karkon-Shayan S, Aliashrafzadeh H, Dianat-Moghadam H, Rastegar-Pouyani N, Majidi M, Zarei M, Moradi-Vastegani S, Bahramvand Y, Babaniamansour S, Jafarzadeh E. Resveratrol as an antitumor agent for glioblastoma multiforme: Targeting resistance and promoting apoptotic cell deaths. Acta Histochem 2023; 125:152058. [PMID: 37336070 DOI: 10.1016/j.acthis.2023.152058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive brain and spinal cord tumors. Despite the significant development in application of antitumor drugs, no significant increases have been observed in the survival rates of patients with GBM, as GBM cells acquire resistance to conventional anticancer therapeutic agents. Multiple studies have revealed that PI3K/Akt, MAPK, Nanog, STAT 3, and Wnt signaling pathways are involved in GBM progression and invasion. Besides, biological processes such as anti-apoptosis, autophagy, angiogenesis, and stemness promote GBM malignancy. Resveratrol (RESV) is a non-flavonoid polyphenol with high antitumor activity, the potential of which, regulating signaling pathways involved in cancer malignancy, have been demonstrated by many studies. Herein, we present the potential of RESV in both single and combination therapy- targeting various signaling pathways- which induce apoptotic cell death, re-sensitize cancer cells to radiotherapy, and induce chemo-sensitizing effects to eventually inhibit GBM progression.
Collapse
Affiliation(s)
- Sepideh Karkon-Shayan
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hasan Aliashrafzadeh
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Majidi
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahdi Zarei
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Moradi-Vastegani
- Department of physiology, faculty of medicine, physiology research center, Ahvaz jundishapur university of medical sciences, Ahvaz, Iran
| | - Yaser Bahramvand
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Babaniamansour
- Department of Pathology, School of Medicine, Islamic Azad University Tehran Faculty of Medicine, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Lees J, Hay J, Moles MW, Michie AM. The discrete roles of individual FOXO transcription factor family members in B-cell malignancies. Front Immunol 2023; 14:1179101. [PMID: 37275916 PMCID: PMC10233034 DOI: 10.3389/fimmu.2023.1179101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Forkhead box (FOX) class O (FOXO) proteins are a dynamic family of transcription factors composed of four family members: FOXO1, FOXO3, FOXO4 and FOXO6. As context-dependent transcriptional activators and repressors, the FOXO family regulates diverse cellular processes including cell cycle arrest, apoptosis, metabolism, longevity and cell fate determination. A central pathway responsible for negative regulation of FOXO activity is the phosphatidylinositol-3-kinase (PI3K)-AKT signalling pathway, enabling cell survival and proliferation. FOXO family members can be further regulated by distinct kinases, both positively (e.g., JNK, AMPK) and negatively (e.g., ERK-MAPK, CDK2), with additional post-translational modifications further impacting on FOXO activity. Evidence has suggested that FOXOs behave as 'bona fide' tumour suppressors, through transcriptional programmes regulating several cellular behaviours including cell cycle arrest and apoptosis. However, an alternative paradigm has emerged which indicates that FOXOs operate as mediators of cellular homeostasis and/or resistance in both 'normal' and pathophysiological scenarios. Distinct FOXO family members fulfil discrete roles during normal B cell maturation and function, and it is now clear that FOXOs are aberrantly expressed and mutated in discrete B-cell malignancies. While active FOXO function is generally associated with disease suppression in chronic lymphocytic leukemia for example, FOXO expression is associated with disease progression in diffuse large B cell lymphoma, an observation also seen in other cancers. The opposing functions of the FOXO family drives the debate about the circumstances in which FOXOs favour or hinder disease progression, and whether targeting FOXO-mediated processes would be effective in the treatment of B-cell malignancies. Here, we discuss the disparate roles of FOXO family members in B lineage cells, the regulatory events that influence FOXO function focusing mainly on post-translational modifications, and consider the potential for future development of therapies that target FOXO activity.
