1
|
Yang W, Shah AM, Dong S, Sun C, Zhang H, Mohamed H, Gao X, Fan H, Song Y. Tricarboxylate Citrate Transporter of an Oleaginous Fungus Mucor circinelloides WJ11: From Function to Structure and Role in Lipid Production. Front Nutr 2021; 8:802231. [PMID: 34957193 PMCID: PMC8696028 DOI: 10.3389/fnut.2021.802231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
The citrate transporter protein (CTP) plays an important role in citrate efflux from the mitochondrial matrix to cytosol that has great importance in oleaginous fungi. The cytoplasmic citrate produced after citrate efflux serves as the primary carbon source for the triacylglycerol and cholesterol biosynthetic pathways. Because of the CTP's importance, our laboratory has extensively studied its structure/function relationships in Mucor circinelloides to comprehend its molecular mechanism. In the present study, the tricarboxylate citrate transporter (Tct) of M. circinelloides WJ11 has been cloned, overexpressed, purified, kinetically, and structurally characterized. The Tct protein of WJ11 was expressed in Escherichia coli, isolated, and functionally reconstituted in a liposomal system for kinetic studies. Our results showed that Tct has a high affinity for citrate with Km 0.018 mM. Furthermore, the tct overexpression and knockout plasmids were created and transformed into M. circinelloides WJ11. The mitochondria of the tct-overexpressing transformant of M. circinelloides WJ11 showed a 49% increase in citrate efflux, whereas the mitochondria of the tct-knockout transformant showed a 39% decrease in citrate efflux compared to the mitochondria of wild-type WJ11. To elucidate the structure-function relationship of this biologically important transporter a 3D model of the mitochondrial Tct protein was constructed using homology modeling. The overall structure of the protein is V-shaped and its 3D structure is dimeric. The transport stability of the structure was also assessed by molecular dynamics simulation studies. The activity domain was identified to form hydrogen bond and stacking interaction with citrate and malate upon docking. Tricarboxylate citrate transporter has shown high binding energy of −4.87 kcal/mol to citric acid, while −3.80 kcal/mol to malic acid. This is the first report of unraveling the structural characteristics of WJ11 mitochondrial Tct protein and understanding the approach of the transporting toward its substrate. In conclusion, the present findings support our efforts to combine functional and structural data to better understand the Tct of M. circinelloides at the molecular level and its role in lipid accumulation.
Collapse
Affiliation(s)
- Wu Yang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Aabid Manzoor Shah
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Shiqi Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Caili Sun
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China.,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Xiuzhen Gao
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Huirong Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
2
|
Nakamura Y, Asama R, Tabata T, Morita K, Maruyama T, Kondo A, Ishii J. Comparative analyses of site-directed mutagenesis of human melatonin MTNR1A and MTNR1B receptors using a yeast fluorescent biosensor. Biotechnol Bioeng 2020; 118:863-876. [PMID: 33095446 DOI: 10.1002/bit.27609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 11/08/2022]
Abstract
Melatonin is an indoleamine neurohormone made by the pineal gland. Its receptors, MTNR1A and MTNR1B, are members of the G-protein-coupled receptor (GPCR) family and are involved in sleep, circadian rhythm, and mood disorders, and in the inhibition of cancer growth. These receptors, therefore, represent significant molecular targets for insomnia, circadian sleep disorders, and cancer. The yeast Saccharomyces cerevisiae is an attractive host for assaying agonistic activity for human GPCR. We previously constructed a GPCR-based biosensor employing a high-sensitivity yeast strain that incorporated both a chimeric yeast-human Gα protein and a bright fluorescent reporter gene (ZsGreen). Similar approaches have been used for simple and convenient measurements of various GPCR activities. In the current study, we constructed a fluorescence-based yeast biosensor for monitoring the signaling activation of human melatonin receptors. We used this system to analyze point mutations, including previously unreported mutations of the consensus sequences of MTNR1A and MTNR1B melatonin receptors and compared their effects. Most mutations in the consensus sequences significantly affected the signaling capacities of both receptors, but several mutations showed differences between these subtype receptors. Thus, this yeast biosensor holds promise for revealing the functions of melatonin receptors.
Collapse
Affiliation(s)
- Yasuyuki Nakamura
- Engineering Biology Research Center, Kobe University, Kobe, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Ririka Asama
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takuya Tabata
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, Kobe, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan.,Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, Kobe, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| |
Collapse
|
3
|
Sharma B, Xie L, Yang F, Wang W, Zhou Q, Xiang M, Zhou S, Lv W, Jia Y, Pokhrel L, Shen J, Xiao Q, Gao L, Deng W. Recent advance on PTP1B inhibitors and their biomedical applications. Eur J Med Chem 2020; 199:112376. [PMID: 32416458 DOI: 10.1016/j.ejmech.2020.112376] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B), as one of the most important members in PTP superfamily, plays a vital role in conducting various cellular functions. So far, PTP1B has been reported to be involved in the development of many diseases including obesity, diabetes, cancers and cardiovascular diseases. Development of potent and specific PTP1B inhibitors and studies on the structure-activity relationship (SAR) between their chemical structures and their biological activity have drawn increasing attention as they could not only modulate the PTP1B functions inside the cells but also provide useful lead compounds for the treatment of various PTP1B-associated diseases. To this end, we herein summarized the recent developments of PTP1B inhibitors, and different kinds of high-throughput screening strategies for the identification of potential PTP1B inhibitors as well as their potential biomedical applications, and we also provided some perspectives in the concluding remarks in this work.
