1
|
Juracek J, Madrzyk M, Stanik M, Ruckova M, Trachtova K, Malcikova H, Lzicarova E, Barth DA, Pichler M, Slaby O. A tissue miRNA expression pattern is associated with disease aggressiveness of localized prostate cancer. Prostate 2023; 83:340-351. [PMID: 36478451 DOI: 10.1002/pros.24466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is a heterogeneous malignancy with high variability in clinical course. Insufficient stratification according to the aggressiveness at the time of diagnosis causes unnecessary or delayed treatment. Current stratification systems are not effective enough because they are based on clinical, surgical or biochemical parameters, but do not take into account molecular factors driving PCa cancerogenesis. MicroRNAs (miRNAs) are important players in molecular pathogenesis of PCa and could serve as valuable biomarkers for the assessment of disease aggressiveness and its prognosis. METHODS In the study, in total, 280 PCa patients were enrolled. The miRNA expression profiles were analyzed in FFPE PCa tissue using the miRCURY LNA miRNA PCR System. The expression levels of candidate miRNAs were further verified by two-level validation using the RT-qPCR method and evaluated in relation to PCa stratification reflecting the disease aggressiveness. RESULTS MiRNA profiling revealed 172 miRNAs dysregulated between aggressive (ISUP 3-5) and indolent PCa (ISUP 1) (p < 0.05). In the training and validation cohort, miR-15b-5p and miR-106b-5p were confirmed to be significantly upregulated in tissue of aggressive PCa when their level was associated with disease aggressiveness. Furthermore, we established a prognostic score combining the level of miR-15b-5p and miR-106b-5p with serum PSA level, which discriminated indolent PCa from an aggressive form with even higher analytical parameters (AUC being 0.9338 in the training set and 0.8014 in the validation set, respectively). The score was also associated with 5-year biochemical progression-free survival (bPFS) of PCa patients. CONCLUSIONS We identified a miRNA expression pattern associated with disease aggressiveness in prostate cancer patients. These miRNAs may be of biological interest as the focus can be also set on their specific role within the molecular pathology and the molecular mechanism that underlies the aggressivity of prostate cancer.
Collapse
Affiliation(s)
- Jaroslav Juracek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Madrzyk
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michal Stanik
- Department of Urologic Oncology, Clinic of Surgical Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Michaela Ruckova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karolina Trachtova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hana Malcikova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Eva Lzicarova
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Dominik A Barth
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Williams AM, Jensen DM, Pan X, Liu P, Liu J, Huls S, Regner KR, Iczkowski KA, Wang F, Li J, Gallan AJ, Wang T, Baker MA, Liu Y, Lalehzari N, Liang M. Histologically resolved small RNA maps in primary focal segmental glomerulosclerosis indicate progressive changes within glomerular and tubulointerstitial regions. Kidney Int 2022; 101:766-778. [PMID: 35114200 PMCID: PMC8940673 DOI: 10.1016/j.kint.2021.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/06/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Pathological heterogeneity is common in clinical tissue specimens and complicates the interpretation of molecular data obtained from the specimen. As a typical example, a kidney biopsy specimen often contains glomeruli and tubulointerstitial regions with different levels of histological injury, including some that are histologically normal. We reasoned that the molecular profiles of kidney tissue regions with specific histological injury scores could provide new insights into kidney injury progression. Therefore, we developed a strategy to perform small RNA deep sequencing analysis for individually scored glomerular and tubulointerstitial regions in formalin-fixed, paraffin-embedded kidney needle biopsies. This approach was applied to study focal segmental glomerulosclerosis (FSGS), the leading cause of nephrotic syndrome in adults. Large numbers of small RNAs, including microRNAs, 3'-tRFs, 5'-tRFs, and mitochondrial tRFs, were differentially expressed between histologically indistinguishable tissue regions from patients with FSGS and matched healthy controls. A majority of tRFs were upregulated in FSGS. Several small RNAs were differentially expressed between tissue regions with different histological scores in FSGS. Notably, with increasing levels of histological damage, miR-21-5p was upregulated progressively and miR-192-5p was downregulated progressively in glomerular and tubulointerstitial regions, respectively. This study marks the first genome scale molecular profiling conducted in histologically characterized glomerular and tubulointerstitial regions. Thus, substantial molecular changes in histologically normal kidney regions in FSGS might contribute to initiating tissue injury or represent compensatory mechanisms. In addition, several small RNAs might contribute to subsequent progression of glomerular and tubulointerstitial injury, and histologically mapping small RNA profiles may be applied to analyze tissue specimens in any disease.