Collapse
Affiliation(s)
| | | | | | - Alison M. Michie
- Paul O’Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Mekkawy AI, Eleraky NE, Soliman GM, Elnaggar MG, Elnaggar MG. Combinatorial Therapy of Letrozole- and Quercetin-Loaded Spanlastics for Enhanced Cytotoxicity against MCF-7 Breast Cancer Cells. Pharmaceutics 2022; 14:1727. [PMID: 36015353 PMCID: PMC9415400 DOI: 10.3390/pharmaceutics14081727] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer is the most widespread cancer in women with rising incidence, prevalence, and mortality in developed regions. Most breast cancers (80%) are estrogen receptor-positive, indicating that disease progression could be controlled by estrogen inhibition in the breast tissue. However, drug resistance limits the benefits of this approach. Combinatorial treatment could overcome the resistance and improve the outcome of breast cancer treatment. In the current study, we prepared letrozole-(LTZSPs) and quercetin-loaded spanlastics (QuSPs) using different edge activators-Tween 80, Brij 35, and Cremophor RH40-with different concentrations. The spanlastics were evaluated for their average particles size, surface charge, and percent encapsulation efficiency. The optimized formulations were further examined using transmission electron microscopy, Fourier transform infrared spectroscopy, in vitro drug release and ex vivo skin permeation studies. The prepared spherical LTZSPs and QuSPs had average particle sizes ranged between 129-310 nm and 240-560 nm, respectively, with negative surface charge and high LTZ and Qu encapsulation (94.3-97.2% and 97.9-99.6%, respectively). The in vitro release study of LTZ and Qu from the selected formulations showed a sustained drug release for 24 h with reasonable flux and permeation through the rat skin. Further, we evaluated the in vitro cytotoxicity, cell cycle analysis, and intracellular reactive oxygen species (ROS) of the combination therapy of letrozole and quercetin either in soluble form or loaded in spanlastics against MCF-7 breast cancer cells. The LTZSPs and QuSPs combination was superior to the individual treatments and the soluble free drugs in terms of in vitro cytotoxicity, cell cycle analysis, and ROS studies. These results confirm the potential of LTZSPs and QuSPs combination for transdermal delivery of drugs for enhanced breast cancer management.
Collapse
Affiliation(s)
- Aml I. Mekkawy
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Nermin E. Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ghareb M. Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed G. Elnaggar
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71526, Egypt
| | - Marwa G. Elnaggar
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt or
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
The Fusion of CLEC12A and MIR223HG Arises from a trans-Splicing Event in Normal and Transformed Human Cells. Int J Mol Sci 2021; 22:ijms222212178. [PMID: 34830054 PMCID: PMC8625150 DOI: 10.3390/ijms222212178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Chimeric RNAs are often associated with chromosomal rearrangements in cancer. In addition, they are also widely detected in normal tissues, contributing to transcriptomic complexity. Despite their prevalence, little is known about the characteristics and functions of chimeric RNAs. Here, we examine the genetic structure and biological roles of CLEC12A-MIR223HG, a novel chimeric transcript produced by the fusion of the cell surface receptor CLEC12A and the miRNA-223 host gene (MIR223HG), first identified in chronic myeloid leukemia (CML) patients. Surprisingly, we observed that CLEC12A-MIR223HG is not just expressed in CML, but also in a variety of normal tissues and cell lines. CLEC12A-MIR223HG expression is elevated in pro-monocytic cells resistant to chemotherapy and during monocyte-to-macrophage differentiation. We observed that CLEC12A-MIR223HG is a product of trans-splicing rather than a chromosomal rearrangement and that transcriptional activation of CLEC12A with the CRISPR/Cas9 Synergistic Activation Mediator (SAM) system increases CLEC12A-MIR223HG expression. CLEC12A-MIR223HG translates into a chimeric protein, which largely resembles CLEC12A but harbours an altered C-type lectin domain altering key disulphide bonds. These alterations result in differences in post-translational modifications, cellular localization, and protein-protein interactions. Taken together, our observations support a possible involvement of CLEC12A-MIR223HG in the regulation of CLEC12A function. Our workflow also serves as a template to study other uncharacterized chimeric RNAs.