Collapse
Affiliation(s)
- Bigyan Sharma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Liuxing Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Quanming Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Shizhe Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Wanting Lv
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Yan Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China
| | - Laxman Pokhrel
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, PR China.
| |
Collapse
|
4
|
He H, Liu B, Luo H, Zhang T, Jiang J. Big data and artificial intelligence discover novel drugs targeting proteins without 3D structure and overcome the undruggable targets. Stroke Vasc Neurol 2020; 5:381-387. [PMID: 33376199 PMCID: PMC7804061 DOI: 10.1136/svn-2019-000323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022] Open
Abstract
The discovery of targeted drugs heavily relies on three-dimensional (3D) structures of target proteins. When the 3D structure of a protein target is unknown, it is very difficult to design its corresponding targeted drugs. Although the 3D structures of some proteins (the so-called undruggable targets) are known, their targeted drugs are still absent. As increasing crystal/cryogenic
electron microscopy structures are deposited in Protein Data Bank, it is much more possible to discover the targeted drugs. Moreover, it is also highly probable to turn previous undruggable targets into druggable ones when we identify their hidden allosteric sites. In this review, we focus on the currently available advanced methods for the discovery of novel compounds targeting proteins without 3D structure and how to turn undruggable targets into druggable ones.
Collapse
Affiliation(s)
- Huiqin He
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Benquan Liu
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hongyi Luo
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Tingting Zhang
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jingwei Jiang
- Institute of Pharmacologic Science, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Halim SA, Aziz S, Ilyas M, Wadood A, Khan A, Al-Harrasi A. In Silico Modeling of Crimean Congo Hemorrhagic Fever Virus Glycoprotein-N and Screening of Anti Viral Hits by Virtual Screening. Int J Pept Res Ther 2020; 26:2675-2688. [PMID: 32421093 PMCID: PMC7223756 DOI: 10.1007/s10989-020-10055-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/27/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a widespread zoonotic viral disease, caused by a tick-born virus Crimean-Congo hemorrhagic fever virus (CCHFV). This disease is endemic in Middle East, Asia, Africa and South-Eastern Europe with the mortality rate of 5–30%. CCHFV genome is composed of three segments: large, medium and small segments. M segment encodes a polyprotein (glycoprotein) so called glycoprotein N (Gn) which is considered as a potential druggable target for the effective therapy of CCHF. The complete structure of Gn is still not characterized. The aim of the current study is to predict the complete three-dimensional (3D-) structure of CCHFV Gn protein via threading-based modeling and investigate the residues crucial for binding with CCHFV envelop. The developed model displayed excellent stereo-chemical and geometrical properties. Subsequently structure based virtual screening (SBVS) was applied to discover novel inhibitors of Gn protein. A library of > 1300 anti-virals was selected from PubChem database and directed to the predicted binding site of Gn. The SBVS results led to the identification of thirty-seven compounds that inhibit the protein in computational analysis. Those 37 hits were subject to pharmacokinetic profiling which demonstrated that 30/37 compound possess safer pharmacokinetic properties. Thus, by specifically targeting Gn, less toxic and more potent inhibitors of CCHFV were identified in silico.
Collapse
Affiliation(s)
- Sobia Ahsan Halim
- 1Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Sobia Aziz
- 2Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Mohammad Ilyas
- 3Center for Omic Sciences, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa Pakistan
| | - Abdul Wadood
- 4Department of Biochemistry, Abdul Wali Khan University Mardan, Shankar Campus, Mardan, Pakistan
| | - Ajmal Khan
- 1Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- 1Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
6
|
Iftikhar S, Shahid AA, Halim SA, Wolters PJ, Vleeshouwers VGAA, Khan A, Al-Harrasi A, Ahmad S. Discovering Novel Alternaria solani Succinate Dehydrogenase Inhibitors by in Silico Modeling and Virtual Screening Strategies to Combat Early Blight. Front Chem 2017; 5:100. [PMID: 29204422 PMCID: PMC5698277 DOI: 10.3389/fchem.2017.00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023] Open
Abstract
Alternaria blight is an important foliage disease caused by Alternaria solani. The enzyme Succinate dehydrogenase (SDH) is a potential drug target because of its role in tricarboxylic acid cycle. Hence targeting Alternaria solani SDH enzyme could be efficient tool to design novel fungicides against A. solani. We employed computational methodologies to design new SDH inhibitors using homology modeling; pharmacophore modeling and structure based virtual screening. The three dimensional SDH model showed good stereo-chemical and structural properties. Based on virtual screening results twelve commercially available compounds were purchased and tested in vitro and in vivo. The compounds were found to inhibit mycelial growth of A. solani. Moreover in vitro trials showed that inhibitory effects were enhanced with increase in concentrations. Similarly increased disease control was observed in pre-treated potato tubers. Hence the applied in silico strategy led us to identify novel fungicides.
Collapse
Affiliation(s)
- Sehrish Iftikhar
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Ahmad A. Shahid
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sobia A. Halim
- Department of Biochemistry, Kinnaird College for Women, Lahore, Pakistan
| | - Pieter J. Wolters
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | | | - Ajmal Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
- UoN Chair of Oman Medicinal Plants and Marine Products, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- UoN Chair of Oman Medicinal Plants and Marine Products, University of Nizwa, Nizwa, Oman
| | - Shahbaz Ahmad
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
7
|
Affiliation(s)
- Gwen Hughes
- Assistant professor in Physiology, University of Nottingham
| |
Collapse
|