Collapse
Affiliation(s)
- Anna Marie Williams
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David M Jensen
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xiaoqing Pan
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jing Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sean Huls
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Feng Wang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Junhui Li
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alexander J Gallan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tao Wang
- Division of Biostatistics, Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maria Angeles Baker
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nava Lalehzari
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
3
|
Wulf MG, Maguire S, Dai N, Blondel A, Posfai D, Krishnan K, Sun Z, Guan S, Corrêa IR. Chemical capping improves template switching and enhances sequencing of small RNAs. Nucleic Acids Res 2021; 50:e2. [PMID: 34581823 PMCID: PMC8754658 DOI: 10.1093/nar/gkab861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Template-switching reverse transcription is widely used in RNA sequencing for low-input and low-quality samples, including RNA from single cells or formalin-fixed paraffin-embedded (FFPE) tissues. Previously, we identified the native eukaryotic mRNA 5′ cap as a key structural element for enhancing template switching efficiency. Here, we introduce CapTS-seq, a new strategy for sequencing small RNAs that combines chemical capping and template switching. We probed a variety of non-native synthetic cap structures and found that an unmethylated guanosine triphosphate cap led to the lowest bias and highest efficiency for template switching. Through cross-examination of different nucleotides at the cap position, our data provided unequivocal evidence that the 5′ cap acts as a template for the first nucleotide in reverse transcriptase-mediated post-templated addition to the emerging cDNA—a key feature to propel template switching. We deployed CapTS-seq for sequencing synthetic miRNAs, human total brain and liver FFPE RNA, and demonstrated that it consistently improves library quality for miRNAs in comparison with a gold standard template switching-based small RNA-seq kit.
Collapse
Affiliation(s)
- Madalee G Wulf
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Sean Maguire
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Nan Dai
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Alice Blondel
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Dora Posfai
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | | - Zhiyi Sun
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Shengxi Guan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
4
|
Systematic evaluation of multiple qPCR platforms, NanoString and miRNA-Seq for microRNA biomarker discovery in human biofluids. Sci Rep 2021; 11:4435. [PMID: 33627690 PMCID: PMC7904811 DOI: 10.1038/s41598-021-83365-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant miRNA expression has been associated with many diseases, and extracellular miRNAs that circulate in the bloodstream are remarkably stable. Recently, there has been growing interest in identifying cell-free circulating miRNAs that can serve as non-invasive biomarkers for early detection of disease or selection of treatment options. However, quantifying miRNA levels in biofluids is technically challenging due to their low abundance. Using reference samples, we performed a cross-platform evaluation in which miRNA profiling was performed on four different qPCR platforms (MiRXES, Qiagen, Applied Biosystems, Exiqon), nCounter technology (NanoString), and miRNA-Seq. Overall, our results suggest that using miRNA-Seq for discovery and targeted qPCR for validation is a rational strategy for miRNA biomarker development in clinical samples that involve limited amounts of biofluids.
Collapse
|
5
|
Sheng LQ, Li JR, Qin H, Liu L, Zhang DD, Zhang Q, Huang ML, Li XL, Xu XY, Wei YN, Chen ZS, Luo H, Zhang JY, Zhou CH, Chen H, Chen ZG, Li FG, Li NF. Blood exosomal micro ribonucleic acid profiling reveals the complexity of hepatocellular carcinoma and identifies potential biomarkers for differential diagnosis. World J Gastrointest Oncol 2020; 12:1195-1208. [PMID: 33133386 PMCID: PMC7579736 DOI: 10.4251/wjgo.v12.i10.1195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide, but there is a shortage of effective biomarkers for its diagnosis.
AIM To explore blood exosomal micro ribonucleic acids (miRNAs) as potential biomarkers for HCC diagnosis.