Collapse
|
7
|
Farhan M, Silva M, Li S, Yan F, Fang J, Peng T, Hu J, Tsao M, Little P, Zheng W. The role of FOXOs and autophagy in cancer and metastasis-Implications in therapeutic development. Med Res Rev 2020; 40:2089-2113. [PMID: 32474970 PMCID: PMC7586888 DOI: 10.1002/med.21695] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/21/2020] [Accepted: 05/16/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is a highly conserved intracellular degradation process that plays a crucial role in cell survival and stress reactions as well as in cancer development and metastasis. Autophagy process involves several steps including sequestration, fusion of autophagosomes with lysosomes and degradation. Forkhead box O (FOXO) transcription factors regulate the expression of genes involved in cellular metabolic activity and signaling pathways of cancer growth and metastasis. Recent evidence suggests that FOXO proteins are also involved in autophagy regulation. The relationship among FOXOs, autophagy, and cancer has been drawing attention of many who work in the field. This study summarizes the role of FOXO proteins and autophagy in cancer growth and metastasis and analyzes their potential roles in cancer disease management.
Collapse
Affiliation(s)
- Mohd Farhan
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Marta Silva
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Shuai Li
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Fengxia Yan
- Department of MedicineJinan UniversityGuangzhouChina
| | - Jiankang Fang
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Tangming Peng
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Jim Hu
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming‐Sound Tsao
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Peter Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of QueenslandWoolloongabbaQueenslandAustralia
| | - Wenhua Zheng
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| |
Collapse
|
8
|
Schmitt-Ney M. The FOXO's Advantages of Being a Family: Considerations on Function and Evolution. Cells 2020; 9:E787. [PMID: 32214027 PMCID: PMC7140813 DOI: 10.3390/cells9030787] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The nematode Caenorhabditis elegans possesses a unique (with various isoforms) FOXO transcription factor DAF-16, which is notorious for its role in aging and its regulation by the insulin-PI3K-AKT pathway. In humans, five genes (including a protein-coding pseudogene) encode for FOXO transcription factors that are targeted by the PI3K-AKT axis, such as in C. elegans. This common regulation and highly conserved DNA-binding domain are the pillars of this family. In this review, I will discuss the possible meaning of possessing a group of very similar proteins and how it can generate additional functionality to more complex organisms. I frame this discussion in relation to the much larger super family of Forkhead proteins to which they belong. FOXO members are very often co-expressed in the same cell type. The overlap of function and expression creates a certain redundancy that might be a safeguard against the accidental loss of FOXO function, which could otherwise lead to disease, particularly, cancer. This is one of the points that will be examined in this "family affair" report.
Collapse
Affiliation(s)
- Michel Schmitt-Ney
- Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
9
|
Helm BR, Zhan X, Pandya PH, Murray ME, Pollok KE, Renbarger JL, Ferguson MJ, Han Z, Ni D, Zhang J, Huang K. Gene Co-Expression Networks Restructured Gene Fusion in Rhabdomyosarcoma Cancers. Genes (Basel) 2019; 10:genes10090665. [PMID: 31480361 PMCID: PMC6770752 DOI: 10.3390/genes10090665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 01/28/2023] Open
Abstract
Rhabdomyosarcoma is subclassified by the presence or absence of a recurrent chromosome translocation that fuses the FOXO1 and PAX3 or PAX7 genes. The fusion protein (FOXO1-PAX3/7) retains both binding domains and becomes a novel and potent transcriptional regulator in rhabdomyosarcoma subtypes. Many studies have characterized and integrated genomic, transcriptomic, and epigenomic differences among rhabdomyosarcoma subtypes that contain the FOXO1-PAX3/7 gene fusion and those that do not; however, few investigations have investigated how gene co-expression networks are altered by FOXO1-PAX3/7. Although transcriptional data offer insight into one level of functional regulation, gene co-expression networks have the potential to identify biological interactions and pathways that underpin oncogenesis and tumorigenicity. Thus, we examined gene co-expression networks for rhabdomyosarcoma that were FOXO1-PAX3 positive, FOXO1-PAX7 positive, or fusion negative. Gene co-expression networks were mined using local maximum Quasi-Clique Merger (lmQCM) and analyzed for co-expression differences among rhabdomyosarcoma subtypes. This analysis observed 41 co-expression modules that were shared between fusion negative and positive samples, of which 17/41 showed significant up- or down-regulation in respect to fusion status. Fusion positive and negative rhabdomyosarcoma showed differing modularity of co-expression networks with fusion negative (n = 109) having significantly more individual modules than fusion positive (n = 53). Subsequent analysis of gene co-expression networks for PAX3 and PAX7 type fusions observed 17/53 were differentially expressed between the two subtypes. Gene list enrichment analysis found that gene ontology terms were poorly matched with biological processes and molecular function for most co-expression modules identified in this study; however, co-expressed modules were frequently localized to cytobands on chromosomes 8 and 11. Overall, we observed substantial restructuring of co-expression networks relative to fusion status and fusion type in rhabdomyosarcoma and identified previously overlooked genes and pathways that may be targeted in this pernicious disease.