METHODS T RESULTS The principal component analysis suggested that daily alcohol consumption could alter the blood exosomal miRNA profiles of hepatitis B virus positive non-HCC patients through miR-3168 and miR-223-3p. The miRNA profiles also revealed the tumor stages of HCC patients. High expression of miR-455-5p and miR-30c-5p, which significantly correlated with better overall survival in tumor tissues, could also be detected in blood exosomes. Two pairs of miRNAs (miR-584-5p/miR-106-3p and miR-628-3p/miR-941) showed a 94.1% sensitivity and 68.4% specificity to differentiate HCC patients from non-HCC patients. The specificity of the combination was substantially influenced by alcohol consumption habits.
CONCLUSION This study suggested that blood exosomal miRNAs can be used as new non-invasive diagnostic tools for HCC. However, their accuracy could be affected by tumor stage and alcohol consumption habits.
Collapse
Affiliation(s)
- Lang-Qing Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Jia-Rong Li
- Department of Biliopancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Hao Qin
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Ling Liu
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Da-Dong Zhang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Meng-Li Huang
- The Medical Department, 3D Medicines Inc., Shanghai 201114, China
| | - Xiao-Li Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xiao-Ya Xu
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Yang-Nian Wei
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Zi-Shuo Chen
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Hui Luo
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Ji-Yang Zhang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Cheng-Hui Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Hao Chen
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Ze-Guo Chen
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Fu-Gen Li
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Nian-Feng Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
6
|
Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch'ng ES. Evaluating the Polarization of Tumor-Associated Macrophages Into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Front Oncol 2020; 9:1512. [PMID: 32039007 PMCID: PMC6992653 DOI: 10.3389/fonc.2019.01512] [Citation(s) in RCA: 421] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor-associated macrophages (TAMs) as immune cells within the tumor microenvironment have gained much interests as basic science regarding their roles in tumor progression unfolds. Better understanding of their polarization into pro-tumoral phenotype to promote tumor growth, tumor angiogenesis, immune evasion, and tumor metastasis has prompted various studies to investigate their clinical significance as a biomarker of predictive and prognostic value across different cancer types. Yet, the methodologies to investigate the polarization phenomena in solid tumor tissue vary. Nonetheless, quantifying the ratio of M1 to M2 TAMs has emerged to be a prevailing parameter to evaluate this polarization phenomena for clinical application. This mini-review focuses on recent studies exploring clinical significance of M1/M2 TAM ratio in human cancer tissue and critically evaluates the technicalities and challenges in quantifying this parameter for routine clinical practice. Immunohistochemistry appears to be the preferred methodology for M1/M2 TAM evaluation as it is readily available in clinical laboratories, albeit with certain limitations. Recommendations are made to standardize the quantification of TAMs for better transition into clinical practice and for better comparison among studies in various populations of patients and cancer types.
Collapse
Affiliation(s)
- Sharmilla Devi Jayasingam
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Marimuthu Citartan
- Infectious Disease Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Thean Hock Thang
- Infectious Disease Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Malaysia
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Anani Aila Mat Zin
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Kai Cheen Ang
- Infectious Disease Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Ewe Seng Ch'ng
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
7
|
Yu LX, Zhang BL, Yang Y, Wang MC, Lei GL, Gao Y, Liu H, Xiao CH, Xu JJ, Qin H, Xu XY, Chen ZS, Zhang DD, Li FG, Zhang SG, Liu R. Exosomal microRNAs as potential biomarkers for cancer cell migration and prognosis in hepatocellular carcinoma patient-derived cell models. Oncol Rep 2018; 41:257-269. [PMID: 30542726 PMCID: PMC6278507 DOI: 10.3892/or.2018.6829] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, and current treatments exhibit limited efficacy against advanced HCC. The majority of cancer-related deaths are caused by metastasis from the primary tumor, which indicates the importance of identifying clinical biomarkers for predicting metastasis and indicating prognosis. Patient-derived cells (PDCs) may be effective models for biomarker identification. In the present study, a wound healing assay was used to obtain 10 fast-migrated and 10 slow-migrated PDC cultures from 36 HCC samples. MicroRNA (miRNA) signatures in PDCs and PDC-derived exosomes were profiled by microRNA-sequencing. Differentially expressed miRNAs between the low- and fast-migrated groups were identified and further validated in 372 HCC profiles from The Cancer Genome Atlas (TCGA). Six exosomal miRNAs were identified to be differentially expressed between the two groups. In the fast-migrated group, five miRNAs (miR-140-3p, miR-30d-5p, miR-29b-3p, miR-130b-3p and miR-330-5p) were downregulated, and one miRNA (miR-296-3p) was upregulated compared with the slow-migrated group. Pathway analysis demonstrated that the target genes of the differentially expressed miRNAs were significantly enriched in the 'focal adhesion' pathway, which is consistent with the roles of these miRNAs in tumor metastasis. Three miRNAs, miR-30d, miR-140 and miR-29b, were significantly associated with patient survival. These findings indicated that these exosomal miRNAs may be candidate biomarkers for predicting HCC cell migration and prognosis and may guide the treatment of advanced HCC.