Collapse
Affiliation(s)
- Bryan R Helm
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
| | - Xiaohui Zhan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Pankita H Pandya
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
| | - Mary E Murray
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
| | - Karen E Pollok
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN 46202-3082, USA
| | - Jamie L Renbarger
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
| | - Michael J Ferguson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
| | - Zhi Han
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN 46202-3082, USA
| | - Dong Ni
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA.
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA.
- Regenstrief Institute, Indianapolis, IN 46202, USA.
| |
Collapse
|
10
|
Cortes Barrantes P, Jakobiec FA, Dryja TP. A Review of the Role of Cytogenetics in the Diagnosis of Orbital Rhabdomyosarcoma. Semin Ophthalmol 2019; 34:243-251. [DOI: 10.1080/08820538.2019.1620802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Paula Cortes Barrantes
- David G. Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary/Harvard Medical School, Boston, MA, USA
| | - Frederick A. Jakobiec
- David G. Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary/Harvard Medical School, Boston, MA, USA
| | - Thaddeus P. Dryja
- David G. Cogan Laboratory of Ophthalmic Pathology, Massachusetts Eye and Ear Infirmary/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Perry JA, Seong BKA, Stegmaier K. Biology and Therapy of Dominant Fusion Oncoproteins Involving Transcription Factor and Chromatin Regulators in Sarcomas. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A third of soft tissue sarcomas have been shown to carry recurrent, characteristic chromosomal translocations, many of which generate fusion proteins that act as dominant transcription factors or as chromatin regulators. With routine use of massively parallel sequencing and advances in technology for the study of epigenetics and protein complexes, the last decade has seen a marked advancement in the identification of novel fusions and in our understanding of the mechanisms by which they contribute to the malignant state. Moreover, with new approaches in chemistry, such as the strategy of targeted protein degradation, we are now better poised to address these previously intractable targets. In this review, we describe three of the most common fusion-driven sarcomas (Ewing sarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma), mechanistic themes emerging across these diseases, and novel approaches to their targeting.
Collapse
Affiliation(s)
- Jennifer A. Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Bo Kyung Alex Seong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
12
|
Ye H, Duan M. Downregulation of FOXO6 in breast cancer promotes epithelial-mesenchymal transition and facilitates migration and proliferation of cancer cells. Cancer Manag Res 2018; 10:5145-5156. [PMID: 30464613 PMCID: PMC6215919 DOI: 10.2147/cmar.s157661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purpose Increasing evidence indicates that members of forkhead transcription factor family (FOXO) play key roles in cell proliferation and apoptosis in multiple cancers, including prostate cancer. However, the underlying mechanism of FOXO6 was not yet known. The aim of our work is to investigate the function of FOXO6 in breast cancer. Methods In the present study, quantitative real-time polymerase chain reaction and Western blotting analyses were used to detect the expression of FOXO6 in breast cancer tissues and cell lines. Results The results revealed that FOXO6 was downregulated in breast cancer tissues and cell lines, compared with adjacent normal tissues and MCF-10A cells, respectively. Moreover, the expression of FOXO6 was associated with the expression of epithelial–mesenchymal transition (EMT) indicator proteins, such as E-cadherin and N-cadherin. Additionally, our findings suggested that FOXO6 expression was negatively associated with tumor size (p=0.002), pathological grade (p=0.018) and lymph node metastasis (p=0.003). Sirt6 has been found to promote cell proliferation and metastasis in several cancers, and quantitative chromatin immunoprecipitation and luciferase reporter assays indicated FOXO6 transcriptionally regulated Sirt6 expression. Furthermore, various functional experiments, including wound healing assay, transwell invasion assay, colony formation assay and Cell Counting Kit-8 assay, revealed that FOXO6 suppressed cell migration, invasion, and proliferation of breast cancer cells. Conclusion In conclusion, FOXO6 serves as a tumor suppressor in breast cancer, and suppresses EMT through regulation of Sirt6.
Collapse
Affiliation(s)
- Hui Ye
- Department of Galactophore, Linyi Central Hospital of Shandong, Linyi, People's Republic of China
| | - Meiling Duan
- Department of Respiratory One, Linyi Central Hospital of Shandong, Linyi, People's Republic of China,
| |
Collapse
|
13
|
Chimeric RNA in Cancer and Stem Cell Differentiation. Stem Cells Int 2018; 2018:3178789. [PMID: 30510584 PMCID: PMC6230395 DOI: 10.1155/2018/3178789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023] Open
Abstract
Gene fusions are considered hallmarks of cancer which can be produced by chromosomal rearrangements. These DNA-level fusion events may result in the expression of chimeric RNAs; however, chimeric RNAs can be also produced by intergenic splicing events. Chimeric transcripts created by the latter mechanism are regulated at the transcriptional level and thus present additional modes of action and regulation. They have demonstrated importance in normal cell physiology, and their dysregulation can induce oncogenesis and impact cell differentiation. In this review, we outline proven mechanisms through which intergenically spliced chimeric RNAs are involved in carcinogenesis. We highlight their similarity to canonical chimeric RNAs resulting from gene fusions as well as their unique qualities. Additionally, we review known roles of chimeric RNA in cell differentiation and propose means through which chimeric RNAs may be valuable as stage-specific markers or as targets for expression profiling.
Collapse
|
14
|
Lee DH, Park CJ, Jang S, Cho YU, Seo JJ, Im HJ, Koh KN, Cho KJ, Song JS, Seo EJ. Clinical and Cytogenetic Profiles of Rhabdomyosarcoma with Bone Marrow Involvement in Korean Children: A 15-Year Single-Institution Experience. Ann Lab Med 2018; 38:132-138. [PMID: 29214757 PMCID: PMC5736672 DOI: 10.3343/alm.2018.38.2.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/17/2017] [Accepted: 11/09/2017] [Indexed: 02/03/2023] Open
Abstract
Background Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Alveolar RMS (ARMS) is characterized by FOXO1-related chromosomal translocations that result in a poorer clinical outcome compared with embryonal RMS (ERMS). Because the chromosomal features of RMS have not been comprehensively defined, we analyzed the clinical and laboratory data of childhood RMS patients and determined the clinical significance of chromosomal abnormalities in the bone marrow. Methods Fifty-one Korean patients with RMS <18 years of age treated between 2001 and 2015 were enrolled in this study. Clinical factors, bone marrow and cytogenetic results, and overall survival (OS) were analyzed. Results In total, 36 patients (70.6%) had ERMS and 15 (29.4%) had ARMS; 80% of the ARMS patients had stage IV disease. The incidences of bone and bone marrow metastases were 21.6% and 19.6%, respectively, and these results were higher than previously reported results. Of the 40 patients who underwent bone marrow cytogenetic investigation, five patients had chromosomal abnormalities associated with the 13q14 rearrangement. Patients with a chromosomal abnormality (15 vs 61 months, P=0.037) and bone marrow involvement (17 vs 61 months, P=0.033) had a significantly shorter median OS than those without such characteristics. Two novel rearrangements associated with the 13q14 locus were detected. One patient with concomitant MYCN amplification and PAX3/FOXO1 fusion showed an aggressive clinical course. Conclusions A comprehensive approach involving conventional cytogenetics and FOXO1 FISH of the bone marrow is needed to assess high-risk ARMS patients and identify novel cytogenetic findings.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Chan Jeoung Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Young Uk Cho
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Jong Jin Seo
- Department of Pediatrics, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Ho Joon Im
- Department of Pediatrics, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Kyung Nam Koh
- Department of Pediatrics, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Kyung Ja Cho
- Department of Pathology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Joon Seon Song
- Department of Pathology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Eul Ju Seo
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.