Collapse
Affiliation(s)
- Ling-Xiang Yu
- Department of Surgical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| | - Bo-Lun Zhang
- Department of General Surgery, Clinical Medical College of Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Meng-Chao Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Guang-Lin Lei
- Department of Hepatobiliary Surgery, Hospital 302 of the PLA, Beijing 100039, P.R. China
| | - Yuan Gao
- Department of Hepatobiliary Surgery, Hospital 302 of the PLA, Beijing 100039, P.R. China
| | - Hu Liu
- Department of Hepatobiliary Surgery, Hospital 302 of the PLA, Beijing 100039, P.R. China
| | - Chao-Hui Xiao
- Department of Hepatobiliary Surgery, Hospital 302 of the PLA, Beijing 100039, P.R. China
| | - Jia-Jia Xu
- Research and Development Institute of Precision Medicine, 3D Medicine Inc., Shanghai 201114, P.R. China
| | - Hao Qin
- Research and Development Institute of Precision Medicine, 3D Medicine Inc., Shanghai 201114, P.R. China
| | - Xiao-Ya Xu
- Research and Development Institute of Precision Medicine, 3D Medicine Inc., Shanghai 201114, P.R. China
| | - Zi-Shuo Chen
- Research and Development Institute of Precision Medicine, 3D Medicine Inc., Shanghai 201114, P.R. China
| | - Da-Dong Zhang
- Research and Development Institute of Precision Medicine, 3D Medicine Inc., Shanghai 201114, P.R. China
| | - Fu-Gen Li
- Research and Development Institute of Precision Medicine, 3D Medicine Inc., Shanghai 201114, P.R. China
| | - Shao-Geng Zhang
- Department of Hepatobiliary Surgery, Hospital 302 of the PLA, Beijing 100039, P.R. China
| | - Rong Liu
- Department of Surgical Oncology, Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
8
|
De-La-Cruz-Montoya AH, Ramírez-Salazar EG, Martínez-Aguilar MM, González-de-la-Rosa PM, Quiterio M, Abreu-Goodger C, Salmerón J, Velázquez-Cruz R. Identification of miR-708-5p in peripheral blood monocytes: Potential marker for postmenopausal osteoporosis in Mexican-Mestizo population. Exp Biol Med (Maywood) 2018; 243:1027-1036. [PMID: 30322266 PMCID: PMC6434455 DOI: 10.1177/1535370218806828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT This is the first study in which hsa-miR-708-5p has been identified in peripheral blood monocytes (osteoclast precursors) and associated with postmenopausal osteoporosis through small RNA-Sequencing, in an Admixed Mexican Mestizo population. By conducting in silico and bioinformatic analyzes, we identified target genes and important signaling pathways involved in bone metabolism pointing hsa-miR-708-5p as a candidate marker for osteoporosis in Mexican population. These approaches provide a landscape of the post-transcriptional regulation, which can be useful for the management of postmenopausal osteoporosis along with the potential use of microRNAs as markers for its early detection.
Collapse
Affiliation(s)
- Aldo H. De-La-Cruz-Montoya
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City C.P. 14610, Mexico
| | - Eric G. Ramírez-Salazar
- Consejo Nacional de Ciencia y Tecnología (CONACYT)-Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City C.P. 14610, Mexico
| | - Mayeli M. Martínez-Aguilar
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City C.P. 14610, Mexico
| | - Pablo M. González-de-la-Rosa
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato C.P. 3682, Mexico
| | - Manuel Quiterio
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Avenida Universidad 655, Morelos C.P. 6210, Mexico
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato C.P. 3682, Mexico
| | - Jorge Salmerón
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Avenida Universidad 655, Morelos C.P. 6210, Mexico
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Cultural s/n Ciudad Universitaria, Mexico City C.P. 04510, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City C.P. 14610, Mexico
| |
Collapse
|
9
|
xMD-miRNA-seq to generate near in vivo miRNA expression estimates in colon epithelial cells. Sci Rep 2018; 8:9783. [PMID: 29955168 PMCID: PMC6023933 DOI: 10.1038/s41598-018-28198-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/19/2018] [Indexed: 01/09/2023] Open
Abstract
Accurate, RNA-seq based, microRNA (miRNA) expression estimates from primary cells have recently been described. However, this in vitro data is mainly obtained from cell culture, which is known to alter cell maturity/differentiation status, significantly changing miRNA levels. What is needed is a robust method to obtain in vivo miRNA expression values directly from cells. We introduce expression microdissection miRNA small RNA sequencing (xMD-miRNA-seq), a method to isolate cells directly from formalin fixed paraffin-embedded (FFPE) tissues. xMD-miRNA-seq is a low-cost, high-throughput, immunohistochemistry-based method to capture any cell type of interest. As a proof-of-concept, we isolated colon epithelial cells from two specimens and performed low-input small RNA-seq. We generated up to 600,000 miRNA reads from the samples. Isolated epithelial cells, had abundant epithelial-enriched miRNA expression (miR-192; miR-194; miR-200b; miR-200c; miR-215; miR-375) and overall similar miRNA expression patterns to other epithelial cell populations (colonic enteroids and flow-isolated colon epithelium). xMD-derived epithelial cells were generally not contaminated by other adjacent cells of the colon as noted by t-SNE analysis. xMD-miRNA-seq allows for simple, economical, and efficient identification of cell-specific miRNA expression estimates. Further development will enhance rapid identification of cell-specific miRNA expression estimates in health and disease for nearly any cell type using archival FFPE material.
Collapse
|
10
|
Celano M, Rosignolo F, Maggisano V, Pecce V, Iannone M, Russo D, Bulotta S. MicroRNAs as Biomarkers in Thyroid Carcinoma. Int J Genomics 2017; 2017:6496570. [PMID: 29038786 PMCID: PMC5606057 DOI: 10.1155/2017/6496570] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022] Open
Abstract
Optimal management of patients with thyroid cancer requires the use of sensitive and specific biomarkers. For early diagnosis and effective follow-up, the currently available cytological and serum biomarkers, thyroglobulin and calcitonin, present severe limitations. Research on microRNA expression in thyroid tumors is providing new insights for the development of novel biomarkers that can be used to diagnose thyroid cancer and optimize its management. In this review, we will examine some of the methods commonly used to detect and quantify microRNA in biospecimens from patients with thyroid tumor, as well as the potential applications of these techniques for developing microRNA-based biomarkers for the diagnosis and prognostic evaluation of thyroid cancers.
Collapse
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Rosignolo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - Valentina Maggisano
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Valeria Pecce
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Section of Pharmacology, Roccelletta di Borgia, 88021 Borgia, Italy
| | - Diego Russo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
11
|
LaPierre MP, Stoffel M. MicroRNAs as stress regulators in pancreatic beta cells and diabetes. Mol Metab 2017; 6:1010-1023. [PMID: 28951825 PMCID: PMC5605735 DOI: 10.1016/j.molmet.2017.06.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNAs have emerged as important regulatory non-coding RNAs that tune cellular responses to physiological perturbations and disease conditions. An increasing body of literature underlines the important roles of miRNA function in pancreatic β-cells in response to metabolic, genetic and inflammatory stress. Lessons from genetic loss- and gain-of-function studies have implicated several highly expressed and evolutionary conserved miRNAs in stress signal modulation, resolution and buffering, thereby forming stabilizing miRNA networks that preserve β-cell differentiation, function, proliferation and cell survival. Scope of Review This review will summarize our current knowledge of how biologically relevant miRNAs regulate stress responses in pancreatic β-cells, discuss the challenges and opportunities associated with using secreted miRNAs as biomarkers and forecast how mechanistic knowledge of miRNA function can be exploited in developing miRNA-based therapeutics. Major Conclusions miRNAs play important roles in the function, differentiation, proliferation, and survival of pancreatic β-cells. Many miRNA families that are regulated by metabolic, genetic, and inflammatory stressors have been found to coordinate the adaptive responses of β-cells in vivo in conditions such as obesity and diabetes.