| |
Collapse
|
15
|
Kim CG, Lee H, Gupta N, Ramachandran S, Kaushik I, Srivastava S, Kim SH, Srivastava SK. Role of Forkhead Box Class O proteins in cancer progression and metastasis. Semin Cancer Biol 2018; 50:142-151. [PMID: 28774834 PMCID: PMC5794649 DOI: 10.1016/j.semcancer.2017.07.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 01/10/2023]
Abstract
It is now widely accepted that several gene alterations including transcription factors are critically involved in cancer progression and metastasis. Forkhead Box Class O proteins (FoxOs) including FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX and FoxO6 transcription factors are known to play key roles in proliferation, apoptosis, metastasis, cell metabolism, aging and cancer biology through their phosphorylation, ubiquitination, acetylation and methylation. Though FoxOs are proved to be mainly regulated by upstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt signaling pathway, the role of FoxOs in cancer progression and metastasis still remains unclear so far. Thus, with previous experimental evidences, the present review discussed the role of FoxOs in association with metastasis related molecules including cannabinoid receptor 1 (CNR1), Cdc25A/Cdk2, Src, serum and glucocorticoid inducible kinases (SGKs), CXCR4, E-cadherin, annexin A8 (ANXA8), Zinc finger E-box-binding homeobox 2 (ZEB2), human epidermal growth factor receptor 2 (HER2) and mRNAs such as miR-182, miR-135b, miR-499-5p, miR-1274a, miR-150, miR-34b/c and miR-622, subsequently analyzed the molecular mechanism of some natural compounds targeting FoxOs and finally suggested future research directions in cancer progression and metastasis.
Collapse
Affiliation(s)
- Chang Geun Kim
- Cancer Molecular Target Herbal Research Center, College of Korean Medicine, Kyunghee University, Seoul, Republic of Korea
| | - Hyemin Lee
- Cancer Molecular Target Herbal Research Center, College of Korean Medicine, Kyunghee University, Seoul, Republic of Korea
| | - Nehal Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sharavan Ramachandran
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Itishree Kaushik
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Center, College of Korean Medicine, Kyunghee University, Seoul, Republic of Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
16
|
Histone deacetylase inhibitor ITF2357 leads to apoptosis and enhances doxorubicin cytotoxicity in preclinical models of human sarcoma. Oncogenesis 2018; 7:20. [PMID: 29472530 PMCID: PMC5833676 DOI: 10.1038/s41389-018-0026-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/26/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are rare tumors with generally poor prognosis, for which current therapies have shown limited efficacy. Histone deacetylase inhibitors (HDACi) are emerging anti-tumor agents; however, little is known about their effect in sarcomas. By using established and patient-derived sarcoma cells with different subtypes, we showed that the pan-HDACi, ITF2357, potently inhibited in vitro survival in a p53-independent manner. ITF2357-mediated cell death implied the activation of mitochondrial apoptosis, as attested by induction of pro-apoptotic BH3-only proteins and a caspases-dependent mechanism. ITF2357 also induced autophagy, which protected sarcoma cells from apoptotic cell death. ITF2357 activated forkhead box (FOXO) 1 and 3a transcription factors and their downstream target genes, however, silencing of both FOXO1 and 3a did not protect sarcoma cells against ITF2357-induced apoptosis and upregulated FOXO4 and 6. Notably, ITF2357 synergized with Doxorubicin to induce cell death of established and patient-derived sarcoma cells. Furthermore, combination treatment strongly impaired xenograft tumor growth in vivo, when compared to single treatments, suggesting that combination of ITF2357 with Doxorubicin has the potential to enhance sensitization in different preclinical models of sarcoma. Overall, our study highlights the therapeutic potential of ITF2357, alone or in rational combination therapies, for bone and soft tissue sarcomas management.