Collapse
Affiliation(s)
| | - Markus Stoffel
- Corresponding author. Swiss Federal Institute of Technology, ETH Zürich, Institute for Molecular Health Science, Laboratory for Metabolic Diseases, Otto-Stern Weg 7, HPL H36, CH 8093 Zürich, Switzerland. Fax: +41 44 633 1362.Federal Institute of TechnologyETH ZürichInstitute for Molecular Health ScienceLaboratory for Metabolic DiseasesOtto-Stern Weg 7HPL H36ZürichCH 8093Switzerland
| |
Collapse
|
12
|
Gallach S, Jantus-Lewintre E, Calabuig-Fariñas S, Montaner D, Alonso S, Sirera R, Blasco A, Usó M, Guijarro R, Martorell M, Camps C. MicroRNA profiling associated with non-small cell lung cancer: next generation sequencing detection, experimental validation, and prognostic value. Oncotarget 2017; 8:56143-56157. [PMID: 28915579 PMCID: PMC5593550 DOI: 10.18632/oncotarget.18603] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Background The average five-year survival for non-small cell lung cancer (NSCLC) patients is approximately 15%. Emerging evidence indicates that microRNAs (miRNAs) constitute a new class of gene regulators in humans that may play an important role in tumorigenesis. Hence, there is growing interest in studying their role as possible new biomarkers whose expression is aberrant in cancer. Therefore, in this study we identified dysregulated miRNAs by next generation sequencing (NGS) and analyzed their prognostic value. Methods Sequencing by oligo ligation detection technology was used to identify dysregulated miRNAs in a training cohort comprising paired tumor/normal tissue samples (N = 32). We validated 22 randomly selected differentially-expressed miRNAs by quantitative real time PCR in tumor and adjacent normal tissue samples (N = 178). Kaplan-Meier survival analysis and Cox regression were used in multivariate analysis to identify independent prognostic biomarkers. Results NGS analysis revealed that 39 miRNAs were dysregulated in NSCLC: 28 were upregulated and 11 were downregulated. Twenty-two miRNAs were validated in an independent cohort. Interestingly, the group of patients with high expression of both miRNAs (miR-21high and miR-188high) showed shorter relapse-free survival (RFS) and overall survival (OS) times. Multivariate analysis confirmed that this combined signature is an independent prognostic marker for RFS and OS (p = 0.001 and p < 0.0001, respectively). Conclusions NGS technology can specifically identify dysregulated miRNA profiles in resectable NSCLC samples. MiR-21 or miR-188 overexpression correlated with a negative prognosis, and their combined signature may represent a new independent prognostic biomarker for RFS and OS.
Collapse
Affiliation(s)
- Sandra Gallach
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain
| | - Eloisa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Pathology, Universitat de València, Valencia, Spain
| | - David Montaner
- Department of Computational Genomics, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Institut de Reserca Germans Trias i Pujol (PMPPC-IGTP), Badalona, Spain
| | - Rafael Sirera
- Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Ana Blasco
- Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Marta Usó
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain
| | - Ricardo Guijarro
- Department of Surgery, Universitat de València, Valencia, Spain.,Department of Thoracic Surgery, Hospital General Universitario de Valencia, Valencia, Spain
| | - Miguel Martorell
- Department of Pathology, Universitat de València, Valencia, Spain.,Department of Pathology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Carlos Camps
- Molecular Oncology Laboratory, Fundación Investigación, Hospital General Universitario de Valencia, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBEROnc), Madrid, Spain.,Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| |
Collapse
|
13
|
Li GJ, Zhao GQ, Yang JP, Zhou YC, Yang KY, Lei YJ, Huang YC. Effect of miR-1244 on cisplatin-treated non-small cell lung cancer via MEF2D expression. Oncol Rep 2017; 37:3475-3483. [PMID: 28498474 DOI: 10.3892/or.2017.5624] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/06/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the function of miR-1244 in cisplatin-treated non-small cell lung cancer (NSCLC). The results of quantitative PCR analysis revealed that the expression levels of miR-1244 in cisplatin‑treated A549 and NCI-H522 human lung cancer cell lines were lower than those in untreated A549 and NCI-H522 cells. Similarly, the expression level of miR-1244 in NSCLC tissue samples from cisplatin-treated patients was also lower than that in non-cisplatin-treated NSCLC patients. Notably, the overall survival times of cisplatin-treated NSCLC patients with high miR-1244 expression were superior to those patients with low miR-1244 expression. We found that overexpression of miR-1244 suppressed cell viability and increased LDH toxicity in cisplatin-treated A549 and NCI-H522 cells. Additionally, overexpression of miR-1244 induced the apoptosis of cisplatin-treated A549 and NCI-H522 cells. Furthermore, overexpression of miR-1244 promoted caspase-3 activity and p53 and Bax protein expression, and suppressed myocyte enhancer factor 2D (MEF2D) and cyclin D1 protein expression in cisplatin‑treated A549 and NCI-H522 cells. Small interfering RNA (siRNA) targeting MEF2D suppressed the protein expression of MEF2D, and was able to decrease the proliferation, promote caspase-3 activity, p53 and Bax protein expression and inhibit cyclin D1 protein expression in cisplatin-treated A549 and NCI-H522 cells following the overexpression of miR-1244. In summary, we found that miR-1244 affected cisplatin-treated NSCLC via MEF2D expression.
Collapse
Affiliation(s)
- Guang-Jian Li
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Guang-Qiang Zhao
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Jia-Peng Yang
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yong-Chun Zhou
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Kai-Yun Yang
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yu-Jie Lei
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
14
|
Peffers MJ, Goljanek-Whysall K, Collins J, Fang Y, Rushton M, Loughlin J, Proctor C, Clegg PD. Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq. PLoS One 2016; 11:e0160517. [PMID: 27533049 PMCID: PMC4988628 DOI: 10.1371/journal.pone.0160517] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for 'cell death and survival', 'cell morphology', and 'cell growth and proliferation'. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in 'skeletal system morphogenesis', 'regulation of cell proliferation' and 'regulation of transcription' suggesting that dynamic epigenetic modifications may occur in genes associated with shared and distinct pathways dependent upon engineered tissue type. An altered phenotype in engineered tissues was observed with ageing at numerous levels. These changes represent novel insights into the ageing process, with implications for stem cell therapies in older patients. In addition we have identified a number of tissue-dependant pathways, which warrant further studies.
Collapse
Affiliation(s)
- Mandy Jayne Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| | - Katarzyna Goljanek-Whysall
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| | - John Collins
- Thurston Arthritis Research Centre, School Of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, 27599
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, UK, L69 7ZB
| | - Michael Rushton
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
| | - John Loughlin
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
| | - Carole Proctor
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK, NE2 4HH
- Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK, NE4 5PL
| | - Peter David Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, UK, CH64 7TE
| |
Collapse
|
15
|
Tumour heterogeneity: principles and practical consequences. Virchows Arch 2016; 469:371-84. [PMID: 27412632 DOI: 10.1007/s00428-016-1987-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/01/2016] [Accepted: 07/03/2016] [Indexed: 12/30/2022]
Abstract
Two major reasons compel us to study tumour heterogeneity: firstly, it represents the basis of acquired therapy resistance, and secondly, it may be one of the major sources of the low level of reproducibility in clinical cancer research. The present review focuses on the heterogeneity of neoplastic disease, both within the primary tumour and between primary tumour and metastases. We discuss different levels of heterogeneity and the current understanding of the phenomenon, as well as imminent developments relevant for clinical research and diagnostic pathology. It is necessary to develop new tools to study heterogeneity and new biomarkers for heterogeneity. Established and new in situ methods will be very useful. In future studies, not only clonal heterogeneity needs to be addressed but also non-clonal phenotypic heterogeneity which might be important for therapy resistance. We also review heterogeneity established in major tumour types, in order to explore potential similarities that might help to define new strategies for targeted therapy.