Collapse
|
17
|
Pediatric-protocol of multimodal therapy is associated with improved survival in AYAs and adults with rhabdomyosarcoma. Surgery 2018; 163:324-329. [DOI: 10.1016/j.surg.2017.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/28/2017] [Accepted: 10/18/2017] [Indexed: 01/31/2023]
|
18
|
van Doeselaar S, Burgering BMT. FOXOs Maintaining the Equilibrium for Better or for Worse. Curr Top Dev Biol 2018; 127:49-103. [PMID: 29433740 DOI: 10.1016/bs.ctdb.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A paradigm shift is emerging within the FOXO field and accumulating evidence indicates that we need to reappreciate the role of FOXOs, at least in cancer development. Here, we discuss the possibility that FOXOs are both tumor suppressors as well as promoters of tumor progression. This is mostly dependent on the biological context. Critical to this dichotomous role is the notion that FOXOs are central in preserving cellular homeostasis in redox control, genomic stability, and protein turnover. From this perspective, a paradoxical role in both suppressing and enhancing tumor progression can be reconciled. As many small molecules targeting the PI3K pathway are developed by big pharmaceutical companies and/or are in clinical trial, we will discuss what the consequences may be for the context-dependent role of FOXOs in tumor development in treatment options based on active PI3K signaling in tumors.
Collapse
Affiliation(s)
- Sabina van Doeselaar
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Chwalenia K, Qin F, Singh S, Tangtrongstittikul P, Li H. Connections between Transcription Downstream of Genes and cis-SAGe Chimeric RNA. Genes (Basel) 2017; 8:genes8110338. [PMID: 29165374 PMCID: PMC5704251 DOI: 10.3390/genes8110338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 02/03/2023] Open
Abstract
cis-Splicing between adjacent genes (cis-SAGe) is being recognized as one way to produce chimeric fusion RNAs. However, its detail mechanism is not clear. Recent study revealed induction of transcriptions downstream of genes (DoGs) under osmotic stress. Here, we investigated the influence of osmotic stress on cis-SAGe chimeric RNAs and their connection to DoGs. We found, the absence of induction of at least some cis-SAGe fusions and/or their corresponding DoGs at early time point(s). In fact, these DoGs and their cis-SAGe fusions are inversely correlated. This negative correlation was changed to positive at a later time point. These results suggest a direct competition between the two categories of transcripts when total pool of readthrough transcripts is limited at an early time point. At a later time point, DoGs and corresponding cis-SAGe fusions are both induced, indicating that total readthrough transcripts become more abundant. Finally, we observed overall enhancement of cis-SAGe chimeric RNAs in KCl-treated samples by RNA-Seq analysis.