Collapse
|
16
|
Brito BDL, Lourenço SV, Damascena AS, Kowalski LP, Soares FA, Coutinho-Camillo CM. Expression of stem cell-regulating miRNAs in oral cavity and oropharynx squamous cell carcinoma. J Oral Pathol Med 2016; 45:647-654. [PMID: 26841253 DOI: 10.1111/jop.12424] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most common tumor worldwide and is histologically heterogeneous. Studies have demonstrated the presence of stem cell markers in HNSCC, and microRNAs (miRNAs) have emerged as powerful regulators of differentiation, controlling the self-renewal of stem cells. miRNAs are non-coding RNA molecules that regulate gene expression post-transcriptionally. Many miRNAs have been described as regulators of stem cells in different types of cancer. METHODS We have analyzed the expression of let-7a, miR-34, miR-125b, miR-138, miR-145, miR-183, miR-200b, miR-203, and miR-205 by real-time RT-PCR (qPCR), in 35 oral cavity and oropharynx squamous cell carcinoma (SCC) samples and 10 non-neoplastic oral mucosa controls, to determine possible associations between the expression of these miRNAs and clinical and pathological features of these tumors. RESULTS We observed downregulation of miR-200b and miR-203 in 60.0% and 71.4% of the samples, respectively. Upregulation of miR-138 and miR-183 was observed in 50.0% of the samples. Downregulation of let-7a was associated with perineural invasion. Upregulation of miR-138, miRNA-145, and miR-205 was associated with advanced tumor stages, vascular invasion, and lymph node metastasis, respectively. CONCLUSIONS Our study provides evidence of the expression of miRNAs associated with stem cell regulation in oral cavity and oropharynx SCC and the association of these miRNAs with clinical and pathological features of these tumors.
Collapse
Affiliation(s)
- Bárbara de Lima Brito
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil.,Department of Anatomic Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Silvia Vanessa Lourenço
- Department of General Pathology, Dental School, University of São Paulo, São Paulo, SP, Brazil
| | | | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - Fernando Augusto Soares
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil.,Department of General Pathology, Dental School, University of São Paulo, São Paulo, SP, Brazil
| | - Cláudia Malheiros Coutinho-Camillo
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil. .,Department of Anatomic Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Yang HA, Wang X, Ding F, Pang Q. MiRNA-323-5p Promotes U373 Cell Apoptosis by Reducing IGF-1R. Med Sci Monit 2015; 21:3880-6. [PMID: 26656446 PMCID: PMC4681375 DOI: 10.12659/msm.895037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/28/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND MicroRNA regulates mammalian cell growth in terms of its proliferation and apoptosis by controlling the expression of target genes. MiRNA-323-5p plays an important role in regulating cell growth and death within various types of cells. The function of miRNA-323-5p and its possible molecular mechanism in human cerebral glioma U373 cells remains to be further confirmed. The aim of this study was to investigate the regulation function of miRNA-323-5p in human glioma U373 cell growth, proliferation, and apoptosis. MATERIAL AND METHODS We used human cerebral glioma U373 cells as the cell model; utilized liposome technology (transfected by Lipofectamine2000) in human cerebral glioma U373 cells to over-express miRNA-323-5p (microRNA used as control group); and selected MTT assay and flow cytometry to detect cell growth, proliferation, and apoptosis. We used RT-PCR and Western blotting techniques to study the expression levels of target insulin-like growth factor 1 (IGF-1) receptor protein in U373 cells transfected with miRNA-323-5p. We used liposome transfection techniques in human cerebral glioma U373 cells to over-express or processed knockdown of IGF-1R by siRNA, and then transferred with miRNA-323-5p, thereby investigating the treated human cerebral glioma U373 cells apoptosis situations. RESULTS The over-expression of miRNA-323-5p inhibited the growth and proliferation of human cerebral glioma U373 cells and promoted its apoptosis. The over-expression of miRNA-323-5p also reduced the IGF-1R level. After processing the knockdown of IGF-1R and then transfection with miRNA-323-5p, U373 cells had enhanced apoptosis. The over-expression of IGF-1R inhibited the cells apoptosis induced by miRNA-323-5p. CONCLUSIONS MiRNA-323-5p inhibited human cerebral glioma U373 cell proliferation and promoted its apoptosis by reducing IGF-1R.
Collapse
Affiliation(s)
- Hong-an Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, , P.R. China
| | - Xiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Feng Ding
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, , P.R. China
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, , P.R. China
| |
Collapse
|