Collapse
Affiliation(s)
- Katarzyna Chwalenia
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
20
|
Hou T, Li Z, Zhao Y, Zhu WG. Mechanisms controlling the anti-neoplastic functions of FoxO proteins. Semin Cancer Biol 2017; 50:101-114. [PMID: 29155239 DOI: 10.1016/j.semcancer.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
Abstract
The Forkhead box O (FoxO) proteins comprise a family of evolutionarily conserved transcription factors that predominantly function as tumor suppressors. These proteins assume diverse roles in the cellular anti-neoplastic response, including regulation of apoptosis and autophagy, cancer metabolism, cell-cycle arrest, oxidative stress and the DNA damage response. More recently, FoxO proteins have been implicated in cancer immunity and cancer stem-cell (CSC) homeostasis. Interestingly, in some sporadic sub-populations, FoxO protein function may also be manipulated by factors such as β-catenin whereby they instead can facilitate cancer progression via maintenance of CSC properties or promoting drug resistance or metastasis and invasion. This review highlights the essential biological functions of FoxOs and explores the areas that may be exploited in FoxO protein signaling pathways in the development of novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Tianyun Hou
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhiming Li
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
21
|
Chwalenia K, Facemire L, Li H. Chimeric RNAs in cancer and normal physiology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [DOI: 10.1002/wrna.1427] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Katarzyna Chwalenia
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
| | - Loryn Facemire
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
| | - Hui Li
- Department of Pathology, School of Medicine; University of Virginia; Charlottesville VA USA
- Department of Biochemistry and Molecular Genetics, School of Medicine; University of Virginia; Charlottesville VA USA
| |
Collapse
|
22
|
Guo D, Guo J, Li X, Guan F. Differential effects of Pax3 on expression of polysialyltransferases STX and PST in TGF-β-treated normal murine mammary gland cells. Exp Biol Med (Maywood) 2016; 242:177-183. [PMID: 27651434 DOI: 10.1177/1535370216669838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glycosylation of certain proteins at the mammalian cell surface is an essential event in carcinogenesis. Sialylation, one type of glycosylation, can act on multiple cell-behaviors, such as migration, growth, and malignant invasion. Two polysialyltransferases, ST8Sia II (STX) and ST8Sia IV (PST), are responsible for synthesis of polysialic acid on neural cell adhesion molecule. We showed previously that STX and PST are oppositely expressed in normal murine mammary gland cells undergoing transforming growth factor-β-induced epithelial-mesenchymal transition. The molecular basis for regulation of STX and PST remained unclear. In the present study, we observed that transcription factor Pax3 upregulates STX expression, downregulates PST expression, and modulates upregulated expression of PSA, which attaches primarily to neural cell adhesion molecule to form PSA-NCAM. Overexpression of Pax3 in normal murine mammary gland cells transformed the expression of epithelial-mesenchymal transition markers E-cadherin and N-cadherin, and significantly promoted cell migration, but had no effect on cell proliferation.
Collapse
Affiliation(s)
- Dong Guo
- 1 The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jia Guo
- 1 The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiang Li
- 2 Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Feng Guan
- 1 The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Unno R, Mizuno K, Ito Y, Etani T, Okada A, Kawai N, Yasui T, Saitoh S, Hayashi Y. Treatment Strategy for Pediatric Paratesticular Rhabdomyosarcoma Based on Chimeric Gene Assessment. Urology 2016; 95:187-9. [PMID: 27017905 DOI: 10.1016/j.urology.2016.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/24/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
Rhabdomyosarcoma (RMS), a malignant tumor of the soft tissue, occurs in two major subtypes: embryonal and alveolar. A majority of pediatric RMS cases involve the embryonal type and occur in the soft tissues of the head and neck or the urogenital organs, which contain paratesticular tissues. We report herein two cases of pediatric paratesticular RMS. One case was embryonal, whereas the other case was alveolar; the latter exhibited PAX7-FOXO1 gene chimerism and rapid progression. Notably, this is the first report of pediatric paratesticular pure-type alveolar RMS in Japan.
Collapse
Affiliation(s)
- Rei Unno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Mizuno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Yasuhiko Ito
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiki Etani
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyasu Kawai
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaro Hayashi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
24
|
Abstract
The majority of metastatic breast cancers cannot be cured and present a major public health problem worldwide. Approximately 70% of breast cancers express the estrogen receptor, and endocrine-based therapies have significantly improved patient outcomes. However, the development of endocrine resistance is extremely common. Understanding the molecular pathways that regulate the hormone sensitivity of breast cancer cells is important to improving the efficacy of endocrine therapy. It is becoming clearer that the PI3K-AKT-forkhead box O (FOXO) signaling axis is a key player in the hormone-independent growth of many breast cancers. Constitutive PI3K-AKT pathway activation, a driver of breast cancer growth, causes down-regulation of FOXO tumor suppressor functions. This review will summarize what is currently known about the role of FOXOs in endocrine-resistance mechanisms. It will also suggest potential therapeutic strategies for the restoration of normal FOXO transcriptional activity.
Collapse
Affiliation(s)
- M Bullock
- Hormones and Cancer GroupCancer Genetics Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Pacific Highway Saint Leonards, Sydney, New South Wales 2065, Australia
| |
Collapse
|